1
|
Panjla A, Kaul G, Shukla M, Akhir A, Tripathi S, Arora A, Chopra S, Verma S. Membrane-targeting, ultrashort lipopeptide acts as an antibiotic adjuvant and sensitizes MDR gram-negative pathogens toward narrow-spectrum antibiotics. Biomed Pharmacother 2024; 176:116810. [PMID: 38823276 DOI: 10.1016/j.biopha.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Globally, infections due to multi-drug resistant (MDR) Gram-negative bacterial (GNB) pathogens are on the rise, negatively impacting morbidity and mortality, necessitating urgent treatment alternatives. Herein, we report a detailed bio-evaluation of an ultrashort, cationic lipopeptide 'SVAP9I' that demonstrated potent antibiotic activity and acted as an adjuvant to potentiate existing antibiotic classes towards GNBs. Newly synthesized lipopeptides were screened against ESKAPE pathogens and cytotoxicity assays were performed to evaluate the selectivity index (SI). SVAP9I exhibited broad-spectrum antibacterial activity against critical MDR-GNB pathogens including members of Enterobacteriaceae (MIC 4-8 mg/L), with a favorable CC50 value of ≥100 mg/L and no detectable resistance even after 50th serial passage. It demonstrated fast concentration-dependent bactericidal action as determined via time-kill analysis and also retained full potency against polymyxin B-resistant E. coli, indicating distinct mode of action. SVAP9I targeted E. coli's outer and inner membranes by binding to LPS and phospholipids such as cardiolipin and phosphatidylglycerol. Membrane damage resulted in ROS generation, depleted intracellular ATP concentration and a concomitant increase in extracellular ATP. Checkerboard assays showed SVAP9I's synergism with narrow-spectrum antibiotics like vancomycin, fusidic acid and rifampicin, potentiating their efficacy against MDR-GNB pathogens, including carbapenem-resistant Acinetobacter baumannii (CRAB), a WHO critical priority pathogen. In a murine neutropenic thigh infection model, SVAP9I and rifampicin synergized to express excellent antibacterial efficacy against MDR-CRAB outcompeting polymyxin B. Taken together, SVAP9I's distinct membrane-targeting broad-spectrum action, lack of resistance and strong in vitro andin vivopotency in synergism with narrow spectrum antibiotics like rifampicin suggests its potential as a novel antibiotic adjuvant for the treatment of serious MDR-GNB infections.
Collapse
Affiliation(s)
- Apurva Panjla
- Department of Chemistry, IIT Kanpur, Uttar Pradesh 208016, India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manjulika Shukla
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Sarita Tripathi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Ashish Arora
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sandeep Verma
- Department of Chemistry, IIT Kanpur, Uttar Pradesh 208016, India; Mehta Family Center for Engineering in Medicine, Center for Nanoscience Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
2
|
Li X, Cai Y, Xia Q, Liao Y, Qin R. Antibacterial sensitizers from natural plants: A powerful weapon against methicillin-resistant Staphylococcus aureus. Front Pharmacol 2023; 14:1118793. [PMID: 36909155 PMCID: PMC9998539 DOI: 10.3389/fphar.2023.1118793] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a drug-resistant bacterium that can cause a range of infections with high morbidity and mortality, including pneumonia, etc. Therefore, development of new drugs or therapeutic strategies against MRSA is urgently needed. Increasing evidence has shown that combining antibiotics with "antibacterial sensitizers" which itself has no effect on MRSA, is highly effective against MRSA. Many studies showed the development of antibacterial sensitizers from natural plants may be a promising strategy against MRSA because of their low side effects, low toxicity and multi-acting target. In our paper, we first reviewed the resistance mechanisms of MRSA including "Resistance to Beta-Lactams", "Resistance to Glycopeptide antibiotics", "Resistance to Macrolides, Aminoglycosides, and Oxazolidinones" etc. Moreover, we summarized the possible targets for antibacterial sensitizers against MRSA. Furthermore, we reviewed the synergy effects of active monomeric compounds from natural plants combined with antibiotics against MRSA and their corresponding mechanisms over the last two decades. This review provides a novel approach to overcome antibiotic resistance in MRSA.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Qinchuan Xia
