1
|
Papait A, Perini G, Palmieri V, Cargnoni A, Vertua E, Pasotti A, Rosa E, De Spirito M, Silini AR, Papi M, Parolini O. Defining the immunological compatibility of graphene oxide-loaded PLGA scaffolds for biomedical applications. BIOMATERIALS ADVANCES 2024; 165:214024. [PMID: 39232353 DOI: 10.1016/j.bioadv.2024.214024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Graphene oxide (GO), a carbon-based nanomaterial, presents significant potential across biomedical fields such as bioimaging, drug delivery, biosensors, and phototherapy. This study examines the effects of integrating GO into poly(lactic-co-glycolic acid) (PLGA) scaffolds on human immune cell function. Our results demonstrate that high concentrations of GO reduce the viability of peripheral blood mononuclear cells (PBMCs) following stimulation with anti-CD3 antibody. This reduction extends to T lymphocyte activation, evident from the diminished proliferative response to T cell receptor engagement and impaired differentiation into T helper subsets and regulatory T cells. Interestingly, although GO induces a minimal response in resting monocytes, but it significantly affects both the viability and the differentiation potential of monocytes induced to mature toward M1 pro-inflammatory and M2-like immunoregulatory macrophages. This study seeks to address a critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating various concentrations of GO on primary immune cells, specifically PBMCs isolated from healthy donors. Our findings emphasize the need to optimize the GO to PLGA ratios and scaffold design to advance PLGA-GO-based biomedical applications. STATEMENT OF SIGNIFICANCE: Graphene oxide (GO) holds immense promise for biomedical applications due to its unique properties. However, concerns regarding its potential to trigger adverse immune responses remain. This study addresses this critical gap by investigating the in vitro immunomodulatory effects of PLGA scaffolds incorporating increasing GO concentrations on human peripheral blood mononuclear cells (PBMCs). By elucidating the impact on cell viability, T cell proliferation and differentiation, and the maturation/polarization of antigen-presenting cells, this work offers valuable insights for designing safe and immunologically compatible GO-based biomaterials for future clinical translation.
Collapse
Affiliation(s)
- Andrea Papait
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy.
| | - Giordano Perini
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Istituto dei Sistemi Complessi, CNR, via dei Taurini 19, 00185 Rome, Italy
| | - Anna Cargnoni
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Elsa Vertua
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Anna Pasotti
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Enrico Rosa
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerche Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
2
|
Perini G, Palmieri V, Papait A, Augello A, Fioretti D, Iurescia S, Rinaldi M, Vertua E, Silini A, Torelli R, Carlino A, Musarra T, Sanguinetti M, Parolini O, De Spirito M, Papi M. Slow and steady wins the race: Fractionated near-infrared treatment empowered by graphene-enhanced 3D scaffolds for precision oncology. Mater Today Bio 2024; 25:100986. [PMID: 38375317 PMCID: PMC10875229 DOI: 10.1016/j.mtbio.2024.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Surgically addressing tumors poses a challenge, requiring a tailored, multidisciplinary approach for each patient based on the unique aspects of their case. Innovative therapeutic regimens combined to reliable reconstructive methods can contribute to an extended patient's life expectancy. This study presents a detailed comparative investigation of near-infrared therapy protocols, examining the impact of non-fractionated and fractionated irradiation regimens on cancer treatment. The therapy is based on the implantation of graphene oxide/poly(lactic-co-glycolic acid) three-dimensional printed scaffolds, exploring their versatile applications in oncology by the examination of pro-inflammatory cytokine secretion, immune response, and in vitro and in vivo tumor therapy. The investigation into cell death patterns (apoptosis vs necrosis) underlines the pivotal role of protocol selection underscores the critical influence of treatment duration on cell fate, establishing a crucial parameter in therapeutic decision-making. In vivo experiments corroborated the profound impact of protocol selection on tumor response. The fractionated regimen emerged as the standout performer, achieving a substantial reduction in tumor size over time, surpassing the efficacy of the non-fractionated approach. Additionally, the fractionated regimen exhibited efficacy also in targeting tumors in proximity but not in direct contact to the scaffolds. Our results address a critical gap in current research, highlighting the absence of a standardized protocol for optimizing the outcome of photodynamic therapy. The findings underscore the importance of personalized treatment strategies in achieving optimal therapeutic efficacy for precision cancer therapy.
