1
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
2
|
Wei H, Min J, Wang Y, Shen Y, Du Y, Su R, Qi W. Bioinspired porphyrin-peptide supramolecular assemblies and their applications. J Mater Chem B 2022; 10:9334-9348. [PMID: 36373597 DOI: 10.1039/d2tb01660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inspired by the hierarchical chiral assembly of porphyrin-proteins in photosynthetic systems, the hierarchical self-assembly of porphyrin-amino acids/peptides provides a novel strategy for constructing functional materials. How to artificially simulate the assembly of porphyrins, proteins, and other cofactors in the photosynthesis system to obtain persistent strong light capture, charge separation and catalytic reactions has become an important concern in the construction of biomimetic photosynthesis systems. This paper summarizes the different assembly strategies adopted in recent years, the effects of driving forces on self-assembly, and the application of porphyrin-peptides in catalysis and biomedicine, and briefly discusses the challenges and prospects for future research.
Collapse
Affiliation(s)
- Hao Wei
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuhe Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Yaohui Du
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
3
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
4
|
Orfanos E, Ladomenou K, Angaridis P, Coutsolelos AG. Shape dependent photocatalytic H 2 evolution of a zinc porphyrin. Dalton Trans 2022; 51:8009-8014. [PMID: 35546062 DOI: 10.1039/d2dt00556e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen is regarded as a promising molecular fuel in order to produce clean energy, thus it is of great importance to produce and store H2 in order to replace fossil fuels and to resolve the global energy and environmental problems. One strategy to produce hydrogen is the photocatalytic splitting of water. In this study different supramolecular architectures of a Zn(II) porphyrin, showing "flower", octahedral and "manta ray" shaped structures, were obtained using the "good-bad" solvent self-assembly protocol. More specifically, the bad solvent (methanol) was retained and the good solvent was alerted obtaining diverse assemblies. The different structures were studied by scanning electron microscopy, PXRD, UV-Vis and IR spectroscopies. The prepared structures were capable of proton reduction and production of molecular H2 in the presence of 5% w/w Pt-nanoparticles as catalysts and ascorbic acid as a sacrificial electron donor. Moreover, depending on the structure of the chromophore that is formed the amount of H2 produced varies. The maximum H2 production was obtained with the octahedral structures (185.5 μmol g-1 h-1).
Collapse
Affiliation(s)
- Emmanouil Orfanos
- University of Crete, Department of Chemistry, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece.
| | - Kalliopi Ladomenou
- International Hellenic University, Department of Chemistry, Laboratory of Inorganic Chemistry, Agios Loucas, 65404, Kavala Campus, Greece
| | - Panagiotis Angaridis
- Aristotle University of Thessaloniki, Department of General and Inorganic Chemistry, Faculty of Chemistry, GR-54124 Thessaloniki, Greece
| | - Athanassios G Coutsolelos
- University of Crete, Department of Chemistry, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece. .,Institute of Electronic Structure and Laser (IESL) Foundation for Research and Technology - Hellas (FORTH), Vassilika Vouton, GR 70013 Heraklion, Crete, Greece
| |
Collapse
|
5
|
Lamba S, Kihara S, Chan EWC, McGillivray D, Waterhouse GIN, Travas-Sejdic J, Sarojini V. Towards cheaper light-harvesting systems: Using earth-abundant metal oxide nanoparticles in self assembled peptide-porphyrin nanofibers. J Pept Sci 2022; 28:e3413. [PMID: 35445486 DOI: 10.1002/psc.3413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
Cheap artificial light harvesting systems, which competently harvest solar energy and promote efficient energy transfer, are highly sought after in the renewable sector. We report the synthesis of self-assembled peptide-porphyrin fibers (SJ 6) fabricated with iron (III) oxide (Fe3 O4 ) nanoparticles as feasible electron acceptors. Charge-complementarity between the negatively charged peptide (20E) and the protonated Zn-tetraphenyl porphyrin (ZnTPyP) led to an ordered assembly of the ZnTPyP molecules, enabling efficient light harvesting. X-ray diffraction data indicates a more ordered structure in SJ 6 compared to 20E and ZnTPyP. The incorporation of Fe3 O4 nanoparticles into SJ 6 showed significant fluorescence quenching, indicating efficient electron flow from the donor to the acceptor. The SJ 6-nFe3 O4 system performed the light reaction of photosynthesis as confirmed by the reduction of 1 mM NAD+ to 0.180 mM NADH upon exposure to visible light (Xe lamp λ > 420 nm) for 1 h. The photochemical regeneration of NADH using the SJ 6-nFe3 O4 system was coupled to glutamate dehydrogenase-catalyzed conversion of α-ketoglutarate to L-glutamate. These results confirm the successful synthesis of an artificial light harvesting peptide-porphyrin system with Fe3 O4 nanoparticles as promising low-cost electron separators.
