1
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
2
|
Zhu J, Miao C, Wang X. Designing a turn-on ultrasensitive fluorescent probe based on ICT-FRET for detection and bioimaging of Hypochlorous acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122546. [PMID: 36848857 DOI: 10.1016/j.saa.2023.122546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Hypochlorous acid (HClO) plays an essential role in biological systems. The characteristics of potent oxidization and short lifetime make it challenging to detect specifically from other reactive oxygen species (ROS) at cellular levels. Therefore, its detection and imaging with high selectivity and sensitivity are of great significance. Herein a turn-on HClO fluorescent probe (named RNB-OCl) with boronate ester as the recognition site was designed and synthesized. The RNB-OCl displayed good selective and ultrasensitive to HClO with a low detection limit of 1.36 nM by the intramolecular charge transfer (ICT)-fluorescence resonance energy transfer (FRET) dual mechanism in reducing the fluorescence background and improving the sensitivity. In addition, the role of the ICT-FRET was further demonstrated by time-dependent density functional theory (TD-DFT) calculations. Furthermore, the probe RNB-OCl was successfully employed for imaging HClO in living cells.
Collapse
Affiliation(s)
- Jihua Zhu
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, Qinghai 810008, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, Qinghai 810008, P. R. China
| | - Congcong Miao
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, Qinghai 810008, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xicun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| |
Collapse
|
3
|
Zhu J, Miao C, Wang X. An ICT-PET Dual-Controlled Strategy for Improving Molecular Probe Sensitivity: Application to Photoactivatable Fluorescence Imaging and H2S Detection. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Mu Y, Fan H, Li M, Wang R, Chen Z, Fan C, Liu G, Pu S. Multiresponsive tetrarylethylene-based fluorescent dye with multicoloreded changes: AIEE properties, acidichromism, Al 3+ recognition, and applications. J Mater Chem B 2022; 10:9235-9248. [PMID: 36317656 DOI: 10.1039/d2tb01828d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A novel fluorescent sensor BTAE-PA containing two tetrarylethylene (TAE) units linked through pyrimidine-2-amine was prepared, and its optical properties were systematically studied. BTAE-PA exhibited a typical aggregation-induced emission enhancement behavior, and its fluorescent properties could be efficiently modulated by acid/base and metal ions in THF. The protonated effect could induce significant acidichromism and 'turn-on' near-infrared emission with a large Stokes shift (Δλ = 225 nm). Furthermore, BTAE-PA was highly selective toward Al3+ with significant absorption (yellow → orange) and fluorescence (green → red) changes. A Job's plot established the 1 : 1 stoichiometry of the complex formation between BTAE-PA and Al3+, and the limit of detection for Al3+ was determined to be 1.30 × 10-7 mol L-1. Finally, we also demonstrated that BTAE-PA could be made into test paper strips for 'naked-eye' detection of acid/Al3+, and fluorescence imaging experiments proved that BTAE-PA is capable of achieving cell imaging with good biocompatibility. Therefore, the multi-stimuli-responsive and multicoloured display performance of BTAE-PA endows the material with potential applications in security ink, acid/Al3+ sensing, and bio-imaging.
Collapse
Affiliation(s)
- Yanqun Mu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Huanhuan Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Mengyuan Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Renjie Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China. .,Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, P. R. China
| |
Collapse
|
5
|
Mandal M, Banik D, Karak A, Manna SK, Mahapatra AK. Spiropyran-Merocyanine Based Photochromic Fluorescent Probes: Design, Synthesis, and Applications. ACS OMEGA 2022; 7:36988-37007. [PMID: 36312341 PMCID: PMC9608402 DOI: 10.1021/acsomega.2c04969] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 05/27/2023]
Abstract
Due to ever-increasing insights into their fundamental properties and photochromic behaviors, spiropyran derivatives are still a target of interest for researchers. The interswitching ability of this photochrome between the spiropyran (SP) and merocyanine (MC) isoforms under external stimuli (light, cations, anions, pH etc.) with different spectral properties as well as the protonation-deprotonation of its MC form allows researchers to use it suitably in sensing purposes by developing different colorimetric and fluorometric probes. Selective and sensitive recognition can be achieved by little modification of its SP moiety and functional groups. In this review, we emphasize the recent advancements (from 2019 to 2022) of spiropyran-merocyanine based fluorogenic and chromogenic probes for selective detection of various metal ions, anions, neutral analytes, and pH. We precisely explain their design strategies, sensing mechanisms, and biological and environmental applications. This review may accelerate the improvements in designing more advanced probes with innovative applications in the near future.