Collapse
Affiliation(s)
- Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185, Rome, Italy
| | - Andrea Papait
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
- Dipartimento di Scienze della Vita e Salute Pubblica, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Alberto Augello
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Daniela Fioretti
- Istituto di Farmacologia Traslazionale (IFT), Dipartimento di Scienze Biomediche, CNR, 00133, Rome, Italy
| | - Sandra Iurescia
- Istituto di Farmacologia Traslazionale (IFT), Dipartimento di Scienze Biomediche, CNR, 00133, Rome, Italy
| | - Monica Rinaldi
- Istituto di Farmacologia Traslazionale (IFT), Dipartimento di Scienze Biomediche, CNR, 00133, Rome, Italy
| | - Elsa Vertua
- Centro di Ricerca Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Antonietta Silini
- Centro di Ricerca Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Angela Carlino
- Dipartimento di Medicina e Chirurgia, Università Internazionale San Camillo per la Salute e le Scienze Mediche (Unicamillus), 00131, Rome, Italy
| | - Teresa Musarra
- Unità di Patologia Testa e Collo, Polmone e Endocrinologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ornella Parolini
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
- Dipartimento di Scienze della Vita e Salute Pubblica, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| |
Collapse
|
3
|
Friggeri G, Moretti I, Amato F, Marrani AG, Sciandra F, Colombarolli SG, Vitali A, Viscuso S, Augello A, Cui L, Perini G, De Spirito M, Papi M, Palmieri V. Multifunctional scaffolds for biomedical applications: Crafting versatile solutions with polycaprolactone enriched by graphene oxide. APL Bioeng 2024; 8:016115. [PMID: 38435469 PMCID: PMC10908559 DOI: 10.1063/5.0184933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
The pressing need for multifunctional materials in medical settings encompasses a wide array of scenarios, necessitating specific tissue functionalities. A critical challenge is the occurrence of biofouling, particularly by contamination in surgical environments, a common cause of scaffolds impairment. Beyond the imperative to avoid infections, it is also essential to integrate scaffolds with living cells to allow for tissue regeneration, mediated by cell attachment. Here, we focus on the development of a versatile material for medical applications, driven by the diverse time-definite events after scaffold implantation. We investigate the potential of incorporating graphene oxide (GO) into polycaprolactone (PCL) and create a composite for 3D printing a scaffold with time-controlled antibacterial and anti-adhesive growth properties. Indeed, the as-produced PCL-GO scaffold displays a local hydrophobic effect, which is translated into a limitation of biological entities-attachment, including a diminished adhesion of bacteriophages and a reduction of E. coli and S. aureus adhesion of ∼81% and ∼69%, respectively. Moreover, the ability to 3D print PCL-GO scaffolds with different heights enables control over cell distribution and attachment, a feature that can be also exploited for cellular confinement, i.e., for microfluidics or wound healing applications. With time, the surface wettability increases, and the scaffold can be populated by cells. Finally, the presence of GO allows for the use of infrared light for the sterilization of scaffolds and the disruption of any bacteria cell that might adhere to the more hydrophilic surface. Overall, our results showcase the potential of PCL-GO as a versatile material for medical applications.
