1
|
Han JH, Zhao ZW, Pan QQ, Wang LL, Zhou HP, Su ZM. Fusion Modes and Number of Fused Rings: Their Impact on Acceptor-Donor-Acceptor Nonfullerene Acceptors in Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2522-2532. [PMID: 39692635 DOI: 10.1021/acsami.4c17160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The power conversion efficiency (PCE) of organic solar cells (OSCs) devices has surpassed 19% owing to the blooming of fused-ring nonfullerene acceptors (NFAs), especially for acceptor-donor-acceptor (A-D-A) type NFAs. However, the structural effect of the angular/linear fusion mode and number of fused rings for A-D-A type NFAs on the photovoltaic performance in OSCs devices remains unclear. Herein, the A-D-A type NFAs (F-0Cl, IDIC8-H, and ITIC) have been selected to obtain the intrinsic role of structural design strategies including the angular/linear fusion mode and the number of fused rings. The results indicate that compared to the linear fusion mode in ITIC, the angular fusion mode in F-0Cl effectively diminishes electronic vibrational coupling within the low-frequency range, leading to lower charge reorganization during the exciton diffusion process. Meanwhile, it facilitates the generation of multiple charge transfer mechanisms at the donor/acceptor (D/A) interface and increases the rates of hole transfer. On the other hand, the decreased number of fused rings of NFAs could inhibit the exciton decay and charge recombination but increase the rates of exciton diffusion and exciton dissociation for individual NFAs and the rates of electron separation for D/A interface. This work provides theoretical insights into structural design strategies, such as linear/angular fusion, and the number of fused rings of NFA, which presents a promising outlook for further enhancing PCE of high-performance A-D-A type NFAs.
Collapse
Affiliation(s)
- Jin-Hong Han
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhi-Wen Zhao
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Qing-Qing Pan
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, China
| | - Li-Li Wang
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, China
| | - Hai-Ping Zhou
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhong-Min Su
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
2
|
Zeng G, Li H, Tan F, Xin Y, Zhang S. A narrow band gap non-fullerene electron acceptor based on a dithieno-3,2- b:2',3'-dlpyrrole unit for high performance organic solar cells with minimal highest occupied molecular orbital offset. RSC Adv 2023; 13:14703-14711. [PMID: 37197679 PMCID: PMC10183802 DOI: 10.1039/d3ra01021j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
Here, a new narrow band gap non-fullerene small molecular acceptor (NFSMA) based on a dithieno-3,2-b:2',3'-dlpyrrole(DTP) unit, namely SNIC-F, was designed and synthesized. Due to the strong electron-donating ability of the DTP-based fused-ring core, SNIC-F showed a strong intramolecular-charge transfer (ICT) effect and thus gave a narrow band gap of 1.32 eV. Benefiting from the low band gap and efficient charge separation, when pairing with a copolymer PBTIBDTT, the device optimized by 0.5% 1-CN gave a high short circuit current (Jsc) of 19.64 mA cm-2. In addition, a high open-circuit voltage (Voc) of 0.83 V was obtained due to the near 0 eV highest occupied molecular orbital (HOMO) offset between PBTIBDTT and SNIC-F. As a result, a high power conversion efficiency (PCE) of 11.25% was obtained, and the PCE was maintained above 9.2% as the active layer thickness increased from 100 nm to 250 nm. Our work indicated that designing a narrow band gap NFSMA-based DTP unit and blending it with a polymer donor with small HOMO offset is an efficient strategy for achieving high performance OSCs.