- Fuan Pharmaceutical Group Chongqing Bosen Pharmaceutical Co., Ltd., Chongqing, China
| | - Yongqun Liao
- Fuan Pharmaceutical Group Chongqing Bosen Pharmaceutical Co., Ltd., Chongqing, China
| | - Rongxin Qin
- Department of Pharmacology, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Panjla A, Kaul G, Chopra S, Titz A, Verma S. Short Peptides and Their Mimetics as Potent Antibacterial Agents and Antibiotic Adjuvants. ACS Chem Biol 2021; 16:2731-2745. [PMID: 34779605 DOI: 10.1021/acschembio.1c00626] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antimicrobial resistance (AMR) has been increasing unrelentingly worldwide, thus negatively impacting human health. The discovery and development of novel antibiotics is an urgent unmet need of the hour. However, it has become more challenging, requiring increasingly time-consuming efforts with increased commercial risks. Hence, alternative strategies are urgently needed to potentiate the existing antibiotics. In this context, short cationic peptides or peptide-based antimicrobials that mimic the activity of naturally occurring antimicrobial peptides (AMPs) could overcome the disadvantages of AMPs having evolved as potent antibacterial agents. Besides their potent antibacterial efficacy, short peptide conjugates have also gained attention as potent adjuvants to conventional antibiotics. Such peptide antibiotic combinations have become an increasingly cost-effective therapeutic option to tackle AMR. This Review summarizes the recent progress for peptide-based small molecules as promising antimicrobials and as adjuvants for conventional antibiotics to counter multidrug resistant (MDR) pathogens.
Collapse
Affiliation(s)
- Apurva Panjla
- Department of Chemistry, IIT Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Grace Kaul
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany
| | - Sandeep Verma
- Department of Chemistry, IIT Kanpur, Kanpur-208016, Uttar Pradesh, India
- Center for Nanoscience, IIT Kanpur, Kanpur-208016, Uttar Pradesh, India
| |
Collapse
|
4
|
Fluorine-containing 2,3-diaryl quinolines as potent inhibitors of methicillin and vancomycin-resistant Staphylococcus aureus: Synthesis, antibacterial activity and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Meenu MT, Kaul G, Shukla M, Radhakrishnan KV, Chopra S. Cudraflavone C from Artocarpus hirsutus as a Promising Inhibitor of Pathogenic, Multidrug-Resistant S. aureus, Persisters, and Biofilms: A New Insight into a Rational Explanation of Traditional Wisdom. JOURNAL OF NATURAL PRODUCTS 2021; 84:2700-2708. [PMID: 34546736 DOI: 10.1021/acs.jnatprod.1c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artocarpus hirsutus Lam., or wild jack, a perennial tree of the Western Ghats of peninsular India, serves as a rich source of flavonoids. The indigenous knowledge of this multipurpose flora chronicles the efficient property of its bark as a natural treatment for various skin infections. Herein, we describe a rational explanation of this traditional knowledge via a broader evaluation of inhibitory activity of one of its phytoconstituents, cudraflavone C (Cud C), a prenyl flavone isolated from stem bark against diverse multidrug-resistant Staphylococcus aureus along with decidedly potent synergy combinations with a standard drug, gentamycin, especially against gentamycin-resistant S. aureus NRS 10119. Cud C exhibited equipotent MIC (4 μg/mL) against a varied array of MDR strains comprising MRSA, VRSA, and VRE and was nontoxic toward eukaryotic cells with a sizable selectivity index (SI 25-50). Cud C displayed concentration-dependent bactericidal activity against planktonic cells, an excellent biofilm disruption property exceeding that of levofloxacin and vancomycin against preformed S. aureus biofilm, and an enhanced capability to kill intracellular S. aureus more potently than vancomycin, thus exemplifying its position as an antibacterial lead candidate. In addition, S. aureus was unable to generate resistance to Cud C even after exposure for more than 40 days, whereas it generated resistance to levofloxacin within ∼20 days of exposure. Therefore, the naturally occurring prenylflavone Cud C can be accounted for as one of the reasons for the reported antibacterial properties of the bark of A. hirsutus. Taken together, detailed biological studies propose that Cud C can be considered as an effective antibacterial drug candidate against MDR S. aureus, which is fast becoming a significant threat to public health worldwide.