Collapse
Affiliation(s)
- Moumi Mandal
- Department
of Chemistry, Indian Institute of Engineering
Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Dipanjan Banik
- Department
of Chemistry, Indian Institute of Engineering
Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Anirban Karak
- Department
of Chemistry, Indian Institute of Engineering
Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Saikat Kumar Manna
- Department
of Chemistry, Haldia Government College, Debhog, Haldia, Purba Medinipur 721657, West Bengal, India
| | - Ajit Kumar Mahapatra
- Department
of Chemistry, Indian Institute of Engineering
Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| |
Collapse
|
6
|
Ren M, Chen Z, Ge C, Hu W, Xu J, Yang L, Luan M, Wang N. Visualizing MiRNA Regulation of Apoptosis for Investigating the Feasibility of MiRNA-Targeted Therapy Using a Fluorescent Nanoprobe. Pharmaceutics 2022; 14:pharmaceutics14071349. [PMID: 35890245 PMCID: PMC9323288 DOI: 10.3390/pharmaceutics14071349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
MiRNA-targeted therapy is an active research field in precision cancer therapy. Studying the effect of miRNA expression changes on apoptosis is important for evaluating miRNA-targeted therapy and realizing personalized precision therapy for cancer patients. Here, a new fluorescent nanoprobe was designed for the simultaneous imaging of miRNA-21 and apoptotic protein caspase-3 in cancer cells by using gold nanoparticles as the core and polydopamine as the shell. Confocal imaging indicated that the nanoprobe could be successfully applied for in situ monitoring of miRNA regulation of apoptosis. This design strategy is critical for investigating the feasibility of miRNA-targeted therapy, screening new anti-cancer drugs targeting miRNA, and developing personalized treatment plans.
Collapse
Affiliation(s)
- Mingyao Ren
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.R.); (Z.C.); (C.G.); (W.H.); (J.X.)
| | - Zhe Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.R.); (Z.C.); (C.G.); (W.H.); (J.X.)
| | - Chuandong Ge
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.R.); (Z.C.); (C.G.); (W.H.); (J.X.)
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.R.); (Z.C.); (C.G.); (W.H.); (J.X.)
| | - Jing Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.R.); (Z.C.); (C.G.); (W.H.); (J.X.)
| | - Limin Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China;
| | - Mingming Luan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.R.); (Z.C.); (C.G.); (W.H.); (J.X.)
- Correspondence: (M.L.); (N.W.)
| | - Nianxing Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (M.R.); (Z.C.); (C.G.); (W.H.); (J.X.)
- Correspondence: (M.L.); (N.W.)
| |
Collapse
|
7
|
Banik D, Manna SK, Maiti A, Mahapatra AK. Recent Advancements in Colorimetric and Fluorescent pH Chemosensors: From Design Principles to Applications. Crit Rev Anal Chem 2022; 53:1313-1373. [PMID: 35086371 DOI: 10.1080/10408347.2021.2023002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Due to the immense biological significance of pH in diverse living systems, the design, synthesis, and development of pH chemosensors for pH monitoring has been a very active research field in recent times. In this review, we summarize the designing strategies, sensing mechanisms, biological and environmental applications of fluorogenic and chromogenic pH chemosensors of the last three years (2018-2020). We categorized these pH probes into seven types based on their applications, including 1) Cancer cell discriminating pH probes; 2) Lysosome targetable pH probes; 3) Mitochondria targetable pH probes; 4) Golgi body targetable pH probes; 5) Endoplasmic reticulum targetable pH probes; 6) pH probes used in nonspecific cell imaging; and 7) pH probes without cell imaging. All these different categories exhibit diverse applications of pH probes in biological and environmental fields.
