1
|
Corner SC, Gransbury GK, Mills DP. Influence of weakly coordinating anions binding to the hexa- tert-butyl dysprosocenium cation. Dalton Trans 2024; 54:198-206. [PMID: 39526994 PMCID: PMC11563204 DOI: 10.1039/d4dt02713b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Complexes containing isolated dysprosocenium cations, [Dy(CpR)2][WCA] (CpR = substituted cyclopentadienyl, WCA = weakly coordinating anion), have recently emerged as leading examples of high-temperature single-molecule magnets (SMMs) due to a combination of the axial orientation and rigidity of the CpR rings. However, our understanding of the effects of transverse fields on the magnetic properties of [Dy(CpR)2]+ cations is underdeveloped. Here we investigate the impact of equatorially-bound WCAs via the synthesis of the Dy(III) bis-CpR complexes [Dy(Cpttt)2{AlCl[OC(CF3)3]3-κ-Cl}] (1) and [Dy(Cpttt)2{AlCl(C2H5)[OC(C6F5)3]2-κ-Cl}] (2), and their characterisation by single crystal XRD, elemental analysis, ATR-IR and NMR spectroscopy, and ab initio calculations. Despite the similarity of the Dy coordination spheres in 1 and 2 we find that their effective energy barriers to reversal of magnetisation are vastly different (Ueff = 886(17) cm-1 and 559(18) cm-1, respectively) and they both show waist-restricted magnetic hysteresis at 2 K. Together, these data provide fresh insights into the sensitivity of the magnetic properties of [Dy(CpR)2]+ cations to relatively weak equatorial interactions.
Collapse
Affiliation(s)
- Sophie C Corner
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Gemma K Gransbury
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - David P Mills
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
2
|
Woern K, Poddel'sky AI, Mayer A, Schrenk C, Schnepf A, Klementyeva SV. A Series of Cyclopentadienyl Lanthanum Complexes with Metalloid Germanium Clusters. Inorg Chem 2024; 63:20197-20204. [PMID: 38984981 DOI: 10.1021/acs.inorgchem.4c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
A series of cyclopentadienyllanthanum complexes with the disilylated metalloid germanium cluster [Ge9(Hyp)2]2- [Hyp = Si(SiMe3)3] has been prepared and fully characterized. The synthetic procedure is based on the salt metathesis reaction of two different cyclopentadienyllanthanum diiodides CpLaI2 (Cp: Cp*, pentamethylcyclopentadienyl; Cpttt, 1,2,4-tri-tert-butylcyclopentadienyl) with K2[Ge9(Hyp)2] in tetrahydrofuran (THF) with a subsequent extraction with n-hexane. The composition of the obtained compounds and the mode of coordination of the germanium cluster to the rare-earth metal are strongly influenced by the steric demand of the cyclopentadienyl ligands and the crystallization conditions. The centrosymmetric dimeric compounds with the common formula [CpLa(solv)(η2,3-Ge9(Hyp)2)]2 [1, Cp = Cp*, solv-THF; 2, Cp = Cpttt, solv-NCCH2C(Me)NSiMe3] have been isolated by the slow evaporation of a n-hexane solution, while a mononuclear complex [CptttLa(THF)2(η3-Ge9(Hyp)2)] (4) was found by crystallization from THF. The repeated recrystallization of 1 from n-hexane afforded the asymmetric dimer [Cp*La(THF)(η2,3-Ge9(Hyp)2)][Cp*La(η2,3-Ge9(Hyp)2)] (3) with only one coordinated THF molecule.