Collapse
Affiliation(s)
| | - I. Moretti
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - F. Amato
- Dipartimento di Chimica, Università di Roma “La Sapienza,” p.le A. Moro 5, I-00185 Roma, Italy
| | - A. G. Marrani
- Dipartimento di Chimica, Università di Roma “La Sapienza,” p.le A. Moro 5, I-00185 Roma, Italy
| | - F. Sciandra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”-SCITEC (CNR), C/O Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168-Roma, Italy
| | - S. G. Colombarolli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”-SCITEC (CNR), C/O Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168-Roma, Italy
| | - A. Vitali
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”-SCITEC (CNR), C/O Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168-Roma, Italy
| | - S. Viscuso
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”-SCITEC (CNR), C/O Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168-Roma, Italy
| | | | - L. Cui
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | | | - M. De Spirito
- Authors to whom correspondence should be addressed: and
| | - M. Papi
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|
4
|
Perini G, Palmieri V, Friggeri G, Augello A, De Spirito M, Papi M. Carboxylated graphene quantum dots-mediated photothermal therapy enhances drug-membrane permeability, ROS production, and the immune system recruitment on 3D glioblastoma models. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
AbstractGraphene quantum dots (GQDs) are biocompatible nanoparticles employed in biomedical field, thanks to their size and photophysical properties. GQDs have shown the capability to cross biological barriers, including the blood–brain barrier, which makes them promising agents for brain diseases therapy. It has been shown that surface-functionalized GQDs enhance membrane fluidity and intracellular uptake, exerting a synergistic effect with antitumor drugs at subtherapeutic doses. Here, we tested GQDs effects in combination with chemotherapeutic agents doxorubicin and temozolomide, on a complex 3D spheroid model of glioblastoma. We observed that the capability of GQDs to absorb and convert near-infrared light into heat is a key factor in membrane permeability enhancement on 3D model. This non-invasive therapeutic strategy named photothermal therapy (PTT), combined to chemotherapy at subtherapeutic doses, significantly increased the effect of antitumor drugs by reducing tumor growth and viability. Furthermore, the increase in membrane permeability due to GQDs-mediated PTT enhanced the release of reactive oxygen species with strong migration of the immune system towards irradiated cancer spheroids. Our data indicate that the increase in membrane permeability can enhance the efficacy of antitumor drugs at subtherapeutic doses against glioblastoma, reducing side effects, and directing immune response, ultimately improving quality of life for patients.
Collapse
|
5
|
Ahmad K, Shaikh S, Chun HJ, Ali S, Lim JH, Ahmad SS, Lee EJ, Choi I. Extracellular matrix: the critical contributor to skeletal muscle regeneration-a comprehensive review. Inflamm Regen 2023; 43:58. [PMID: 38008778 PMCID: PMC10680355 DOI: 10.1186/s41232-023-00308-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023] Open
Abstract
The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
6
|
Amato F, Motta A, Giaccari L, Di Pasquale R, Scaramuzzo FA, Zanoni R, Marrani AG. One-pot carboxyl enrichment fosters water-dispersibility of reduced graphene oxide: a combined experimental and theoretical assessment. NANOSCALE ADVANCES 2023; 5:893-906. [PMID: 36756527 PMCID: PMC9890975 DOI: 10.1039/d2na00771a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Graphene, one of the allotropic forms of carbon, has attracted enormous interest in the last few years due to its unique properties. Reduced graphene oxide (RGO) is known as the nanomaterial most similar to graphene in terms of electronic, chemical, mechanical, and optical properties. It is prepared from graphene oxide (GO) in the presence of different types of reducing agents. Nevertheless, the application of RGO is still limited, owing to its tendency to irreversibly aggregate in an aqueous medium. Herein, we disclosed the preparation of water-dispersible RGO from GO previously enriched with additional carboxyl functional groups through a one-pot reaction, followed by chemical reduction. This novel and unprecedentedly reported reactivity of GO toward the acylating agent succinic anhydride (SA) was experimentally investigated through XPS, Raman, FT-IR, and UV-Vis, and corroborated by DFT calculations, which have shown a peculiar involvement in the functionalization reaction of both epoxide and hydroxyl functional groups. This proposed synthetic protocol avoids use of sodium cyanide, previously reported for carboxylation of graphene, and focuses on the sustainable and scalable preparation of a water-dispersible RGO, paving the way for its application in many fields where the colloidal stability in aqueous medium is required.
