1
|
Liang X, Liu G. Concurrently Improving both Mechanical and Electrochemical Performances of Quasi-Solid-State Electrical Double-Layer Capacitors by a Rational Design of Gel Polymer Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56997-57003. [PMID: 39401271 DOI: 10.1021/acsami.4c10344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Aqueous poly(vinyl alcohol) (PVA) gel electrolyte-based quasi-solid-state electrical double-layer capacitors (QSEDLCs) have been extensively investigated in the past ten years, but challenges remain to fabricate the PVA gel electrolyte possessing both superior mechanical and outstanding electrochemical performances. Herein, we develop a strategy to address this issue by a rational design of PVA gel electrolytes, based on a combination of the freeze-thaw (FT) method and sodium perchlorate (NaClO4)-based water-in-salt (WIS) electrolyte. Our study demonstrates that either the FT method or the NaClO4-based WIS electrolyte can improve both the mechanical performance of the PVA gel electrolyte by increasing the crystallization of PVA chains and the electrochemical performance of the PVA gel electrolyte-based QSEDLC by different mechanisms. In comparison with the conventional solvent evaporation method, this work provides an effective strategy to concurrently improve both the mechanical and electrochemical performances of aqueous QSEDLCs.
Collapse
Affiliation(s)
- Xiaohong Liang
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Guangming Liu
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
2
|
Wang L, Wang H, Wu C, Bai J, He T, Li Y, Cheng H, Qu L. Moisture-enabled self-charging and voltage stabilizing supercapacitor. Nat Commun 2024; 15:4929. [PMID: 38858397 PMCID: PMC11165001 DOI: 10.1038/s41467-024-49393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Supercapacitor is highly demanded in emerging portable electronics, however, which faces frequent charging and inevitable rapid self-discharging of huge inconvenient. Here, we present a flexible moisture-powered supercapacitor (mp-SC) that capable of spontaneously moisture-enabled self-charging and persistently voltage stabilizing. Based on the synergy effect of moisture-induced ions diffusion of inner polyelectrolyte-based moist-electric generator and charges storage ability of inner graphene electrochemical capacitor, this mp-SC demonstrates the self-charged high areal capacitance of 138.3 mF cm-2 and ~96.6% voltage maintenance for 120 h. In addition, a large-scale flexible device of 72 mp-SC units connected in series achieves a self-charged 60 V voltage in air, efficiently powering various commercial electronics in practical applications. This work will provide insight into the design self-powered and ultra-long term stable supercapacitors and other energy storage devices.
Collapse
Affiliation(s)
- Lifeng Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, PR China
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, PR China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haiyan Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chunxiao Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, PR China
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiaxin Bai
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tiancheng He
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, PR China.
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, PR China.
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
3
|
Liang X, Wu J, Hua Z, Liu G. Improving the performance of supercapacitors by combining polymeric redox couples and a polymer hydrogel separator. Chem Commun (Camb) 2023; 59:2811-2814. [PMID: 36790145 DOI: 10.1039/d2cc06063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Based on a combination of polymeric redox couples and a polymer hydrogel separator, the performance of aqueous supercapacitors can be improved by concurrently increasing the specific capacitance, widening the electrolyte decomposition window, improving the cycling performance, and suppressing the self-discharge of both the electrical double-layer and faradaic charge storage.
Collapse
Affiliation(s)
- Xiaohong Liang
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Jiang Wu
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Guangming Liu
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
4
|
Chen W, Xing Z, Wei Y, Zhang X, Zhang Q. High thermal safety and conductivity gel polymer electrolyte composed of ionic liquid [EMIM][BF4] and PVDF-HFP for EDLCs. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Polydopamine-coated graphene for supercapacitors with improved electrochemical performances and reduced self-discharge. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Xu S, Liu G. Improving the performance of QSEDLCs by modulating the properties of electrolytes from bulk to interfaces. Chem Commun (Camb) 2022; 58:9002-9005. [PMID: 35861606 DOI: 10.1039/d2cc00760f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategy through the combination of a polyzwitterion matrix, salt mixture, and interfacial organic solvent layer is proposed to achieve an improvement in the performance of gel polymer electrolyte-based quasi-solid-state electrical double-layer capacitors by modulating the properties of the electrolytes from bulk to interfaces.