Collapse
Affiliation(s)
- Kevin Woern
- Chemistry Department, University of Tübingen Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Andrey I Poddel'sky
- Chemistry Department, University of Tübingen Auf der Morgenstelle 18, 72076 Tübingen, Germany
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 275, 69120 Heidelberg, Germany
| | - Alex Mayer
- Chemistry Department, University of Tübingen Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Claudio Schrenk
- Chemistry Department, University of Tübingen Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Andreas Schnepf
- Chemistry Department, University of Tübingen Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Svetlana V Klementyeva
- Chemistry Department, University of Tübingen Auf der Morgenstelle 18, 72076 Tübingen, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology P.O. Box 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
3
|
Corner S, Gransbury GK, Vitorica-Yrezabal IJ, Whitehead GFS, Chilton NF, Mills DP. Halobenzene Adducts of a Dysprosocenium Single-Molecule Magnet. Inorg Chem 2024; 63:9552-9561. [PMID: 38359351 PMCID: PMC11134494 DOI: 10.1021/acs.inorgchem.3c04105] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Dysprosium complexes with strong axial crystal fields are promising candidates for single-molecule magnets (SMMs), which could be used for high-density data storage. Isolated dysprosocenium cations, [Dy(CpR)2]+ (CpR = substituted cyclopentadienyl), have recently shown magnetic hysteresis (a memory effect) above the temperature of liquid nitrogen. Synthetic efforts have focused on reducing strong transverse ligand fields in these systems as they are known to enhance magnetic relaxation by spin-phonon mechanisms. Here we show that equatorial coordination of the halobenzenes PhX (X = F, Cl, Br) and o-C6H4F2 to the cation of a recently reported dysprosocenium complex [Dy(Cpttt)(Cp*)][Al{OC(CF3)3}4] (Cpttt = C5H2tBu3-1,2,4; Cp* = C5Me5) reduces magnetic hysteresis temperatures compared to that of the parent cation. We find that this is due to increased effectiveness of both one- (Orbach) and two-phonon (Raman) relaxation mechanisms, which correlate with the electronegativity and number of interactions with the halide despite κ1-coordination of a single halobenzene having a minimal effect on the metrical parameters of [Dy(Cpttt)(Cp*)(PhX-κ1-X)]+ cations vs the isolated [Dy(Cpttt)(Cp*)]+ cation. We observe unusual divergent behavior of relaxation rates at low temperatures in [Dy(Cpttt)(Cp*)(PhX)][Al{OC(CF3)3}4], which we attribute to a phonon bottleneck effect. We find that, despite the transverse fields introduced by the monohalobenzenes in these cations, the interactions are sufficiently weak that the effective barriers to magnetization reversal remain above 1000 cm-1, being only ca. 100 cm-1 lower than for the parent complex, [Dy(Cpttt)(Cp*)][Al{OC(CF3)3}4].
Collapse
Affiliation(s)
| | | | | | - George F. S. Whitehead
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - David P. Mills
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
4
|
Corner S, Gransbury GK, Vitorica-Yrezabal IJ, Whitehead GFS, Chilton NF, Mills DP. Synthesis and Magnetic Properties of Bis-Halobenzene Decamethyldysprosocenium Cations. Inorg Chem 2024; 63:9562-9571. [PMID: 38382535 PMCID: PMC11134500 DOI: 10.1021/acs.inorgchem.3c04106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
The decamethyldysprosocenium cation, [Dy(Cp*)2]+ (Cp* = {C5Me5}), was a target single-molecule magnet (SMM) prior to the isolation of larger dysprosocenium cations, which have recently shown magnetic memory effects up to 80 K. However, the relatively short Dy···Cp*centroid distances of [Dy(Cp*)2]+, together with the reduced resonance of its vibrational modes with electronic states compared to larger dysprosocenium cations, could lead to more favorable SMM behavior. Here, we report the synthesis and magnetic properties of a series of solvated adducts containing bis-halobenzene decamethyldysprosocenium cations, namely [Dy(Cp*)2(PhX-κ-X)2][Al{OC(CF3)3}4] (X = F or Cl) and [Dy(Cp*)2(C6H4F2-κ2-F,F)(C6H4F2-κ-F)][Al{OC(CF3)3}4]. These complexes were prepared by the sequential reaction of [Dy(Cp*)2(μ-BH4)]∞ with allylmagnesium chloride and [NEt3H][Al{OC(CF3)3}4], followed by recrystallization from parent halobenzenes. The complexes were characterized by powder and single crystal X-ray diffraction, NMR and ATR-IR spectroscopy, elemental analysis, and SQUID magnetometry; experimental data were rationalized by a combination of density functional theory and ab initio calculations. We find that bis-halobenzene adducts of the [Dy(Cp*)2]+ cation exhibit highly bent Cp*···Dy···Cp* angles; these cations are also susceptible to decomposition by C-X (X = F, Cl, Br) activation and displacement of halobenzenes by O-donor ligands. The effective energy barrier to reversal of magnetization measured for [Dy(Cp*)2(PhF-κ-F)2][Al{OC(CF3)3}4] (930(6) cm-1) sets a new record for SMMs containing {Dy(Cp*)2} fragments, though all SMM parameters are lower than would be predicted for an isolated [Dy(Cp*)2]+ cation, as expected due to transverse ligand fields introduced by halobenzenes and the large deviation of the Cp*···Dy···Cp* angle from linearity promoting magnetic relaxation.