Collapse
Affiliation(s)
- Francesco Amato
- Dipartimento di Chimica, Università di Roma La Sapienza p.le A. Moro 5 I-00185 Rome Italy +39 0649913568 +39 0649913316
| | - Alessandro Motta
- Dipartimento di Chimica, Università di Roma La Sapienza p.le A. Moro 5 I-00185 Rome Italy +39 0649913568 +39 0649913316
- Consorzio INSTM, UdR Roma "La Sapienza" p.le A. Moro 5 I-00185 Rome Italy
| | - Leonardo Giaccari
- Dipartimento di Chimica, Università di Roma La Sapienza p.le A. Moro 5 I-00185 Rome Italy +39 0649913568 +39 0649913316
| | - Roberto Di Pasquale
- Dipartimento di Chimica, Università di Roma La Sapienza p.le A. Moro 5 I-00185 Rome Italy +39 0649913568 +39 0649913316
| | - Francesca Anna Scaramuzzo
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria (S.B.A.I.), Università di Roma La Sapienza Via del Castro Laurenziano 7 I-00161 Rome Italy
| | - Robertino Zanoni
- Dipartimento di Chimica, Università di Roma La Sapienza p.le A. Moro 5 I-00185 Rome Italy +39 0649913568 +39 0649913316
| | - Andrea Giacomo Marrani
- Dipartimento di Chimica, Università di Roma La Sapienza p.le A. Moro 5 I-00185 Rome Italy +39 0649913568 +39 0649913316
| |
Collapse
|
7
|
Effect of Electrolytic Medium on the Electrochemical Reduction of Graphene Oxide on Si(111) as Probed by XPS. NANOMATERIALS 2021; 12:nano12010043. [PMID: 35009993 PMCID: PMC8747037 DOI: 10.3390/nano12010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/15/2023]
Abstract
The wafer-scale integration of graphene is of great importance in view of its numerous applications proposed or underway. A good graphene–silicon interface requires the fine control of several parameters and may turn into a high-cost material, suitable for the most advanced applications. Procedures that can be of great use for a wide range of applications are already available, but others are to be found, in order to modulate the offer of different types of materials, at different levels of sophistication and use. We have been exploring different electrochemical approaches over the last 5 years, starting from graphene oxide and resulting in graphene deposited on silicon-oriented surfaces, with the aim of understanding the reactions leading to the re-establishment of the graphene network. Here, we report how a proper choice of both the chemical environment and electrochemical conditions can lead to a more controlled and tunable graphene–Si(111) interface. This can also lead to a deeper understanding of the electrochemical reactions involved in the evolution of graphene oxide to graphene under electrochemical reduction. Results from XPS, the most suitable tool to follow the presence and fate of functional groups at the graphene surface, are reported, together with electrochemical and Raman findings.
Collapse
|
8
|
Chronopoulou L, Di Nitto A, Papi M, Parolini O, Falconi M, Teti G, Muttini A, Lattanzi W, Palmieri V, Ciasca G, Del Giudice A, Galantini L, Zanoni R, Palocci C. Biosynthesis and physico-chemical characterization of high performing peptide hydrogels@graphene oxide composites. Colloids Surf B Biointerfaces 2021; 207:111989. [PMID: 34303114 DOI: 10.1016/j.colsurfb.2021.111989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/29/2022]
Abstract
Hydrogels based on short peptide molecules are interesting biomaterials with wide present and prospective use in biotechnologies. A well-known possible drawback of these materials can be their limited mechanical performance. In order to overcome this problem, we prepared Fmoc-Phe3self-assembling peptides by a biocatalytic approach, and we reinforced the hydrogel with graphene oxide nanosheets. The formulation here proposed confers to the hydrogel additional physicochemical properties without hampering peptide self-assembly. We investigated in depth the effect of nanocarbon morphology on hydrogel properties (i.e. morphology, viscoelastic properties, stiffness, resistance to an applied stress). In view of further developments towards possible clinical applications, we have preliminarily tested the biocompatibility of the composites. Our results showed that the innovative hydrogel composite formulation based on FmocPhe3 and GO is a biomaterial with improved mechanical properties that appears suitable for the development of biotechnological applications.
