1
|
Lynes AD, Lovitt JI, Rotella C, Boland JJ, Gunnlaugsson T, Hawes CS. Crystal engineering studies of a series of pyridine-3,5-dicarboxamide ligands possessing alkyl ester arms, and their coordination chemistry. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
2
|
McCarney EP, McCarthy WJ, Lovitt JI, Gunnlaugsson T. Macrocyclic vs. [2]catenane btp structures: influence of (aryl) substitution on the self templation of btp ligands in macrocyclic synthesis. Org Biomol Chem 2021; 19:10189-10200. [PMID: 34788352 DOI: 10.1039/d1ob02032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of four 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) olefin based ligands 3, 4, 11 and 12 is described and their attempted use to form mechanically interlocked molecules using ring closing metatheses (RCM) reactions. The btp ligands were modified in two ways, in 3 and 4 the aryl substitution pattern was changed from 4th position to 3rd position and in the case of 11 and 12, the arms were replaced with aliphatic chains. Our study demonstrates that for all four ligands, the RCM reactions only result in the formation of macrocyclic structures, which in three of the cases, were structurally characterised in both solution (using NMR and HRMS) and in the solid-state using X-ray crystallography. NMR studies were also carried out to investigate if these ligands could preorganise in solution via hydrogen bonding interactions. This study provides a handle of how such precursor substitution can be used to direct the formation of macrocycles or mechanically interlocked structures.
Collapse
Affiliation(s)
- Eoin P McCarney
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - William J McCarthy
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - June I Lovitt
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. .,SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. .,SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
3
|
Hegarty IN, Dalton HL, Lynes AD, Haffner B, Möbius ME, Hawes CS, Gunnlaugsson T. Balancing connectivity with function in silver(i) networks of pyridyltriazole (tzpa) ligands results in the formation of a metallogel. Dalton Trans 2020; 49:7364-7372. [PMID: 32458927 DOI: 10.1039/d0dt01421d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A new flexible and divergent 1,2,3-triazol-4-yl-picolinamide (tzpa) ligand 2 and the half-equivalent model ligand 1, both functionalised with pendant 3-pyridyl groups, are reported and their coordination behaviour with silver(i) ions is explored, both in the crystalline phase and through the formation of a supramolecular metallogel. The self-assembly of tzpa ligand 1 with AgCF3SO3 resulted in the formation of a 1D coordination polymer, binding in a bidentate fashion through the pyridyl and triazole nitrogen atoms of the tzpa binding site and a pendant pyridyl nitrogen atom of an adjacent ligand. Doubling the number of metal binding sites in ligand 2, while retaining the same metal binding domain, gives rise to the formation of a supramolecular metallogel on reaction with AgBF4 at 5 wt% in MeCN, possessing self-healing properties.
Collapse
Affiliation(s)
- Isabel N Hegarty
- School of Chemistry and Trinity Biomedical Sciences Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland.
| | - Hannah L Dalton
- School of Chemistry and Trinity Biomedical Sciences Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland.
| | - Amy D Lynes
- School of Chemistry and Trinity Biomedical Sciences Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland.
| | - Benjamin Haffner
- Sami Nasr Institute of Advanced Materials (SNIAM), School of Physics, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland
| | - Matthias E Möbius
- Sami Nasr Institute of Advanced Materials (SNIAM), School of Physics, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland and The AMBER (Advanced Materials and BioEngineering Research) Centre, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Chris S Hawes
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland. and The AMBER (Advanced Materials and BioEngineering Research) Centre, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|