1
|
Ziani Z, Bellatreccia C, Battaglia FP, Morselli G, Gradone A, Ceroni P, Villa M. Copper indium sulfide quantum dots enabling quantitative visible light photoisomerisation of ( E)-azobenzene chromophores. NANOSCALE 2024; 16:12947-12956. [PMID: 38912567 DOI: 10.1039/d4nr01997k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Azobenzene derivatives have long been studied for their photochromic behaviour. One of the greatest challenges in this field is the quantitative (E) to (Z) photoconversion triggered by visible light irradiation. In this work, the synthesis and characterization of CuInS2 quantum dots (CIS-QDs) appended with azobenzene units are reported: quantitative (E) → (Z) isomerisation is obtained by visible light (e.g., λex = 533 nm). Interestingly, catalytic amounts of CIS-QDs allow the full photoconversion of ungrafted (E)-azobenzene derivatives into the corresponding (Z)-isomers using visible light. This peculiar behaviour is associated with the direct complexation of the (Z)-isomer on the QD surface.
Collapse
Affiliation(s)
- Zakaria Ziani
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Caterina Bellatreccia
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Filippo Piero Battaglia
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Giacomo Morselli
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Alessandro Gradone
- Istituto per la Microelettronica ed i Microsistemi (IMM) - CNR Sede di Bologna, via Gobetti 101, 40129 Bologna, Italy
| | - Paola Ceroni
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Marco Villa
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
2
|
Wu Z, Ma J, Xu R, Zhong S, Zhang X, Gong M, Wang G. Light-Modulated Morphological Transformation of Spiropyran Derivative from Nanosphere to Nanorod. Macromol Rapid Commun 2023; 44:e2300360. [PMID: 37566799 DOI: 10.1002/marc.202300360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/05/2023] [Indexed: 08/13/2023]
Abstract
The construction of tunable morphological systems has important implications for understanding the mechanism of molecular self-assembly. In this study, a spiropyran derivative M1 is reported with light-responsive assembly morphology, which can be tuned from nanosphere to nanorod by ultraviolet light irradiation. The absorption spectra show that M1 molecules are transformed from closed-ring (SP) isomers into open-ring (MC) isomers and start to form H-aggregates with increasing irradiation time. Density functional theory calculations indicate that MC-MC isomers possess stronger binding energy than SP-SP isomers. The MC isomers may thus facilitate the dissociation of the SP-SP aggregates and promote the change of self-assembled morphology with the aid of stronger π-π stackings and dipole-dipole interactions. The research gives an effective method for modulating the morphology of assemblies, with great potential for applications in smart materials.
Collapse
Affiliation(s)
- Zhen Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiewen Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ruoyu Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shijie Zhong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xin Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Min Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Villa M, Angeloni S, Bianco A, Gradone A, Morandi V, Ceroni P. Luminescent silicon nanocrystals appended with photoswitchable azobenzene units. NANOSCALE 2021; 13:12460-12465. [PMID: 34259700 DOI: 10.1039/d1nr02328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Confinement of multiple azobenzene chromophores covalently linked at the surface of luminescent silicon nanocrystals preserves the photoswitching behavior and modulates the nanocrystal polarity. Concomitantly, the thermal Z→E isomerization is strongly accelerated and the nanocrystal luminescence is reduced by an energy transfer process resulting in photosensitized E→Z isomerization.
Collapse
Affiliation(s)
- Marco Villa
- Department of Chemistry Ciamician, University of Bologna, Selmi 2, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
4
|
|
5
|
Zhou ZH, Zhang JG, Chen Q, Luo YL, Xu F, Chen YS. Temperature and Photo Dual-Stimuli Responsive Block Copolymer Self-Assembly Micelles for Cellular Controlled Drug Release. Macromol Biosci 2020; 21:e2000291. [PMID: 33326167 DOI: 10.1002/mabi.202000291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/09/2020] [Indexed: 11/09/2022]
Abstract
To well adapt to the complicated physiological environments, it is necessary to engineer dual- and/or multi-stimuli responsive drug carriers for more effective drug release. For this, a novel temperature responsive lateral chain photosensitive block copolymer, poly[(N-isopropylacrylamide-co-N,N-dimethylacrylamide) -block-propyleneacylalkyl-4-azobenzoate] (P(NIPAM-co-DMAA)-b-PAzoHPA), is synthesized by atom transfer radical polymerization. The structure is characterized by 1 H nuclear magnetic resonance spectrometry and laser light scattering gel chromatography system. The self-assembly behavior, morphology, and sizes of micelles are investigated by fluorescence spectroscopy, transmission electron microscope, and laser particle analyzer. Dual responsiveness to light and temperature is explored by ultraviolet-visible absorption spectroscopy. The results show that the copolymer micelles take on apparent light and temperature dual responsiveness, and its lower critical solution temperature (LCST) is above 37 °C, and changes with the trans-/cis- isomerization of azobenzene structure under UV irradiation. The blank copolymers are nontoxic, whereas the paclitaxel (PTX)-loaded counterparts possessed comparable anticancer activities to free PTX, with entrapment efficiency of 83.7%. The PTX release from the PTX-loaded micelles can be mediated by changing temperature and/or light stimuli. The developed block copolymers can potentially be used for cancer therapy as drug controlled release carriers.
Collapse
Affiliation(s)
- Zi-Hao Zhou
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Jian-Guo Zhang
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Qing Chen
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Ya-Shao Chen
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
6
|
Blayo C, Kelly EA, Houston JE, Khunti N, Cowieson NP, Evans RC. Light-responsive self-assembly of a cationic azobenzene surfactant at high concentration. SOFT MATTER 2020; 16:9183-9187. [PMID: 33001130 DOI: 10.1039/d0sm01512a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The formation of high-concentration mesophases by a cationic azobenzene photosurfactant is described for the first time. Using a combination of polarised optical microscopy and small-angle X-ray scattering, optically anisotropic, self-assembled structures with long-range order are reported. The mesophases are disrupted or lost upon UV irradiation.
Collapse
Affiliation(s)
- Camille Blayo
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Elaine A Kelly
- Department of Materials Science and Metallurgy, 27 Charles Babbage Road, CB3 0FS Cambridge, UK.
| | - Judith E Houston
- European Spallation Source (ESS), Odarslövsvägen 113, 22592 Lund, Sweden
| | - Nikul Khunti
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Nathan P Cowieson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Rachel C Evans
- Department of Materials Science and Metallurgy, 27 Charles Babbage Road, CB3 0FS Cambridge, UK.
| |
Collapse
|
7
|
Preparation and controlled properties of temperature/photo dual sensitive polymers by facile Ugi reaction. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|