Collapse
Affiliation(s)
- Sophie
C. Corner
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gemma K. Gransbury
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - George F. S. Whitehead
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - David P. Mills
- Department of Chemistry, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
5
|
Klementyeva SV, Woern K, Schrenk C, Zhang M, Khusniyarov MM, Schnepf A. [(thf) 5Ln(Ge 9{Si(SiMe 3) 3} 2)] (Ln = Eu, Sm, Yb): Capping Metalloid Germanium Cluster with Lanthanides. Inorg Chem 2023; 62:5614-5621. [PMID: 36967670 DOI: 10.1021/acs.inorgchem.3c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
We report the synthesis of three neutral complexes with different coordination modes of a di-silylated metalloid germanium cluster to divalent lanthanides [(thf)5Ln(ηn-Ge9(Hyp)2)] (Ln = Yb (1, n = 1); Eu (2, n = 2, 3), Sm (3, n = 2, 3); Hyp = Si(SiMe3)3) by the salt metathesis of LnI2 with K2[Ge9(Hyp)2] in THF. The complexes were characterized by elemental analysis, nuclear magnetic resonance and UV-vis-NIR spectroscopy, and single-crystal X-ray diffraction. In thf solution, the formation of contact or solvate-separated ion pairs depending on the concentration is assumed. Compound 2 exhibits a blue luminescence typical for Eu2+. The solid-state magnetic measurements of compounds 2 and 3 confirm the presence of divalent europium and samarium, respectively.
Collapse
|
6
|
Fang W, Zhu Q, Zhu C. Recent advances in heterometallic clusters with f-block metal-metal bonds: synthesis, reactivity and applications. Chem Soc Rev 2022; 51:8434-8449. [PMID: 36164971 DOI: 10.1039/d2cs00424k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the heterometallic synergistic effects from different metals, heterometallic clusters are of great importance in small-molecule activation and catalysis. For example, both biological nitrogen fixation and photosynthetic splitting of water into oxygen are thought to involve multimetallic catalytic sites with d-block transition metals. Benefitting from the larger coordination numbers of f-block metals (rare-earth metals and actinide elements), heterometallic clusters containing f-block metal-metal bonds have long attracted the interest of both experimental and theoretical chemists. Therefore, a series of effective strategies or platforms have been developed in recent years for the construction of heterometallic clusters with f-block metal-metal bonds. More importantly, synergistic effects between f-block metals and transition metals have been observed in small-molecule activation and catalysis. This tutorial review highlights the recent advances in the construction of heterometallic molecular clusters with f-block metal-metal bonds and also their reactivities and applications. It is hoped that this tutorial review will persuade chemists to develop more efficient strategies to construct clusters with f-block metal-metal bonds and also further expand their applications with heterometallic synergistic effects.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Pan X, Wu C, Fang H, Yan C. Early Lanthanide(III) Ate Complexes Featuring Ln-Si Bonds (Ln = La, Ce): Synthesis, Structural Characterization, and Bonding Analysis. Inorg Chem 2022; 61:14288-14296. [PMID: 36040364 DOI: 10.1021/acs.inorgchem.2c01830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While research on lanthanide (Ln) complexes with silyl ligands is receiving growing attention, significantly unbalanced efforts have been devoted to different Ln elements. In comparison with the intense investigations on Ln elements such as Sm and Yb, the chemistry of silyl lanthanum and cerium complexes is much slower to develop, and no solid-state structure of a silyl lanthanum complex has been reported so far. In this research, four types of ate complexes, including [(DME)3Li][Cp3LnSi(H)Mes2], [(18-crown-6)K][Cp3LnSi(CH3)Ph2], [(DME)3Li][Cp3LnSiPh3], and [(12-crown-4)2Na] [Cp3LnSi(Ph)2Si(H)Ph2] (Ln = La, Ce), were synthesized by reacting [(DME)3Na][Cp3La(μ-Cl)LaCp3] or Cp3Ce(THF) with alkali metal silanides. All of the synthesized silyl Ln ate complexes were structurally characterized. La-Si bond lengths are in a range of 3.1733(4)-3.1897(10) Å, and the calculated formal shortness ratios of the La-Si bonds (1.071.08) are comparable to those in the reported silyl complexes having other Ln metal centers. The Ce-Si bond lengths (3.1415(6)-3.1705(9) Å) are within the typical range of reported silyl cerium ate complexes. 29Si solid-state NMR measurements on the diamagnetic silyl lanthanum complexes were conducted, and large one-bond hyperfine splitting constants arising from = 7/2) were resolved. Computational studies on these silyl lanthanum and cerium complexes suggested the polarized covalent feature of the Ln-Si bonds, which is in line with the measured large 1J139La-Si splitting constants.