Collapse
Affiliation(s)
- Siyuan Xu
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Guangming Liu
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
7
|
Wang Q, Zhou L, Li J, Li Z, Wang T. Enhanced Interfacial Affinity of the Supercapacitor Electrode with a Hydrogel Electrolyte by a Preadsorbed Polyzwitterion Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8614-8622. [PMID: 35786970 DOI: 10.1021/acs.langmuir.2c00993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer hydrogel-based solid-state supercapacitors exhibit great potential applications in flexible devices. Nevertheless, the poor electrode-electrolyte interfacial properties restrict their advances. Herein, by taking the well-developed polyvinyl alcohol (PVA)/H2SO4 gel electrolyte and the graphene film electrode as the prototype, a very simple strategy is demonstrated to improve the interfacial affinity between the electrode and the hydrogel electrolyte by a preadsorbed highly hydrophilic polyzwitterion layer of poly(propylsulfonate dimethylammonium propylmethacrylamide) (PPDP) on the electrode surface. Electrochemical measurements confirm that the charge-transfer resistance on the interface is effectively reduced after modification with PPDP. Consequently, the obtained areal capacitance experiences a 3-fold increase compared to the unmodified ones. Results from electrochemical quartz crystal microbalance with dissipation demonstrate that more ions can be reversibly transferred on the modified interface during the change-discharge cycles, suggesting that the accessible surface area on the electrode is also increased. The hydrophilic PVA layer shows a similar function but with a much smaller efficiency. The strategy depicted here is highly universalizable and can be generalized to different electrode/electrolyte systems or other electrochemical energy storage devices.
Collapse
Affiliation(s)
- Qing Wang
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang 330031, P. R. China
| | - Lang Zhou
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang 330031, P. R. China
| | - Jingzhe Li
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang 330031, P. R. China
| | - Zheng Li
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang 330031, P. R. China
| | - Tao Wang
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
8
|
Yao J, Shi M, Li W, Han Q, Wu M, Yang W, Wang E, Zhao M, Lu X. Fluorinated Ether‐Based Electrolyte for Supercapacitors with Increased Working Voltage and Suppressed Self‐discharge. ChemElectroChem 2022. [DOI: 10.1002/celc.202200223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Yao
- Guangxi University School of Resources, Environment and Materials CHINA
| | - Mingwei Shi
- Chinese Academy of Sciences Institute of Nanoenergy and Nanosystems CHINA
| | - Wenshi Li
- Chinese Academy of Sciences Beijing Institute of Nanoenergy and Nanosystems CHINA
| | - Qiankun Han
- Guangxi University School of Resources, Environment and Materials CHINA
| | - Maosheng Wu
- Chinese Academy of Sciences Beijing Institute of Nanoenergy and Nanosystems CHINA
| | - Wei Yang
- Chinese Academy of Sciences Beijing Institute of Nanoenergy and Nanosystems CHINA
| | - Engui Wang
- Guangxi University School of Resources, Environment and Materials CHINA
| | - Man Zhao
- Chinese Academy of Sciences Beijing Institute of Nanoenergy and Nanosystems CHINA
| | - Xianmao Lu
- Beijing Institute of Nanoenergy & Nanosystems Xueyuan Road #30Tiangong Tower C 100083 Beijing CHINA
| |
Collapse
|
9
|
Jung Y, Lee S, Kim K. Rate-controlling element in the self-discharge process in electrochemical double-layer capacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Volfkovich Y, Rychagov A, Mikhalin A, Sosenkin V, Kabachkov E, Shulga Y, Michtchenko A. SELF-DISCHARGE OF A SUPERCAPACITOR WITH ELECTRODES BASED ON ACTIVATED CARBON CLOTH. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Lee JK, Kim YM, Moon HC. Polymeric Ion Conductors Based on Sono-Polymerized Zwitterionic Polymers for Electrochromic Supercapacitors with Improved Shelf-Life Stability. Macromol Rapid Commun 2021; 42:e2100468. [PMID: 34555244 DOI: 10.1002/marc.202100468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Monolithic electrochromic supercapacitors (ECSs) have attracted increasing interest in recent electrochemical electronics due to their simplicity and unique ability to visually indicate stored energy levels. One crucial challenge for practical use is the improvement of shelf-life. Herein, zwitterionic (ZI) ionogels are proposed as effective electrolytes to reduce the self-discharging decay of ECSs. All-in-one ZI electrochromic (EC) gels are produced by one-pot sono-polymerization. The presence of ZI moieties in the gel does not affect the EC characteristics of chromophores. In addition, excellent capacitive properties in areal capacitance and coulombic efficiency are presented owing to the alignment of ZI units under an electric field and the formation of ion migration channels where rapid ion transport is allowed. Furthermore, the shelf-life of the ZI gel-based ECS is significantly improved by adjusting the interaction between polymeric gelators and ion species. The ZI gel-based ECS is expected to be a key platform for future smart energy storage devices.