Collapse
Affiliation(s)
| | | | | | - Ornella Parolini
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Gabriella Teti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Aurelio Muttini
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Italy
| | - Wanda Lattanzi
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | | | - Gabriele Ciasca
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | | | | | | | - Cleofe Palocci
- Department of Chemistry, University of Rome La Sapienza, Italy; CIABC, University of Rome La Sapienza, Italy.
| |
Collapse
|
9
|
Li X, Li YC, Li S, Xiao R, Ling Y, Li Q, Hou X, Wang X. One-Step Exfoliation/Etching Method to Produce Chitosan-Stabilized Holey Graphene Nanosheets for Superior DNA Adsorption. ACS APPLIED BIO MATERIALS 2020; 3:8542-8550. [DOI: 10.1021/acsabm.0c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyun Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi-Chen Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shanshan Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Renhua Xiao
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yingchen Ling
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Quhuan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Research Institute for Biomimetics and Soft Matter, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Perini G, Palmieri V, Ciasca G, D’Ascenzo M, Gervasoni J, Primiano A, Rinaldi M, Fioretti D, Prampolini C, Tiberio F, Lattanzi W, Parolini O, De Spirito M, Papi M. Graphene Quantum Dots' Surface Chemistry Modulates the Sensitivity of Glioblastoma Cells to Chemotherapeutics. Int J Mol Sci 2020; 21:E6301. [PMID: 32878114 PMCID: PMC7503375 DOI: 10.3390/ijms21176301] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has shown that graphene quantum dots (GQDs) are capable of crossing the blood-brain barrier, the barrier that reduces cancer therapy efficacy. Here, we tested three alternative GQDs' surface chemistries on two neural lineages (glioblastoma cells and mouse cortical neurons). We showed that surface chemistry modulates GQDs' biocompatibility. When used in combination with the chemotherapeutic drug doxorubicin, GDQs exerted a synergistic effect on tumor cells, but not on neurons. This appears to be mediated by the modification of membrane permeability induced by the surface of GQDs. Our findings highlight that GQDs can be adopted as a suitable delivery and therapeutic strategy for the treatment of glioblastoma, by both directly destabilizing the cell membrane and indirectly increasing the efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
- Institute for Complex Systems, National Research Council (ISC-CNR), Via dei Taurini 19, 00185 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
| | - Marcello D’Ascenzo
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Aniello Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Monica Rinaldi
- Institute of Translational Pharmacology (ITF), Department of Biomedical Sciences, National Research Council (CNR), 00168 Rome, Italy; (M.R.); (D.F.)
| | - Daniela Fioretti
- Institute of Translational Pharmacology (ITF), Department of Biomedical Sciences, National Research Council (CNR), 00168 Rome, Italy; (M.R.); (D.F.)
| | - Chiara Prampolini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Tiberio
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Wanda Lattanzi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ornella Parolini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
| |
Collapse
|
11
|
De Maio F, Palmieri V, Santarelli G, Perini G, Salustri A, Palucci I, Sali M, Gervasoni J, Primiano A, Ciasca G, Sanguinetti M, De Spirito M, Delogu G, Papi M. Graphene Oxide-Linezolid Combination as Potential New Anti-Tuberculosis Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1431. [PMID: 32707988 PMCID: PMC7466666 DOI: 10.3390/nano10081431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Global pandemic management represents a serious issue for health systems. In some cases, repurposing of existing medications might help find compounds that have the unexpected potential to combat microorganisms. In the same way, changing cell-drug interaction by nanotechnology could represent an innovative strategy to fight infectious diseases. Tuberculosis (TB) remains one of the most alarming worldwide infectious diseases and there is an urgent need for new drugs and treatments, particularly for the emergence and spread of drug-resistant Mycobacterium tuberculosis (Mtb) strains. New nanotechnologies based on carbon nanomaterials are now being considered to improve anti-TB treatments, and graphene oxide (GO) showed interesting properties as an anti-TB drug. GO, which preferentially accumulates in the lungs and is degraded by macrophagic peroxidases, can trap Mycobacterium smegmatis and Mtb in a