Collapse
Affiliation(s)
- Murugan Thulasi Meenu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Grace Kaul
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Division of Microbiology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, Uttar Pradesh, India
| | - Manjulika Shukla
- Division of Microbiology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, Uttar Pradesh, India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sidharth Chopra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Division of Microbiology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, Uttar Pradesh, India
| |
Collapse
|
6
|
Singh N, Singh R, Shukla M, Kaul G, Chopra S, Joshi KB, Verma S. Peptide Nanostructure-Mediated Antibiotic Delivery by Exploiting H 2S-Rich Environment in Clinically Relevant Bacterial Cultures. ACS Infect Dis 2020; 6:2441-2450. [PMID: 32786296 DOI: 10.1021/acsinfecdis.0c00227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stimuli-responsive self-destructing soft structures serve as versatile hosts for the encapsulation of guest molecules. A new paradigm for H2S-responsive structures, based on a modified tripeptide construct, is presented along with microscopy evidence of its time-dependent rupture. As a medicinally interesting application, we employed these commercial antibiotic-loaded soft structures for successful drug release and inhibition of clinically relevant, drug-susceptible, and methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Narendra Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Ramesh Singh
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Manjulika Shukla
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, Uttar Pradesh226001, India
| | - Grace Kaul
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, Uttar Pradesh226001, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, Uttar Pradesh226001, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
7
|
Hussain MW, Bhardwaj V, Giri A, Chande A, Patra A. Multifunctional ionic porous frameworks for CO 2 conversion and combating microbes. Chem Sci 2020; 11:7910-7920. [PMID: 34123075 PMCID: PMC8163429 DOI: 10.1039/d0sc01658f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/01/2020] [Indexed: 01/14/2023] Open
Abstract
Porous organic frameworks (POFs) with a heteroatom rich ionic backbone have emerged as advanced materials for catalysis, molecular separation, and antimicrobial applications. The loading of metal ions further enhances Lewis acidity, augmenting the activity associated with such frameworks. Metal-loaded ionic POFs, however, often suffer from physicochemical instability, thereby limiting their scope for diverse applications. Herein, we report the fabrication of triaminoguanidinium-based ionic POFs through Schiff base condensation in a cost-effective and scalable manner. The resultant N-rich ionic frameworks facilitate selective CO2 uptake and afford high metal (Zn(ii): 47.2%) loading capacity. Owing to the ionic guanidinium core and ZnO infused mesoporous frameworks, Zn/POFs showed pronounced catalytic activity in the cycloaddition of CO2 and epoxides into cyclic organic carbonates under solvent-free conditions with high catalyst recyclability. The synergistic effect of infused ZnO and cationic triaminoguanidinium frameworks in Zn/POFs led to robust antibacterial (Gram-positive, Staphylococcus aureus and Gram-negative, Escherichia coli) and antiviral activity targeting HIV-1 and VSV-G enveloped lentiviral particles. We thus present triaminoguanidinium-based POFs and Zn/POFs as a new class of multifunctional materials for environmental remediation and biomedical applications.
Collapse
Affiliation(s)
- Md Waseem Hussain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Vipin Bhardwaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Arkaprabha Giri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Ajit Chande
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| |
Collapse
|