Collapse
Affiliation(s)
- Jae Kyeong Lee
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Yong Min Kim
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hong Chul Moon
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| |
Collapse
|
12
|
Wang X, Liu Y, Li H, Lv T, Wan J, Dong K, Chen Z, Chen T. Regulating the Self-Discharge of Flexible All-Solid-State Supercapacitors by a Heterogeneous Polymer Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102054. [PMID: 34245110 DOI: 10.1002/smll.202102054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Supercapacitors with high power density and an ultralong cyclic lifetime have been intensively investigated. However, the crucial challenge of their rapid self-discharge process is often neglected in most cases. A heterogeneous interface formed between two layers of polymer electrolytes is designed, in which a polyanion and a polycation are added into a common matrix of polymer electrolyte, respectively. By using the heterogeneous polymer electrolyte (HPE) as the separator simultaneously, the resultant supercapacitors exhibit comparable electrochemical performance to that of devices based on traditional polymer electrolytes. The HPE-based supercapacitors using both electric double-layer capacitive and pseudocapacitive electrodes show at least one time longer self-discharge time than that of devices based on homogenous polymer electrolyte, especially for the electrode in an electrolyte containing polyanion served as a positive pole during the charging process. Because of the same polymer matrix used, the heterojunction structure of the HPE exhibits excellent stability without obvious phase separation during thousands of charge/discharge and repeated bending cycles. This novel strategy by interface engineering of electrolyte to suppress the self-discharge behavior of supercapacitors is very meaningful to promote their practical applications.
Collapse
Affiliation(s)
- Xue Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yanan Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Huili Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tian Lv
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jun Wan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Keyi Dong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zilin Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tao Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
13
|
Zeng M, Guo H, Wang G, Shang L, Zhao C, Li H. Nanostructured high-performance electrolyte membranes based on polymer network post-assembly for high-temperature supercapacitors. J Colloid Interface Sci 2021; 603:408-417. [PMID: 34197989 DOI: 10.1016/j.jcis.2021.06.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs. This strategy can create cross-linked PEMs with bicontinuous nanostructures, as well as highly stable and highly conductive features. Specifically, a series of bicontinuous PEMs are prepared by the controllable cross-linking of poly(ether-ether-ketone) and poly(4-vinylpyridine), followed by the inducement of phosphoric acid. These PEMs exhibit both a high proton conductivity of 70 mS cm-1 and a high modulus of 39.3 MPa at 150 ℃, which can serve as high-performance electrolytes. The HT-SCs based on these PEMs display a specific capacitance of 138.0 F g-1 and a high capacitance retention of 80.0% after 2500 galvanostatic charge-discharge cycles at 150 ℃, exhibiting excellent high-temperature capacitance and cycle stability. This post-assembly concept can provide a new route to design high-performance PEMs for HT-SC and other energy device applications.
Collapse
Affiliation(s)
- Minghao Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Haikun Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Gang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Lichao Shang
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chengji Zhao
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
14
|
Zhang J, Zhou P, Xiao D, Liu W. Research Progress of 1,3,5-Triazinanes in the Synthesis of Nitrogen-Containing Heterocycles. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Yuan H, Liu G. Ionic effects on synthetic polymers: from solutions to brushes and gels. SOFT MATTER 2020; 16:4087-4104. [PMID: 32292998 DOI: 10.1039/d0sm00199f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ionic effects on synthetic polymers have attracted extensive attention due to the crucial role of ions in the determination of the properties of synthetic polymers. This review places the focus on specific ion effects, multivalent ion effects, and ionic hydrophilicity/hydrophobicity effects in synthetic polymer systems from solutions to brushes and gels. The specific ion effects on neutral polymers are determined by both the direct and indirect specific ion-polymer interactions, whereas the ion specificities of charged polymers are mainly dominated by the specific ion-pairing interactions. The ionic cross-linking effect exerted by the multivalent ions is widely used to tune the properties of polyelectrolytes, while the reentrant behavior of polyelectrolytes in the presence of multivalent ions still remains poorly understood. The ionic hydrophilicity/hydrophobicity effects not only can be applied to make strong polyelectrolytes thermosensitive, but also can be used to prepare polymeric nano-objects and to control the wettability of polyelectrolyte brush-modified surfaces. The not well-studied ionic hydrogen bond effects are also discussed in the last section of this review.
Collapse
Affiliation(s)
- Haiyang Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei 230026, P. R. China.
| | | |
Collapse
|