Collapse
Affiliation(s)
- Xiaowei Pan
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Changjiang Wu
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Chunhua Yan
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Widemann M, Aicher FSW, Bonath M, Eichele K, Maichle‐Mössmer C, Schubert H, Sirsch P, Anwander R, Wesemann L. Molecular Ln(III)-H-E(II) Linkages (Ln=Y, Lu; E=Ge, Sn, Pb). Chemistry 2022; 28:e202201032. [PMID: 35620817 PMCID: PMC9541956 DOI: 10.1002/chem.202201032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/09/2022]
Abstract
Following the alkane-elimination route, the reaction between tetravalent aryl tintrihydride Ar*SnH3 and trivalent rare-earth-metallocene alkyls [Cp*2 Ln(CH{SiMe3 }2 )] gave complexes [Cp*2 Ln(μ-H)2 SnAr*] implementing a low-valent tin hydride (Ln=Y, Lu; Ar*=2,6-Trip2 C6 H3 , Trip=2,4,6-triisopropylphenyl). The homologous complexes of germanium and lead, [Cp*2 Ln(μ-H)2 EAr*] (E = Ge, Pb), were accessed via addition of low-valent [(Ar*EH)2 ] to the rare-earth-metal hydrides [(Cp*2 LnH)2 ]. The lead compounds [Cp*2 Ln(μ-H)2 PbAr*] exhibit H/D exchange in reactions with deuterated solvents or dihydrogen.
Collapse
Affiliation(s)
- Max Widemann
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Frederik S. W. Aicher
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Martin Bonath
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Klaus Eichele
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Cäcilia Maichle‐Mössmer
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Hartmut Schubert
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Peter Sirsch
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Reiner Anwander
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Lars Wesemann
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
9
|
Sun X, Münzfeld L, Jin D, Hauser A, Roesky PW. Silole and germole complexes of lanthanum and cerium. Chem Commun (Camb) 2022; 58:7976-7979. [PMID: 35758854 DOI: 10.1039/d2cc02810g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using dianionic metallole ligands (silole or germole) and the cyclooctatetraendiide dianion, heteroleptic lanthanide multi-decker complexes have been prepared. Due to the heteroatom of the metallole ligands intermolecular bridging between the sandwich complexes takes place. Our work highlights that different combinations of the lanthanide and heterocycle lead to different intermolecular interactions including a dimeric La-silole sandwich complex, a La-germole ladder-type polymeric species and a Ce-germole coordination polymer.
Collapse
Affiliation(s)
- Xiaofei Sun
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany.
| | - Luca Münzfeld
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany.
| | - Da Jin
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany.
| | - Adrian Hauser
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany.