Collapse
Affiliation(s)
- Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Purba Medinipur, West Bengal, India
| | - Anwesha Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| |
Collapse
|
8
|
Wen Y, Jing N, Huo F, Yin C. Recent progress of organic small molecule-based fluorescent probes for intracellular pH sensing. Analyst 2021; 146:7450-7463. [PMID: 34788777 DOI: 10.1039/d1an01621k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluorescent probes along with fluorescence microscopy are essential tools for biomedical research. Various cellular ubiquitous chemical factors such as pH, H2O2, and Ca2+ are labeled and traced using specific fluorescent probes, therefore helping us to explore their physiological function and pathological change. Among them, intracellular pH value is an important factor that governs biological processes, generally ∼7.2. Furthermore, specific organelles within cells possess unique acid-base homeostasis, involving the acidic lysosomes, alkalescent mitochondria, and neutral endoplasmic reticulum and Golgi apparatus, which undergo various physiological processes such as intracellular digestion, ATP production, and protein folding and processing. In this review, recently reported fluorescent probes targeted toward the lysosomes, mitochondria, endoplasmic reticulum, Golgi apparatus, and cytoplasm for sensing pH change are discussed, which involves molecular structures, fluorescence behavior, and biological applications.
Collapse
Affiliation(s)
- Ying Wen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Ning Jing
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
9
|
|
10
|
Wang S, Wang B, Zhu L, Hou JT, Yu KK. A ratiometric fluorescent probe for monitoring pH fluctuations during autophagy in living cells. Chem Commun (Camb) 2021; 57:1510-1513. [DOI: 10.1039/d0cc07788g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a ratiometric fluorescent probe for monitoring pH featuring superb photostability and chemostability.
Collapse
Affiliation(s)
- Shan Wang
- School of Chemistry and Materials Science
- Hubei Engineering University
- Xiaogan
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Bingya Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang
- P. R. China
| | - Lei Zhu
- School of Chemistry and Materials Science
- Hubei Engineering University
- Xiaogan
- P. R. China
| | - Ji-Ting Hou
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang
- P. R. China
| | - Kang-Kang Yu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education)
- College of Life Sciences
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
11
|
|
12
|
Hou JT, Zhang M, Liu Y, Ma X, Duan R, Cao X, Yuan F, Liao YX, Wang S, Xiu Ren W. Fluorescent detectors for hydroxyl radical and their applications in bioimaging: A review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213457] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Chen Y, Wang Y, Yang Y, Li Y, Wang Y, Wang G, James TD, Xuan X, Zhang H, Liu Y. A molecular-logic gate for COX-2 and NAT based on conformational and structural changes: visualizing the progression of liver disease. Chem Sci 2020; 11:6209-6216. [PMID: 32953015 PMCID: PMC7480271 DOI: 10.1039/d0sc00574f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/24/2020] [Indexed: 12/15/2022] Open
Abstract
Lighting up the relevant lesion boundaries during operations is vital for guiding the effective resection of hepatopathic tissue.