Collapse
Affiliation(s)
- Guang Zeng
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Hanming Li
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Fang Tan
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Company Ltd Shenzhen 518132 P. R. China
| | - Yue Xin
- School of Applied Physics and Materials, Wuyi University 22 Dongcheng village Jiangmen 529020 P. R. China
| | - Shengdong Zhang
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| |
Collapse
|
3
|
Dulal R, Scougale WR, Chen W, Balasubramanian G, Chien T. Direct Observations of Uniform Bulk Heterojunctions and the Energy Level Alignments in Nonfullerene Organic Photovoltaic Active Layers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56430-56437. [PMID: 34786941 DOI: 10.1021/acsami.1c18426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
State-of-the-art organic photovoltaic (OPV) cells rely on the engineering of the energy levels of the organic molecules as well as the bulk-heterojunction nanomorphology to achieve high performance. However, both are difficult to measure inside the active layer where the electron donor and acceptor molecules are mingled. While the energy level alignments of the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) between the electron donors and acceptors may be altered in the mixed active layer compared to their pure forms, the nanomorphology of the donor and acceptor molecular domains is mostly studied in indirect means. Here, we present the direct observations of the nanomorphology of the molecular domains as well as the energy level alignments in the active layer of a nonfullerene-based OPV (donor: PBDB-T-2F and acceptor: IT-4Cl) using cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/S). It is revealed that (1) the bulk-heterojunction (BHJ) structures are homogeneous and uniform throughout the ∼1.2 μm thick active layer; (2) the energy alignments between the donor-rich and acceptor-rich domains are directly observed; (3) there exist the intermixing domains at the boundaries of the donor-rich and acceptor-rich domains with thickness in the nm scale; (4) the exciton binding energies in PBDB-T-2F and IT-4Cl are estimated to be 0.74 and 0.32 eV, respectively; and (5) there is an ∼0.7 V loss in the open circuit voltage. The results provide a nanoscale understanding of the OPV active layers to guide further improvement of the OPV performance.
Collapse
Affiliation(s)
- Rabindra Dulal
- Department of Physics & Astronomy, University of Wyoming, Laramie, Wyoming 82071, United States
| | - William R Scougale
- Department of Physics & Astronomy, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Wei Chen
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ganesh Balasubramanian
- Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - TeYu Chien
- Department of Physics & Astronomy, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
4
|
Schweda B, Reinfelds M, Hofstadler P, Trimmel G, Rath T. Recent Progress in the Design of Fused-Ring Non-Fullerene Acceptors-Relations between Molecular Structure and Optical, Electronic, and Photovoltaic Properties. ACS APPLIED ENERGY MATERIALS 2021; 4:11899-11981. [PMID: 35856015 PMCID: PMC9286321 DOI: 10.1021/acsaem.1c01737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organic solar cells are on the dawn of the next era. The change of focus toward non-fullerene acceptors has introduced an enormous amount of organic n-type materials and has drastically increased the power conversion efficiencies of organic photovoltaics, now exceeding 18%, a value that was believed to be unreachable some years ago. In this Review, we summarize the recent progress in the design of ladder-type fused-ring non-fullerene acceptors in the years 2018-2020. We thereby concentrate on single layer heterojunction solar cells and omit tandem architectures as well as ternary solar cells. By analyzing more than 700 structures, we highlight the basic design principles and their influence on the optical and electrical structure of the acceptor molecules and review their photovoltaic performance obtained so far. This Review should give an extensive overview of the plenitude of acceptor motifs but will also help to understand which structures and strategies are beneficial for designing materials for highly efficient non-fullerene organic solar cells.
Collapse
Affiliation(s)
- Bettina Schweda
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Matiss Reinfelds
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Petra Hofstadler
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Gregor Trimmel
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Thomas Rath
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| |
Collapse
|
5
|
Kraus T, Lucas S, Wolff P, Aubele A, Mena-Osteritz E, Bäuerle P. Advanced Acceptor-Substituted S,N-Heteropentacenes for Application in Organic Solar Cells. Chemistry 2021; 27:10913-10924. [PMID: 33904610 PMCID: PMC8362193 DOI: 10.1002/chem.202100702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 11/05/2022]
Abstract
Ambifunctional heterpentacenes with the heteroatom sequence SSNSS in the ladder-type backbone were used either as donor or as nonfullerenic acceptor in solution-processed bulk-heterojunction solar cells. Different acceptor moieties and side chains were inserted. Synthesis and characterization of the systematically varied structural motifs provided insight in structure-property relationships. Moreover, a dimeric heteroacene was synthesized, and the optoelectronic properties were compared to those of its monomeric counterpart.