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany.
| |
Collapse
|
10
|
Xu Y, Zhang K, Hu M, Gao X, Leng J, Fan J. Triplet exciton dynamics of pure organics with halogen substitution boosted two photon absorption and room temperature phosphorescence: A theoretical perspective. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120786. [PMID: 34972053 DOI: 10.1016/j.saa.2021.120786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/21/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Organic room temperature phosphorescence (RTP) molecules have shown promising applications in organic light emitting diodes and vivo imaging. Thus, triplet exciton dynamics in solid phase should be revealed and the molecule should possess large two photon absorption (TPA) cross sections under near-infrared excitation. The effects of halogen substitution and intermolecular interaction on RTP and TPA properties are studied at molecular level for a series of derivatives. Surrounding environment in solid phase is considered by combined quantum mechanics and molecular mechanics method. Intermolecular interactions are evaluated by the independent gradient model and calculated through the molecular force field energy decomposition method. Minimum energy crossing point, Huang-Rhys factor and reorganization energy are discussed, triplet exciton dynamics are investigated by thermal vibration correlation function method. Results indicate that the largest TPA cross sections are found for molecule in water. The halogen substitution can enlarge the proportion of (π, π*) and facilitate the intersystem crossing process. Restricted intramolecular rotation motions of dihedral angle in low frequency regions are found for Br-Np-Cz-BF2 in solid phase. While enhanced vibrations of bond length and bond angle in high frequency regions are detected for I-Np-Cz-BF2. Effects of halogen substitution and intermolecular interaction on triplet exciton dynamics are highlighted.
Collapse
Affiliation(s)
- Yuanyuan Xu
- School of Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Minghao Hu
- School of Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xingguo Gao
- School of Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jiancai Leng
- School of Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
11
|
|
12
|
Pöcheim A, Marschner C, Baumgartner J. Rare-Earth-Silyl ate-Complexes Opening a Door to Selective Manipulations. Inorg Chem 2021; 60:8218-8226. [PMID: 34033463 PMCID: PMC8188526 DOI: 10.1021/acs.inorgchem.1c00904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 11/30/2022]
Abstract
The reactions of a number of rare-earth (RE) trichlorides and an oligosilanylene diide containing a siloxane unit in the backbone in DME are described. The formed products of the type [(DME)4·K][(DME)·RE(Cl)2{Si(SiMe3)2SiMe2}2O] (RE = Y, La, Ce, Pr, Sm, Tb, Dy, and Er) are disilylated dichloro metalate complexes and include the first examples of Si-La and Si-Pr compounds as well as the first structurally characterized example of a Si-Dy complex. A most intriguing aspect of the synthesis of these complexes is that they offer entry into a systematic study of the still largely unexplored field of silyl RE complexes by the possibility of ligand exchange reactions under preservation of the Si-RE interaction. This was demonstrated by the conversion of [(DME)4·K][(DME)·RE(Cl)2{Si(SiMe3)2SiMe2}2O] to [(DME)4·K][Cp2Y{Si(SiMe3)2SiMe2}2O].
Collapse
Affiliation(s)
- Alexander Pöcheim
- Institut für Anorganische
Chemie, Technische Universität Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Christoph Marschner
- Institut für Anorganische
Chemie, Technische Universität Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Judith Baumgartner
- Institut für Anorganische
Chemie, Technische Universität Graz, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
13
|
Klementyeva SV, Schrenk C, Zhang M, Khusniyarov MM, Schnepf A. (thf) 2Ln(Ge 9{Si(SiMe 3) 3} 3) 2 (Ln = Eu, Sm): the first coordination of metalloid germanium clusters to lanthanides. Chem Commun (Camb) 2021; 57:4730-4733. [PMID: 33977949 DOI: 10.1039/d1cc01151k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report the synthesis, structure and magnetic properties of the first rare earth complexes of metalloid group 14 clusters [(thf)2Ln(Ge9Hyp3)2] (Ln = Eu, Sm, Hyp = Si(SiMe3)3). X-Ray crystallographic analysis and DFT calculations reveal a novel η2-coordination mode of the Ge9Hyp3 units and a slight distortion of the Ge9 cage.