Collapse
Affiliation(s)
- Saurabh Lamba
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Shinji Kihara
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Eddie Wai Chi Chan
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Duncan McGillivray
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Jadranka Travas-Sejdic
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
6
|
Scarel E, Bellotto O, Rozhin P, Kralj S, Tortora M, Vargiu AV, De Zorzi R, Rossi B, Marchesan S. Single-atom substitution enables supramolecular diversity from dipeptide building blocks. SOFT MATTER 2022; 18:2129-2136. [PMID: 35179536 DOI: 10.1039/d1sm01824h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dipeptides are popular building blocks for supramolecular gels that do not persist in the environment and may find various applications. In this work, we show that a simple substitution on the aromatic side-chain of phenylalanine with either fluorine or iodine enables supramolecular diversity upon self-assembly at neutral pH, leading to hydrogels or crystals. Each building block is characterized by 1H- and 13C-NMR spectroscopy, LC-MS, circular dichroism, and molecular models. The supramolecular behaviour is monitored with a variety of techniques, including circular dichroism, oscillatory rheology, transmission electron microscopy, attenuated total reflectance Fourier-transformed infrared spectroscopy, visible Raman spectroscopy, synchrotron-radiation single-crystal X-ray diffraction and UV Resonance Raman spectroscopy, allowing key differences to be pinpointed amongst the halogenated analogues.
Collapse
Affiliation(s)
- Erica Scarel
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Ottavia Bellotto
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Petr Rozhin
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Slavko Kralj
- Jožef Stefan Institute, Materials Synthesis Dept., Jamova 39, 1000 Ljubljana, Slovenia
- University of Ljubljana, Pharmaceutical Technology Dept., Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Mariagrazia Tortora
- Area Science Park, Padriciano 99, 34149 Trieste, Italy
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy.
| | - Attilio V Vargiu
- University of Cagliari, Physics Dept., 09042 Monserrato, Cagliari, Italy
| | - Rita De Zorzi
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy.
| | - Silvia Marchesan
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
7
|
|
8
|
Li L, Xie L, Zheng R, Sun R. Self-Assembly Dipeptide Hydrogel: The Structures and Properties. Front Chem 2021; 9:739791. [PMID: 34540806 PMCID: PMC8440803 DOI: 10.3389/fchem.2021.739791] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 01/20/2023] Open
Abstract
Self-assembly peptide-based hydrogels are well known and popular in biomedical applications due to the fact that they are readily controllable and have biocompatibility properties. A dipeptide is the shortest self-assembling motif of peptides. Due to its small size and simple synthesis method, dipeptide can provide a simple and easy-to-use method to study the mechanism of peptides' self-assembly. This review describes the design and structures of self-assembly linear dipeptide hydrogels. The strategies for preparing the new generation of linear dipeptide hydrogels can be divided into three categories based on the modification site of dipeptide: 1) COOH-terminal and N-terminal modified dipeptide, 2) C-terminal modified dipeptide, and 3) uncapped dipeptide. With a deeper understanding of the relationship between the structures and properties of dipeptides, we believe that dipeptide hydrogels have great potential application in preparing minimal biocompatible materials.