dose-dependent manner, reducing the entry of bacilli into macrophages. In this paper, combinations of isoniazid (INH), amikacin (AMK) and linezolid (LZD) and GO anti-mycobacterial properties were evaluated against Mtb H37Rv by using a checkerboard assay or an in vitro infection model. Different GO effects have been observed when incubated with INH, AMK or LZD. Whereas the INH and AMK anti-mycobacterial activities were blocked by GO co-administration, the LZD bactericidal effect increased in combination with GO. GO-LZD significantly reduced extracellular mycobacteria during infection and was able to kill internalized bacilli. GO-LZD co-administration is potentially a new promising anti-TB treatment at the forefront in fighting emerging antibiotic-resistant Mtb strains where LZD administration is suggested. This innovative pharmacological approach may lead to reduced treatment periods and decreased adverse effects. More importantly, we demonstrate how nanomaterials-drugs combinations can represent a possible strategy to quickly design drugs for pandemics treatment.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, 00168 Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Roma, Italy
| | - Giulia Santarelli
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Alessandro Salustri
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ivana Palucci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, 00168 Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michela Sali
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, 00168 Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Aniello Primiano
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, 00168 Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCSS, 00168 Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, 00168 Rome, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Mater Olbia Hospital, 07026 Olbia, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, 00168 Rome, Italy
| |
Collapse
|
12
|
Palmieri V, Spirito MD, Papi M. Graphene-based scaffolds for tissue engineering and photothermal therapy. Nanomedicine (Lond) 2020; 15:1411-1417. [DOI: 10.2217/nnm-2020-0050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Researchers have been creating 3D replicas of damaged tissues for millions of patients by using innovative biomaterials. While these scaffolds have regenerative properties, it would be beneficial if they could be utilized for local therapies, such as for cancer treatment. This report discusses the main advances in graphene scaffold design for near-infrared (NIR) photothermal therapy (PTT). NIR-PTT is a promising alternative for cancer cell killing, mediated by an increase of temperature due to NIR light-absorbers delivered to the tumor proximity. Graphene is a bidimensional material largely exploited in nanomedicine for its unique properties, such as high growth factor loading, which induces cell differentiation and its capacity to absorb NIR light. Here we cover aspects of future research in multifunctional graphene implants for cancer therapy and tissue regeneration.
Collapse
Affiliation(s)
- Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma, Italy
| |
Collapse
|
13
|
Palmieri V, Di Pietro L, Perini G, Barba M, Parolini O, De Spirito M, Lattanzi W, Papi M. Graphene Oxide Nano-Concentrators Selectively Modulate RNA Trapping According to Metal Cations in Solution. Front Bioeng Biotechnol 2020; 8:421. [PMID: 32523936 PMCID: PMC7261913 DOI: 10.3389/fbioe.2020.00421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
With recent advances in nanotechnology, graphene nanomaterials are being translated to applications in the fields of biosensing, medicine, and diagnostics, with unprecedented power. Graphene is a carbon allotrope derived from graphite exfoliation made of an extremely thin honeycomb of sp2 hybridized carbons. In comparison with the bulk materials, graphene and its water-soluble derivative graphene oxide have a smaller size suitable for diagnostic platform miniaturization as well as high surface area and consequently loading of a large number of biological probes. In this work, we propose a nanotechnological method for concentrating total RNA solution and/or enriching small RNA molecules. To this aim, we exploited the unique trapping effects of GO nanoflakes in the presence of divalent cations (i.e., calcium and magnesium) that make it flocculate and precipitate, forming complex meshes that are positively charged. Here, we demonstrated that GO traps can concentrate nucleic acids in the presence of divalent cations and that small RNAs can be selectively released from GO-magnesium traps. GO nano-concentrators will allow better analytical performance with samples available in small amounts and will increase the sensitivity of sequencing platforms by short RNA selection.
