1
|
Taguchi J, Tokunaga K, Tabuchi H, Nishiyama T, Kii I, Hosoya T. 1,3-Butadiynyl sulfide-based compact trialkyne platform molecule for sequential assembly of three azides. Chem Commun (Camb) 2024; 60:14581-14584. [PMID: 39499544 DOI: 10.1039/d4cc05205f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
A compact trialkyne platform with a silyl-protected 1,3-butadiynyl sulfide moiety and a terminal alkyne group has been developed for sequential regioselective transition metal-catalyzed triazole formation reactions with three azides. This method enabled the facile construction of a low-molecular-weight triazole library and the synthesis of middle-molecular-weight trifunctional probes for protein modification.
Collapse
Affiliation(s)
- Jumpei Taguchi
- Chemical Bioscience Team, LBB, IIR, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Kento Tokunaga
- Chemical Bioscience Team, LBB, IIR, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Hitomi Tabuchi
- Chemical Bioscience Team, LBB, IIR, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takashi Nishiyama
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| | - Isao Kii
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| | - Takamitsu Hosoya
- Chemical Bioscience Team, LBB, IIR, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
2
|
Dresler E, Woliński P, Wróblewska A, Jasiński R. On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions between Aryl Azides and Ethyl Propiolate. Molecules 2023; 28:8152. [PMID: 38138640 PMCID: PMC10745654 DOI: 10.3390/molecules28248152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
The molecular mechanism of the [3+2] cycloaddition reactions between aryl azides and ethyl propiolate was evaluated in the framework of the Molecular Electron Density Theory. It was found that independently of the nature of the substituent within the azide molecule, the cycloaddition process is realized via a polar but single-step mechanism. All attempts of localization as postulated earlier by Abu-Orabi and coworkers' zwitterionic intermediates were not successful. At the same time, the formation of zwitterions with an "extended" conformation is possible on parallel reaction paths. The ELF analysis shows that the studied cycloaddition reaction leading to the 1,4-triazole proceeds by a two-stage one-step mechanism. It also revealed that both zwitterions are created by the donation of the nitrogen atom's nonbonding electron densities to carbon atoms of ethyl propiolate.
Collapse
Affiliation(s)
- Ewa Dresler
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland;
| | - Przemysław Woliński
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| | - Aneta Wróblewska
- Department of Organic Chemistry, Faculty of Chemistry, University of Lódź, Tamka 12, 91-403 Łódź, Poland;
| | - Radomir Jasiński
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| |
Collapse
|
3
|
Peschke F, Taladriz‐Sender A, Andrews MJ, Watson AJB, Burley GA. Glutathione Mediates Control of Dual Differential Bio-orthogonal Labelling of Biomolecules. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202313063. [PMID: 38515866 PMCID: PMC10953330 DOI: 10.1002/ange.202313063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 03/23/2024]
Abstract
Traditional approaches to bio-orthogonal reaction discovery have focused on developing reagent pairs that react with each other faster than they are metabolically degraded. Glutathione (GSH) is typically responsible for the deactivation of most bio-orthogonal reagents. Here we demonstrate that GSH promotes a Cu-catalysed (3+2) cycloaddition reaction between an ynamine and an azide. We show that GSH acts as a redox modulator to control the Cu oxidation state in these cycloadditions. Rate enhancement of this reaction is specific for ynamine substrates and is tuneable by the Cu:GSH ratio. This unique GSH-mediated reactivity gradient is then utilised in the dual sequential bio-orthogonal labelling of peptides and oligonucleotides via two distinct chemoselective (3+2) cycloadditions.