Collapse
Affiliation(s)
- Liangchun Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Li Xie
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Renlin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Rongqin Sun
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
9
|
Abbasi Kajani A, Haghjooy Javanmard S, Asadnia M, Razmjou A. Recent Advances in Nanomaterials Development for Nanomedicine and Cancer. ACS APPLIED BIO MATERIALS 2021; 4:5908-5925. [PMID: 35006909 DOI: 10.1021/acsabm.1c00591] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is considered one of the leading causes of death, with a growing number of cases worldwide. However, the early diagnosis and efficient therapy of cancer have remained a critical challenge. The emergence of nanomedicine has opened up a promising window to address the drawbacks of cancer detection and treatment. A wide range of engineered nanomaterials and nanoplatforms with different shapes, sizes, and composition has been developed for various biomedical applications. Nanomaterials have been increasingly used in various applications in bioimaging, diagnosis, and therapy of cancers. Recently, numerous multifunctional and smart nanoparticles with the ability of simultaneous diagnosis and targeted cancer therapy have been reported. The multidisciplinary attempts led to the development of several exciting clinically approved nanotherapeutics. The nanobased materials and devices have also been used extensively to develop point-of-care and highly sensitive methods of cancer detection. In this review article, the most significant achievements and latest advances in the nanomaterials development for cancer nanomedicine are critically discussed. In addition, the future perspectives of this field are evaluated.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mohsen Asadnia
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
10
|
Scarel M, Marchesan S. Diketopiperazine Gels: New Horizons from the Self-Assembly of Cyclic Dipeptides. Molecules 2021; 26:3376. [PMID: 34204905 PMCID: PMC8199760 DOI: 10.3390/molecules26113376] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cyclodipeptides (CDPs) or 2,5-diketopiperazines (DKPs) can exert a variety of biological activities and display pronounced resistance against enzymatic hydrolysis as well as a propensity towards self-assembly into gels, relative to the linear-dipeptide counterparts. They have attracted great interest in a variety of fields spanning from functional materials to drug discovery. This concise review will analyze the latest advancements in their synthesis, self-assembly into gels, and their more innovative applications.
Collapse
Affiliation(s)
- Marco Scarel
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
11
|
Nikolaou V, Charalambidis G, Coutsolelos AG. Photocatalytic hydrogen production of porphyrin nanostructures: spheres vs. fibrils, a case study. Chem Commun (Camb) 2021; 57:4055-4058. [PMID: 33885635 DOI: 10.1039/d0cc08359c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we illustrate the preparation of a covalent connected peptide-porphyrin hybrid (Fmoc-FF-(Zn)Por). The thorough investigation of its self-organization features demonstrated that Fmoc-FF-(Zn)Por self-assembles into either spheres or fibrils by altering the solvent mixture. Interestingly, photocatalytic hydrogen (H2) evolution experiments revealed that fibrils were more efficient towards H2 production compared to spheres.
Collapse
Affiliation(s)
- Vasilis Nikolaou
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Georgios Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
12
|
Nikolaou V, Charalambidis G, Ladomenou K, Nikoloudakis E, Drivas C, Vamvasakis I, Panagiotakis S, Landrou G, Agapaki E, Stangel C, Henkel C, Joseph J, Armatas G, Vasilopoulou M, Kennou S, Guldi DM, Coutsolelos AG. Controlling Solar Hydrogen Production by Organizing Porphyrins. CHEMSUSCHEM 2021; 14:961-970. [PMID: 33285030 DOI: 10.1002/cssc.202002761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/04/2020] [Indexed: 06/12/2023]
Abstract
In this study, a highly efficient photocatalytic H2 production system is developed by employing porphyrins as photocatalysts. Palladium and platinum tetracarboxyporphyrins (PdTCP and PtTCP) are adsorbed or coadsorbed onto TiO2 nanoparticles (NPs), which act as the electron transport medium and as a scaffold that promotes the self-organization of the porphyrinoids. The self-organization of PdTCP and PtTCP, forming H- and J-aggregates, respectively, is the key element for H2 evolution, as in the absence of TiO2 NPs no catalytic activity is detected. Notably, J-aggregated PtTCPs are more efficient for H2 production than H-aggregated PdTCPs. In this approach, a single porphyrin, which self-organizes onto TiO2 NPs, acts as the light harvester and simultaneously as the catalyst, whereas TiO2 serves as the electron transport medium. Importantly, the concurrent adsorption of PdTCP and PtTCP onto TiO2 NPs results in the most efficient catalytic system, giving a turnover number of 22,733 and 30.2 mmol(H2 ) g(cat)-1 .