Collapse
Affiliation(s)
- Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Marta Barba
- IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy.,Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ornella Parolini
- IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy.,Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Wanda Lattanzi
- IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy.,Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| |
Collapse
|
14
|
Perini G, Palmieri V, Ciasca G, De Spirito M, Papi M. Unravelling the Potential of Graphene Quantum Dots in Biomedicine and Neuroscience. Int J Mol Sci 2020; 21:E3712. [PMID: 32466154 PMCID: PMC7279214 DOI: 10.3390/ijms21103712] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Quantum dots (QDs) are semiconducting nanoparticles that have been gaining ground in various applications, including the biomedical field, thanks to their unique optical properties. Recently, graphene quantum dots (GQDs) have earned attention in biomedicine and nanomedicine, thanks to their higher biocompatibility and low cytotoxicity compared to other QDs. GQDs share the optical properties of QD and have proven ability to cross the blood-brain barrier (BBB). For this reason, GQDs are now being employed to deepen our knowledge in neuroscience diagnostics and therapeutics. Their size and surface chemistry that ease the loading of chemotherapeutic drugs, makes them ideal drug delivery systems through the bloodstream, across the BBB, up to the brain. GQDs-based neuroimaging techniques and theranostic applications, such as photothermal and photodynamic therapy alone or in combination with chemotherapy, have been designed. In this review, optical properties and biocompatibility of GQDs will be described. Then, the ability of GQDs to overtake the BBB and reach the brain will be discussed. At last, applications of GQDs in bioimaging, photophysical therapies and drug delivery to the central nervous system will be considered, unraveling their potential in the neuroscientific field.
Collapse
Affiliation(s)
- Giordano Perini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Roma, Italy
| | - Valentina Palmieri
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Roma, Italy
| | - Gabriele Ciasca
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Roma, Italy
| | - Marco De Spirito
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Roma, Italy
| | - Massimiliano Papi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Roma, Italy
| |
Collapse
|
15
|
Palmieri V, Sciandra F, Bozzi M, De Spirito M, Papi M. 3D Graphene Scaffolds for Skeletal Muscle Regeneration: Future Perspectives. Front Bioeng Biotechnol 2020; 8:383. [PMID: 32432094 PMCID: PMC7214535 DOI: 10.3389/fbioe.2020.00383] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Although skeletal muscle can regenerate after injury, in chronic damages or in traumatic injuries its endogenous self-regeneration is impaired. Consequently, tissue engineering approaches are promising tools for improving skeletal muscle cells proliferation and engraftment. In the last decade, graphene and its derivates are being explored as novel biomaterials for scaffolds production for skeletal muscle repair. This review describes 3D graphene-based materials that are currently used to generate complex structures able not only to guide cell alignment and fusion but also to stimulate muscle contraction thanks to their electrical conductivity. Graphene is an allotrope of carbon that has indeed unique mechanical, electrical and surface properties and has been functionalized to interact with a wide range of synthetic and natural polymers resembling native musculoskeletal tissue. More importantly, graphene can stimulate stem cell differentiation and has been studied for cardiac, neuronal, bone, skin, adipose, and cartilage tissue regeneration. Here we recapitulate recent findings on 3D scaffolds for skeletal muscle repairing and give some hints for future research in multifunctional graphene implants.
Collapse
Affiliation(s)
- Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, (SCITEC)-CNR, SS Roma, Italy
| | - Manuela Bozzi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
16
|
|
17
|
De Maio F, Palmieri V, De Spirito M, Delogu G, Papi M. Carbon nanomaterials: a new way against tuberculosis. Expert Rev Med Devices 2019; 16:863-875. [PMID: 31550943 DOI: 10.1080/17434440.2019.1671820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Tuberculosis (TB) remains one of the most alarming worldwide infectious diseases primarily in low-income countries, where the infection shows a higher and unvaried prevalence. In the last years, the emergence and spread of Mycobacterium tuberculosis (Mtb) strains resistant to first-line anti-TB drugs are the cause of major concern and prompted the implementation of new treatments, including the development of new drugs and the repurposing of old ones. Areas covered: In this review, we discuss solutions against TB based on nanomaterials (NMTs), alone or combined with current anti-TB drugs. We will summarize drug delivery platforms tested in in vivo or in vitro models and their activity against mycobacteria. We will describe how the new nanotechnologies based on carbon nanomaterials, like carbon nanotubes and graphene oxide are now facing the panorama of the medical fight against TB. Expert opinion: We foresee that in the next decade carbon nanomaterials will be at the forefront in fighting emerging antibiotic-resistant Mtb strains by shortening treatment periods, reducing adverse effects and mitigating antibiotic use. However, toxicity and biodegradation studies should be done prior to the clinical translation of carbon nanomaterials.
Collapse
Affiliation(s)
- Flavio De Maio
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Giovanni Delogu
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| |
Collapse
|