Collapse
Affiliation(s)
- Frederik Peschke
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Andrea Taladriz‐Sender
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Matthew J. Andrews
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Allan J. B. Watson
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Glenn A. Burley
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| |
Collapse
|
4
|
Peschke F, Taladriz‐Sender A, Andrews MJ, Watson AJB, Burley GA. Glutathione Mediates Control of Dual Differential Bio-orthogonal Labelling of Biomolecules. Angew Chem Int Ed Engl 2023; 62:e202313063. [PMID: 37906440 PMCID: PMC10952886 DOI: 10.1002/anie.202313063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Traditional approaches to bio-orthogonal reaction discovery have focused on developing reagent pairs that react with each other faster than they are metabolically degraded. Glutathione (GSH) is typically responsible for the deactivation of most bio-orthogonal reagents. Here we demonstrate that GSH promotes a Cu-catalysed (3+2) cycloaddition reaction between an ynamine and an azide. We show that GSH acts as a redox modulator to control the Cu oxidation state in these cycloadditions. Rate enhancement of this reaction is specific for ynamine substrates and is tuneable by the Cu:GSH ratio. This unique GSH-mediated reactivity gradient is then utilised in the dual sequential bio-orthogonal labelling of peptides and oligonucleotides via two distinct chemoselective (3+2) cycloadditions.
Collapse
Affiliation(s)
- Frederik Peschke
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Andrea Taladriz‐Sender
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Matthew J. Andrews
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Allan J. B. Watson
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Glenn A. Burley
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| |
Collapse
|
5
|
Sakata Y, Nabekura R, Hazama Y, Hanya M, Nishiyama T, Kii I, Hosoya T. Synthesis of Functionalized Dibenzoazacyclooctynes by a Decomplexation Method for Dibenzo-Fused Cyclooctyne-Cobalt Complexes. Org Lett 2023; 25:1051-1055. [PMID: 36511709 DOI: 10.1021/acs.orglett.2c03832] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A concise route for dibenzoazacyclooctynes (DIBACs) synthesis was developed based on Pictet-Spengler reaction and a novel cobalt decomplexation method established for dibenzo-fused cyclooctyne-cobalt complexes. The method allowed for the facile preparation of functionalized DIBACs, including bisDIBAC, which served as an efficient bisreactive linker for protein modification via the double-click reaction.
Collapse
Affiliation(s)
- Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Ryoto Nabekura
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yuki Hazama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Miho Hanya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takashi Nishiyama
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| | - Isao Kii
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
6
|
Takemura H, Orimoto G, Kobayashi A, Hosoya T, Yoshida S. Modular synthesis of triazoles from 2-azidoacrylamides having a nucleophilic amino group. Org Biomol Chem 2022; 20:6007-6011. [DOI: 10.1039/d2ob00151a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Assembling methods using 2-azidoacrylamides having a nucleophilic amino group are disclosed. Divergent transformations of the amine-type trivalent platform were accomplished with a wide variety of electrophiles to provide a broad...
Collapse
|
7
|
Erickson PW, Fulcher JM, Spaltenstein P, Kay MS. Traceless Click-Assisted Native Chemical Ligation Enabled by Protecting Dibenzocyclooctyne from Acid-Mediated Rearrangement with Copper(I). Bioconjug Chem 2021; 32:2233-2244. [PMID: 34619957 PMCID: PMC9769386 DOI: 10.1021/acs.bioconjchem.1c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The scope of proteins accessible to total chemical synthesis via native chemical ligation (NCL) is often limited by slow ligation kinetics. Here we describe Click-Assisted NCL (CAN), in which peptides are incorporated with traceless "helping hand" lysine linkers that enable addition of dibenzocyclooctyne (DBCO) and azide handles. The resulting strain-promoted alkyne-azide cycloaddition (SPAAC) increases their effective concentration to greatly accelerate ligations. We demonstrate that copper(I) protects DBCO from acid-mediated rearrangement during acidic peptide cleavage, enabling direct production of DBCO synthetic peptides. Excitingly, triazole-linked model peptides ligated rapidly and accumulated little side product due to the fast reaction time. Using the E. coli ribosomal subunit L32 as a model protein, we further demonstrate that SPAAC, ligation, desulfurization, and linker cleavage steps can be performed in one pot. CAN is a useful method for overcoming challenging ligations involving sterically hindered junctions. Additionally, CAN is anticipated to be an important stepping stone toward a multisegment, one-pot, templated ligation system.