Lighting up the relevant lesion boundaries during operations is vital for guiding the effective resection of hepatopathic tissue. We envisioned that molecular-logic gates, which are known for their excellent digital correlation between input and output signals, could be used to facilitate differential visualization of lesion boundaries. Herein, a series of flexible molecules, naphthalene imide-indole derivatives (IAN) were prepared and evaluated as molecular-logic gates. The input and output signals of the IAN derivatives were successfully used to highlight different hepatopathic regions in order to facilitate boundary differentiation. The IAN derivatives produce different signals due to collaborative changes in the conformation and structure. The hepatopathy-related enzymes (COX-2 and NAT) were used to induce conformational and structural changes in IAN derivatives. Based on these enzyme induced synergistic effects, IAN can sensitively emit different coloured signals such as green, cyan and blue (output signals) as a function of the different input signals, i.e. the different activity of COX-2 and NAT in solution and living cells. Significantly, the IAN derivatives were successfully used to distinguish the boundaries of hepatopathic lesions in tissues after spraying with IAN derivatives (mild cirrhosis, severe cirrhosis, in addition to early and late hepatocellular carcinoma) under a hand held lamp at 365 nm by naked eye.
Collapse
Affiliation(s)
- Yuehua Chen
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China .
| | - Yuzhu Wang
- Department of Hepatobiliary and Pancreatic Surgery , Henan Provincial People's Hospital , Zhengzhou University People's Hospital , Henan University People's Hospital , Zhengzhou , Henan 450003 , P. R. China
| | - Yonggang Yang
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China .
| | - Yuhuan Li
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China .
| | - Yafu Wang
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China .
| | - Ge Wang
- Xinxiang Medical University , Xinxiang 453000 , P. R. China
| | - Tony D James
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China . .,Department of Chemistry , University of Bath , Bath , BA2 7AY , UK .
| | - Xiaopeng Xuan
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China .
| | - Hua Zhang
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China .
| | - Yufang Liu
- Henan Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , School of Chemistry and Chemical Engineering , School of Physics , Henan Normal University , Xinxiang 453007 , P. R. China .
| |
Collapse
|
14
|
Nhien PQ, Chou WL, Cuc TTK, Khang TM, Wu CH, Thirumalaivasan N, Hue BTB, Wu JI, Wu SP, Lin HC. Multi-Stimuli Responsive FRET Processes of Bifluorophoric AIEgens in an Amphiphilic Copolymer and Its Application to Cyanide Detection in Aqueous Media. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10959-10972. [PMID: 32026696 PMCID: PMC7325583 DOI: 10.1021/acsami.9b21970] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A novel amphiphilic aggregation-induced emission (AIE) copolymer, that is, poly(NIPAM-co-TPE-SP), consisting of N-isopropylacrylamide (NIPAM) as a hydrophilic unit and a tetraphenylethylene-spiropyran monomer (TPE-SP) as a bifluorophoric unit is reported. Upon UV exposure, the close form of non-emissive spiropyran (SP) in poly(NIPAM-co-TPE-SP) can be photo-switched to the open form of emissive merocyanine (MC) in poly(NIPAM-co-TPE-MC) in an aqueous solution, leading to ratiometric fluorescence of AIEgens between green TPE and red MC emissions at 517 and 627 nm, respectively, via Förster resonance energy transfer (FRET). Distinct FRET processes of poly(NIPAM-co-TPE-MC) can be observed under various UV and visible light irradiations, acid-base conditions, thermal treatments, and cyanide ion interactions, which are also confirmed by theoretical studies. The subtle perturbations of environmental factors, such as UV exposure, pH value, temperature, and cyanide ion, can be detected in aqueous media by distinct ratiometric fluorescence changes of the FRET behavior in the amphiphilic poly(NIPAM-co-TPE-MC). Moreover, the first FRET sensor polymer poly(NIPAM-co-TPE-MC) based on dual AIEgens of TPE and MC units is developed to show a very high selectivity and sensitivity with a low detection limit (LOD = 0.26 μM) toward the cyanide ion in water, which only contain an approximately 1% molar ratio of the bifluorophoric content and can be utilized in cellular bioimaging applications for cyanide detections.
Collapse
Affiliation(s)
- Pham Quoc Nhien
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Wei-Lun Chou
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Trang Manh Khang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Chia-Hua Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | | | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City 721337, Vietnam
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|