1
|
Khakimov DV, Svitanko IV, Pivina TS. Computational insight into the crystal structures of cubane and azacubanes. J Mol Model 2024; 30:93. [PMID: 38433164 DOI: 10.1007/s00894-024-05891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
CONTEXT Using quantum chemistry and atom-atom potential methods, the molecular and crystal structures of cubane 1 and all types of unsubstituted azacubanes 2-22 were calculated. Alternative possible polymorphs of cubane 1 have been proposed. The thermochemical properties of azacubanes in the gas and solid phases were assessed. Thermodynamic aspects of stability are considered, and a significant decrease in stability is revealed upon transition from cubane 1 to octaazacubane 22. It has been shown that the density and energetic properties of azacubanes depend nonlinearly on the number of nitrogen atoms in the structure and the density of octaazacubane 22 at room temperature is 1.546 g cm-3, which is significantly lower than the previously given estimate. METHODS In this work, DFT calculations were conducted through the software Gaussian 09 using B3LYP functional with basis set aug-cc-PVDZ and the Grimme dispersion correction D2. For crystal structure optimization, the atom-atom potential methods with PMC (packing of molecules in crystal) program were used. Charges for molecular electrostatic potential were fitted by FitMEP, and enthalpies of formation in gas phase were assessed by G3B3.
Collapse
Affiliation(s)
- D V Khakimov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation.
| | - I V Svitanko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
- HSE University, 101000, Moscow, Russian Federation
| | - T S Pivina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| |
Collapse
|
2
|
Fahrenhorst-Jones T, Marshall DL, Burns JM, Pierens GK, Hormann RE, Fisher AM, Bernhardt PV, Blanksby SJ, Savage GP, Eaton PE, Williams CM. 1-Azahomocubane. Chem Sci 2023; 14:2821-2825. [PMID: 36937576 PMCID: PMC10016339 DOI: 10.1039/d3sc00001j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Highly strained cage hydrocarbons have long stood as fundamental molecules to explore the limits of chemical stability and reactivity, probe physical properties, and more recently as bioactive molecules and in materials discovery. Interestingly, the nitrogenous congeners have attracted much less attention. Previously absent from the literature, azahomocubanes, offer an opportunity to investigate the effects of a nitrogen atom when incorporated into a highly constrained polycyclic environment. Herein disclosed is the synthesis of 1-azahomocubane, accompanied by comprehensive structural characterization, physical property analysis and chemical reactivity. These data support the conclusion that nitrogen is remarkably well tolerated in a highly strained environment.
Collapse
Affiliation(s)
- Tyler Fahrenhorst-Jones
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Queensland Australia
| | - David L Marshall
- Central Analytical Research Facility and School of Chemistry and Physics, Queensland University of Technology Brisbane 4000 Queensland Australia
| | - Jed M Burns
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Queensland Australia
| | - Gregory K Pierens
- Centre for Advanced Imaging, University of Queensland Brisbane 4072 Queensland Australia
| | - Robert E Hormann
- Department of Chemistry, University of Chicago Chicago Illinois 60637 USA
| | - Allison M Fisher
- Department of Chemistry, University of Chicago Chicago Illinois 60637 USA
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Queensland Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility and School of Chemistry and Physics, Queensland University of Technology Brisbane 4000 Queensland Australia
| | - G Paul Savage
- CSIRO Manufacturing, Ian Wark Laboratory Melbourne 3168 Victoria Australia
| | - Philip E Eaton
- Department of Chemistry, University of Chicago Chicago Illinois 60637 USA
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Queensland Australia
| |
Collapse
|
3
|
Elyashberg M, Novitskiy IM, Bates RW, Kutateladze AG, Williams CM. Reassignment of Improbable Natural Products Identified through Chemical Principle Screening. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mikhail Elyashberg
- Advanced Chemistry Development Inc. (ACD/Labs) Toronto ON, M5C 1B5 Canada
| | - Ivan M. Novitskiy
- Department of Chemistry and Biochemistry University of Denver Denver CO 80208 United States
| | - Roderick W. Bates
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Andrei G. Kutateladze
- Department of Chemistry and Biochemistry University of Denver Denver CO 80208 United States
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Queensland Australia
| |
Collapse
|
4
|
Shen SM, Appendino G, Guo YW. Pitfalls in the structural elucidation of small molecules. A critical analysis of a decade of structural misassignments of marine natural products. Nat Prod Rep 2022; 39:1803-1832. [PMID: 35770685 DOI: 10.1039/d2np00023g] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: July 2010 to August 2021This article summarizes more than 200 cases of misassigned marine natural products reported between July 2010 and August 2021, sorting out errors according to the structural elements. Based on a comparative analysis of the original and the revised structures, major pitfalls still plaguing the structural elucidation of small molecules were identified, emphasizing the role of total synthesis, crystallography, as well as chemical- and biosynthetic logic to complement spectroscopic data. Distinct "trends" in natural product misassignment are evident between compounds of marine and plant origin, with an overall much lower incidence of "impossible" structures within misassigned marine natural products.
Collapse
Affiliation(s)
- Shou-Mao Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Universitá degli Studi del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
5
|
Maslovskaya LA, Savchenko AI, Krenske EH, Chow S, Holt T, Gordon VA, Reddell PW, Pierce CJ, Parsons PG, Boyle GM, Kutateladze AG, Williams CM. EBC-232 and 323: A Structural Conundrum Necessitating Unification of Five In Silico Prediction and Elucidation Methods. Chemistry 2020; 26:11862-11867. [PMID: 32864777 DOI: 10.1002/chem.202001884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Structurally unique halimanes EBC-232 and EBC-323, isolated from the Australian rainforest plant Croton insularis, proved considerably difficult to elucidate. The two diastereomers, which consist an unusual oxo-6,7-spiro ring system fused to a dihydrofuran, were solved by unification and consultation of five in silico NMR elucidation and prediction methods [i.e., ACDLabs, olefin strain energy (OSE), DP4, DU8+ and TD DFT CD]. Structure elucidation challenges of this nature are prime test case examples for empowering future AI learning in structure elucidation.
Collapse
Affiliation(s)
- Lidia A Maslovskaya
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia.,QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Brisbane, 4029, Australia
| | - Andrei I Savchenko
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Sharon Chow
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Tina Holt
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208, USA
| | - Victoria A Gordon
- EcoBiotics Limited, PO Box 1, Yungaburra, 4884, Queensland, Australia
| | - Paul W Reddell
- EcoBiotics Limited, PO Box 1, Yungaburra, 4884, Queensland, Australia
| | - Carly J Pierce
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Brisbane, 4029, Australia
| | - Peter G Parsons
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Brisbane, 4029, Australia
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Brisbane, 4029, Australia
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208, USA
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|