Collapse
Affiliation(s)
- Patrick W. Erickson
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - James M. Fulcher
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
| | - Michael S. Kay
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112, United States
| |
Collapse
|
8
|
Aimi T, Meguro T, Kobayashi A, Hosoya T, Yoshida S. Nucleophilic transformations of azido-containing carbonyl compounds via protection of the azido group. Chem Commun (Camb) 2021; 57:6062-6065. [PMID: 34036976 DOI: 10.1039/d1cc01143j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nucleophilic transformations of azido-containing carbonyl compounds are discussed. The phosphazide formation from azides and di(tert-butyl)(4-(dimethylamino)phenyl)phosphine (Amphos) enabled transformations of carbonyl groups with nucleophiles such as lithium aluminum hydride and organometallic reagents. The good stability of the phosphazide moiety allowed us to perform consecutive transformations of a diazide through triazole formation and the Grignard reaction.
Collapse
Affiliation(s)
- Takahiro Aimi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | | | | | | | |
Collapse
|
9
|
Yoshida S, Sakata Y, Misawa Y, Morita T, Kuribara T, Ito H, Koike Y, Kii I, Hosoya T. Assembly of four modules onto a tetraazide platform by consecutive 1,2,3-triazole formations. Chem Commun (Camb) 2021; 57:899-902. [PMID: 33367381 DOI: 10.1039/d0cc07789e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Efficient consecutive 1,2,3-triazole formations using multiazide platforms are disclosed. On the basis of unique clickability of the 1-adamantyl azido group, a four-step synthesis of tetrakis(triazole)s was achieved from a tetraazide platform molecule. This method was applied to a convergent synthesis of tetrafunctionalized probes in a modular synthetic manner.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yoshihiro Misawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takamoto Morita
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomoko Kuribara
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Harumi Ito
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan. and Pathophysiological and Health Science Team, Division of Bio-Function Dynamics Imaging, Imaging Platform and Innovation Group, RIKEN Center for Life Science Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yuka Koike
- Common Facilities Unit, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Isao Kii
- Pathophysiological and Health Science Team, Division of Bio-Function Dynamics Imaging, Imaging Platform and Innovation Group, RIKEN Center for Life Science Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan and Common Facilities Unit, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
10
|
Takemura H, Goto S, Hosoya T, Yoshida S. 2-Azidoacrylamides as compact platforms for efficient modular synthesis. Chem Commun (Camb) 2020; 56:15541-15544. [PMID: 33241832 DOI: 10.1039/d0cc07212e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Efficient methods to assemble modules with compact platform molecules by triazole formations and Michael reactions are disclosed. The good electrophilicity of 2-triazolylacrylamides realized Michael additions using various nucleophiles. An iterative synthesis of a tetrakis(triazole) was accomplished by orthogonal triazole formations and Michael reactions.
Collapse
Affiliation(s)
- Hinano Takemura
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | | | | | |
Collapse
|
11
|
Terashima N, Sakata Y, Meguro T, Hosoya T, Yoshida S. Triazole formation of phosphinyl alkynes with azides through transient protection of phosphine by copper. Chem Commun (Camb) 2020; 56:14003-14006. [PMID: 33094760 DOI: 10.1039/d0cc06551j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient preparation method of functionalized phosphines by copper-catalyzed azide-alkyne cycloaddition (CuAAC) through the transient protection of phosphine from the Staudinger reaction is disclosed. Diverse phosphines were prepared from phosphinyl alkynes and azides by the click reaction at the ethynyl group without damaging the phosphinyl group. Double- and triple-click assemblies of azides were accomplished by triazole formations and robust azaylide formation.
Collapse
Affiliation(s)
- Norikazu Terashima
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
12
|
Makio N, Sakata Y, Kuribara T, Adachi K, Hatakeyama Y, Meguro T, Igawa K, Tomooka K, Hosoya T, Yoshida S. (Hexafluoroacetylacetonato)copper(I)-cycloalkyne complexes as protected cycloalkynes. Chem Commun (Camb) 2020; 56:11449-11452. [PMID: 32852507 DOI: 10.1039/d0cc05182a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A protection method for cycloalkynes by the formation of (hexafluoroacetylacetonato)copper(i)-cycloalkyne complexes is disclosed. Various complexes having functional groups were efficiently prepared, which are easily purified by silica-gel column chromatography. Selective click reactions were realized through the complexation of cycloalkynes with copper.