Collapse
Affiliation(s)
- Vasilis Nikolaou
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| | - Georgios Charalambidis
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| | - Kalliopi Ladomenou
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| | - Emmanouil Nikoloudakis
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| | - Charalambos Drivas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Ioannis Vamvasakis
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013, Heraklion, Crete, Greece
| | - Stylianos Panagiotakis
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| | - Georgios Landrou
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| | - Eleni Agapaki
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| | - Christina Stangel
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Christian Henkel
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße. 3, 91058, Erlangen, Germany
| | - Jan Joseph
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße. 3, 91058, Erlangen, Germany
| | - Gerasimos Armatas
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013, Heraklion, Crete, Greece
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research "Demokritos", 15310, Aghia Paraskevi Attikis, Athens, Greece
| | - Stella Kennou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße. 3, 91058, Erlangen, Germany
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Chemistry Department, University of Crete, 70013, Heraklion, Crete, Greece
| |
Collapse
|
13
|
Dognini P, Coxon CR, Alves WA, Giuntini F. Peptide-Tetrapyrrole Supramolecular Self-Assemblies: State of the Art. Molecules 2021; 26:693. [PMID: 33525730 PMCID: PMC7865683 DOI: 10.3390/molecules26030693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
The covalent and noncovalent association of self-assembling peptides and tetrapyrroles was explored as a way to generate systems that mimic Nature's functional supramolecular structures. Different types of peptides spontaneously assemble with porphyrins, phthalocyanines, or corroles to give long-range ordered architectures, whose structure is determined by the features of both components. The regular morphology and ordered molecular arrangement of these systems enhance the photochemical properties of embedded chromophores, allowing applications as photo-catalysts, antennas for dye-sensitized solar cells, biosensors, and agents for light-triggered therapies. Chemical modifications of peptide and tetrapyrrole structures and control over the assembly process can steer the organization and influence the properties of the resulting system. Here we provide a review of the field, focusing on the assemblies obtained from different classes of self-assembling peptides with tetrapyrroles, their morphologies and their applications as innovative functional materials.
Collapse
Affiliation(s)
- Paolo Dognini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Christopher R. Coxon
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh AH14 4AS, UK;
| | - Wendel A. Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-380, Brazil;
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
14
|
Chibh S, Mishra J, Kour A, Chauhan VS, Panda JJ. Recent advances in the fabrication and bio-medical applications of self-assembled dipeptide nanostructures. Nanomedicine (Lond) 2021; 16:139-163. [PMID: 33480272 DOI: 10.2217/nnm-2020-0314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular self-assembly is a widespread natural phenomenon and has inspired several researchers to synthesize a compendium of nano/microstructures with widespread applications. Biomolecules like proteins, peptides and lipids are used as building blocks to fabricate various nanomaterials. Supramolecular peptide self-assembly continue to play a significant role in forming diverse nanostructures with numerous biomedical applications; however, dipeptides offer distinctive supremacy in their ability to self-assemble and produce a variety of nanostructures. Though several reviews have articulated the progress in the field of longer peptides or polymers and their self-assembling behavior, there is a paucity of reviews or literature covering the emerging field of dipeptide-based nanostructures. In this review, our goal is to present the recent advancements in dipeptide-based nanostructures with their potential applications.
Collapse
Affiliation(s)
- Sonika Chibh
- Chemical Biology Unit, Institute of Nano Science & Technology, Mohali, Punjab 160062, India
| | - Jibanananda Mishra
- Cell and Molecular Biology Division, AAL Research & Solutions Pvt. Ltd., Panchkula, Haryana 134113, India
| | - Avneet Kour
- Chemical Biology Unit, Institute of Nano Science & Technology, Mohali, Punjab 160062, India
| | - Virander S Chauhan
- International Centre for Genetic Engineering & Biotechnology, New Delhi 110067, India
| | - Jiban J Panda
- Chemical Biology Unit, Institute of Nano Science & Technology, Mohali, Punjab 160062, India
| |
Collapse
|
15
|
Fortunato A, Sanzone A, Mattiello S, Beverina L, Mba M. The pH- and salt-controlled self-assembly of [1]benzothieno[3,2- b][1]-benzothiophene–peptide conjugates in supramolecular hydrogels. NEW J CHEM 2021. [DOI: 10.1039/d1nj02294f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salt- and pH-triggered supramolecular hydrogels were obtained from a novel [1]benzothieno[3,2-b][1]benzothiophene (BTBT)-peptide hybrid.