Collapse
Affiliation(s)
- Svetlana V Klementyeva
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany.
| | - Claudio Schrenk
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany.
| | - Minghui Zhang
- Department of Chemistry and Pharmacy Friedrich-Alexander University Erlangen-Nürnberg (FAU) Egerlandstraße 1, Erlangen 91058, Germany
| | - Marat M Khusniyarov
- Department of Chemistry and Pharmacy Friedrich-Alexander University Erlangen-Nürnberg (FAU) Egerlandstraße 1, Erlangen 91058, Germany
| | - Andreas Schnepf
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany.
| |
Collapse
|
14
|
Liu J, Singh K, Dutta S, Feng Z, Koley D, Tan G, Wang X. Yttrium germole dianion complexes with Y-Ge bonds. Dalton Trans 2021; 50:5552-5556. [PMID: 33908995 DOI: 10.1039/d1dt00798j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of dipotassium 3,4-dimethyl-2,5-bis(trimethylsilyl)-germole dianion K2[1] with YCl3 and Cp*YCl2 (Cp* = cyclopentadienyl) in THF at room temperature afforded the dianion salt [(K-cryptand-222)2][1-YCl3] (K2[2]) and the dimeric complex [1-Y-Cp*]2 (3), respectively. While the polymeric complex {[(1)2-Y-K(toluene)]2}n (4) was obtained from the reaction of K2[1] and half molar equivalent of YCl3(THF)3.5 in toluene at 80 °C. The germole dianions in complexes 3 and 4 feature η5/η1 coordination interactions with the yttrium atoms. They represent the first examples of rare earth (RE) complexes containing RE-Ge bonds other than the RE-GeR3 structural type.
Collapse
Affiliation(s)
- Jingjing Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Kalyan Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India.
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India.
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India.
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Shi K, Douair I, Feng G, Wang P, Zhao Y, Maron L, Zhu C. Heterometallic Clusters with Multiple Rare Earth Metal–Transition Metal Bonding. J Am Chem Soc 2021; 143:5998-6005. [DOI: 10.1021/jacs.1c01771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kaiying Shi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Iskander Douair
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Genfeng Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Penglong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Goodwin CAP. Blocking like it's hot: a synthetic chemists' path to high-temperature lanthanide single molecule magnets. Dalton Trans 2020; 49:14320-14337. [PMID: 33030172 DOI: 10.1039/d0dt01904f] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Progress in the synthesis, design, and characterisation of single-molecule magnets (SMMs) has expanded dramatically from curiosity driven beginnings to molecules that retain magnetization above the boiling point of liquid nitrogen. This is in no small part due to the increasingly collaborative nature of this research where synthetic targets are guided by theoretical design criteria. This article aims to summarize these efforts and progress from the perspective of a synthetic chemist with a focus on how chemistry can modulate physical properties. A simple overview is presented of lanthanide electronic structure in order to contextualize the synthetic advances that have led to drastic improvements in the performance of lanthanide-based SMMs from the early 2000s to the late 2010s.
Collapse
|
17
|
Réant BLL, Liddle ST, Mills DP. f-Element silicon and heavy tetrel chemistry. Chem Sci 2020; 11:10871-10886. [PMID: 34123189 PMCID: PMC8162282 DOI: 10.1039/d0sc04655h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
The last three decades have seen a significant increase in the number of reports of f-element carbon chemistry, whilst the f-element chemistry of silicon, germanium, tin, and lead remain underdeveloped in comparison. Here, in this perspective we review complexes that contain chemical bonds between f-elements and silicon or the heavier tetrels since the birth of this field in 1985 to present day, with the intention of inspiring researchers to contribute to its development and explore the opportunities that it presents. For the purposes of this perspective, f-elements include lanthanides, actinides and group 3 metals. We focus on complexes that have been structurally authenticated by single-crystal X-ray diffraction, and horizon-scan for future opportunities and targets in the area.
Collapse
Affiliation(s)
- Benjamin L L Réant
- Department of Chemistry, School of Natural Sciences, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, School of Natural Sciences, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - David P Mills
- Department of Chemistry, School of Natural Sciences, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
18
|
Chen SM, Zhang YQ, Xiong J, Wang BW, Gao S. Adducts of Tris(alkyl) Holmium(III) Showing Magnetic Relaxation. Inorg Chem 2020; 59:5835-5844. [DOI: 10.1021/acs.inorgchem.9b03264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shi-Ming Chen
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Jin Xiong
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Bing-Wu Wang
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Song Gao
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|