Collapse
Affiliation(s)
- Naoaki Makio
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomoko Kuribara
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Keisuke Adachi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yasutomo Hatakeyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
13
|
Adachi K, Meguro T, Sakata Y, Igawa K, Tomooka K, Hosoya T, Yoshida S. Selective strain-promoted azide-alkyne cycloadditions through transient protection of bicyclo[6.1.0]nonynes with silver or gold. Chem Commun (Camb) 2020; 56:9823-9826. [PMID: 32716445 DOI: 10.1039/d0cc04606j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Complexation of bicyclo[6.1.0]nonynes with a cationic silver or gold salt results in protection from a click reaction with azides. The cycloalkyne protection using the silver or gold salt enables selective strain-promoted azide-alkyne cycloadditions of diynes keeping the bicyclo[6.1.0]nonyne moiety unreacted.
Collapse
Affiliation(s)
- Keisuke Adachi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
14
|
Yoshida S. Sequential conjugation methods based on triazole formation and related reactions using azides. Org Biomol Chem 2020; 18:1550-1562. [PMID: 32016260 DOI: 10.1039/c9ob02698c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent remarkable progress in azide chemistry has realized sequential conjugation methods with selective 1,2,3-triazole formation. On the basis of the diverse reactivities of azides and azidophiles, including terminal alkynes and cyclooctynes, various selective reactions to furnish triazoles and a wide range of platform molecules, such as diynes, diazides, triynes, and triazides, have been developed so far for bis- and tris(triazole) syntheses. This review highlights recent transformations involving selective triazole formation, allowing the efficient preparation of unsymmetric bis- and tris(triazole)s using diverse platform molecules.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
15
|
Meguro T, Sakata Y, Morita T, Hosoya T, Yoshida S. Facile assembly of three cycloalkyne-modules onto a platform compound bearing thiophene S,S-dioxide moiety and two azido groups. Chem Commun (Camb) 2020; 56:4720-4723. [DOI: 10.1039/d0cc01810d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient method to assemble three cycloalkyne-modules onto a platform bearing a thiophene S,S-dioxide moiety and two azido groups has been developed. The sequential reactions without catalysis or additives enabled the facile preparation of trifunctional molecules by a simple procedure.
Collapse
Affiliation(s)
- Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Takamoto Morita
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| |
Collapse
|
16
|
Yoshida S, Goto S, Nishiyama Y, Hazama Y, Kondo M, Matsushita T, Hosoya T. Effect of Resonance on the Clickability of Alkenyl Azides in the Strain-promoted Cycloaddition with Dibenzo-fused Cyclooctynes. CHEM LETT 2019. [DOI: 10.1246/cl.190400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Sayuri Goto
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yoshitake Nishiyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yuki Hazama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masakazu Kondo
- Ichihara Research Center, JNC Petrochemical Corporation, 5-1 Goikaigan, Ichihara, Chiba 290-8551, Japan
| | - Takeshi Matsushita
- Ichihara Research Center, JNC Petrochemical Corporation, 5-1 Goikaigan, Ichihara, Chiba 290-8551, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
17
|
Makarem A, Klika KD, Litau G, Remde Y, Kopka K. HBED-NN: A Bifunctional Chelator for Constructing Radiopharmaceuticals. J Org Chem 2019; 84:7501-7508. [DOI: 10.1021/acs.joc.9b00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ata Makarem
- German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry, INF 223, D-69120 Heidelberg, Germany
| | - Karel D. Klika
- German Cancer Research Center (DKFZ), Molecular Structure Analysis, INF 280, D-69120 Heidelberg, Germany
| | - German Litau
- German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry, INF 223, D-69120 Heidelberg, Germany
| | - Yvonne Remde
- German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry, INF 223, D-69120 Heidelberg, Germany
| | - Klaus Kopka
- German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry, INF 223, D-69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
| |
Collapse
|