Collapse
Affiliation(s)
- Anna Fortunato
- Department of Chemical Sciences
- University of Padova
- Padova, PD
- Italy
| | - Alessandro Sanzone
- Department of Materials Science
- University of Milano-Bicocca and INSTM
- Milano I-20125
- Italy
| | - Sara Mattiello
- Department of Materials Science
- University of Milano-Bicocca and INSTM
- Milano I-20125
- Italy
| | - Luca Beverina
- Department of Materials Science
- University of Milano-Bicocca and INSTM
- Milano I-20125
- Italy
| | - Miriam Mba
- Department of Chemical Sciences
- University of Padova
- Padova, PD
- Italy
| |
Collapse
|
16
|
Fazylova V, Shevtsev N, Mikhailov S, Kim G, Ostroushko A, Grzhegorzhevskii K. Fundamental Aspects of Xanthene Dye Aggregation on the Surfaces of Nanocluster Polyoxometalates: H- to J-Aggregate Switching. Chemistry 2020; 26:5685-5693. [PMID: 32073183 DOI: 10.1002/chem.201905781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/12/2020] [Indexed: 11/10/2022]
Abstract
The induced aggregation of the xanthene dye rhodamine B (RhB) on metal oxide centers belonging to the highly symmetric surfaces of precise nanoscale templates with Keplerate (Mo132 ) or toroidal (Mo138 ) structures has been studied. With the joint use of the Langmuir isotherm and full Stern-Volmer models, the thermodynamic reasons for dye adsorption on the nanocluster surface, such as a mixture of monomer, H-aggregate (H-dimer), and J-aggregate forms (which can coexist or switch one into another under the exact conditions), were established: this was shown through UV/Vis and fluorescence spectroscopies. By using the framework of the exciton model, it is shown that the angle (α) between the transition dipole moments of RhB is very sensitive to surface strain inside the dye sub-monolayer. As a result, it is possible to switch from H- to J-aggregates by the post-functionalization of polyoxometalate (POM)-RhB associates by the surfactant bilayer shell, which allows the surface strain to grow. Recommendations are provided for managing the appearance of H- or J-aggregates on metal oxide (or polyelectrolyte) surfaces during photovoltaic or bioimaging applications.
Collapse
Affiliation(s)
- Victoria Fazylova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., 620002, Ekaterinburg, Russia
| | - Nikita Shevtsev
- Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., 620002, Ekaterinburg, Russia
| | - Sergey Mikhailov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., 620002, Ekaterinburg, Russia
| | - Grigoriy Kim
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 Akademicheskaya St., 620990, Ekaterinburg, Russia
| | - Alexander Ostroushko
- Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., 620002, Ekaterinburg, Russia
| | - Kirill Grzhegorzhevskii
- Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., 620002, Ekaterinburg, Russia
| |
Collapse
|
17
|
Nikoloudakis E, Orphanos E, Agapaki E, Nikolaou V, Charisiadis A, Charalambidis G, Mitraki A, Coutsolelos AG. Molecular self-assembly of porphyrin and BODIPY chromophores connected with diphenylalanine moieties. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, a series of diphenylalanine tetra-substituted porphyrin derivatives were synthesized and their self-assembly ability was extensively studied. Apart from investigating the impact of incorporating many peptide moieties onto a porphyrin molecule; another perspective was investigated as well, namely the connection of two different chromophore entities (porphyrin and BODIPY) onto the same diphenylalanine molecule. Interestingly, various supra-molecular nanostructures were observed depending on the solvent mixture as well as the protecting group of the peptides, namely spheres, plaques and fibrils. The obtained self-assemblies were studied via UV-vis absorption and emission spectroscopies. Mainly red shifting was observed, indicating the formation of [Formula: see text]-aggregates in the self-assembled state. However, in one case a blue shifted UV-vis spectrum was obtained suggesting the formation of [Formula: see text]-type aggregates. Concerning the porphyrin-diphenylalanine-BODIPY derivative, additional fluorescence studies were performed in order to examine a possible interaction between the two chromophores in the excited state. Indeed, the emission measurements indicated that upon photo-excitation of the BODIPY entity, a very efficient energy or electron transfer process takes place from the BODIPY molecule to the porphyrin macrocycle.
Collapse
Affiliation(s)
- Emmanouil Nikoloudakis
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Emmanouil Orphanos
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Eleni Agapaki
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Vasilis Nikolaou
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Asterios Charisiadis
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Georgios Charalambidis
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Anna Mitraki
- University of Crete, Department of Materials Science and Technology and Institute of Electronic Structure and Laser (I.E.S.L.) Foundation for Research and Technology — Hellas (FO.R.T.H.) Vassilika Vouton, 70013, Heraklion, Crete, Greece
| | - Athanassios G. Coutsolelos
- Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, 70013, Heraklion, Crete, Greece
| |
Collapse
|