Collapse
Affiliation(s)
- Teresa Kraus
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sebastian Lucas
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.,NVision, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Pascal Wolff
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.,NVision, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Anna Aubele
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Elena Mena-Osteritz
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
6
|
Vogt A, Henne F, Wetzel C, Mena-Osteritz E, Bäuerle P. Synthesis and characterization of S,N-heterotetracenes. Beilstein J Org Chem 2020; 16:2636-2644. [PMID: 33178354 PMCID: PMC7607432 DOI: 10.3762/bjoc.16.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/15/2020] [Indexed: 01/18/2023] Open
Abstract
The synthesis and optoelectronic properties of novel S,N-heterotetracenes consisting of fused heterocyclic thiophene and pyrrole rings are presented. Tetracyclic and benzannulated derivatives with a varying number and sequence of sulfur and nitrogen heteroatoms were synthesized in multistep synthetic routes. A Buchwald-Hartwig amination of brominated precursors, thermolysis of azide precursors, and a Cadogan reaction of nitro-substituted precursors were successfully applied to eventually build-up pyrrole rings to stable and soluble fused systems. The various obtained heteroatom sequences 'SSNS' (SN4), 'SNNS' (SN4''), and 'NSSN' (SN4') allowed for evaluation of structure-property relationships relative to the sulfur analogue tetrathienoacene ('SSSS'). In line with the results for the whole series of S,N-heteroacenes, we find that replacement of sulfur by nitrogen atoms in the tetra- and hexacyclic systems leads to a red-shift in absorption, a decrease in oxidation potential and energy gap. On the other hand, the replacement of a thiophene ring by benzene leads to the opposite effects.
Collapse
Affiliation(s)
- Astrid Vogt
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Florian Henne
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.,Carl Zeiss SMT GmbH, Rudolf-Eber-Straße 2, 73447 Oberkochen, Germany
| | - Christoph Wetzel
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.,Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Elena Mena-Osteritz
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
7
|
Zhang C, Song X, Liu KK, Zhang M, Qu J, Yang C, Yuan GZ, Mahmood A, Liu F, He F, Baran D, Wang JL. Electron-Deficient and Quinoid Central Unit Engineering for Unfused Ring-Based A 1 -D-A 2 -D-A 1 -Type Acceptor Enables High Performance Nonfullerene Polymer Solar Cells with High V oc and PCE Simultaneously. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907681. [PMID: 32378305 DOI: 10.1002/smll.201907681] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/12/2020] [Accepted: 04/01/2020] [Indexed: 05/20/2023]
Abstract
Here, a pair of A1 -D-A2 -D-A1 unfused ring core-based nonfullerene small molecule acceptors (NF-SMAs), BO2FIDT-4Cl and BT2FIDT-4Cl is synthesized, which possess the same terminals (A1 ) and indacenodithiophene unit (D), coupling with different fluorinated electron-deficient central unit (difluorobenzoxadiazole or difluorobenzothiadiazole) (A2 ). BT2FIDT-4Cl exhibits a slightly smaller optical bandgap of 1.56 eV, upshifted highest occupied molecular orbital energy levels, much higher electron mobility, and slightly enhanced molecular packing order in neat thin films than that of BO2FIDT-4Cl. The polymer solar cells (PSCs) based on BT2FIDT-4Cl:PM7 yield the best power conversion efficiency (PCE) of 12.5% with a Voc of 0.97 V, which is higher than that of BO2FIDT-4Cl-based devices (PCE of 10.4%). The results demonstrate that the subtle modification of A2 unit would result in lower trap-assisted recombination, more favorable morphology features, and more balanced electron and hole mobility in the PM7:BT2FIDT-4Cl blend films. It is worth mentioning that the PCE of 12.5% is the highest value in nonfused ring NF-SMA-based binary PSCs with high Voc over 0.90 V. These results suggest that appropriate modulation of the quinoid electron-deficient central unit is an effective approach to construct highly efficient unfused ring NF-SMAs to boost PCE and Voc simultaneously.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Xin Song
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center, Thuwal, 23955-6900, Saudi Arabia
- Center of Micro-Nano Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Kai-Kai Liu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Ming Zhang
- Department of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiaotong University, Shanghai, 200240, China
| | - Jianfei Qu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Can Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Gui-Zhou Yuan
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Feng Liu
- Department of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiaotong University, Shanghai, 200240, China
| | - Feng He
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Derya Baran
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center, Thuwal, 23955-6900, Saudi Arabia
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| |
Collapse
|
8
|
Ram KS, Singh J. Over 20% Efficient and Stable Non‐Fullerene‐Based Ternary Bulk‐Heterojunction Organic Solar Cell with WS
2
Hole‐Transport Layer and Graded Refractive Index Antireflection Coating. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kiran Sreedhar Ram
- Charles Darwin UniversityCollege of Engineering, IT, and Environment Ellengowan Dr Casuarina NT 0810 Australia
| | - Jai Singh
- Charles Darwin UniversityCollege of Engineering, IT, and Environment Ellengowan Dr Casuarina NT 0810 Australia
| |
Collapse
|