1
|
Ding X, Wang Y, Gui Y, Yang C. Two-Stage Mixed-Dye-Based Isothermal Amplification with Ribonuclease-Cleavable Enhanced Probes for Dual-Visualization Detection of SARS-CoV-2 Variants of Interest. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401988. [PMID: 38829265 PMCID: PMC11304323 DOI: 10.1002/advs.202401988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Rapid and visual detection of SARS-CoV-2 variants is vital for timely assessment of variant transmission in resource-limited settings. Here, a closed-tube, two-stage, mixed-dye-based isothermal amplification method with ribonuclease-cleavable enhanced probes (REP), termed REP-TMAP, for dual-visualization detection of SARS-CoV-2 variants including JN.1, BA.2, BA.4/5, and Delta is introduced. The first stage of REP-TMAP is reverse transcription recombinase polymerase amplification and the second stage is dual-visualization detection synergistically mediated by the REP and the mixed dyes of cresol red and hydroxy naphthol blue. In REP-TMAP reaction, the color change under ambient light indicates SARS-CoV-2 infection, while the fluorescence change under blue light excitation specifies variant type. On detecting transcribed RNA of SARS-CoV-2 spike gene, this assay is rapid (within 40 min), highly sensitive (10-200 copies per reaction), and highly specific (identification of single-base mutations). Furthermore, the assay has been clinically validated to accurately detect JN.1, BA.2, and BA.4/5 variants from 102 human oropharyngeal swabs. The proposed assay therefore holds great potentials to provide a rapid, dual-visualization, sensitive, specific, point-of-care detection of SARS-CoV-2 variants and beyond.
Collapse
Affiliation(s)
- Xiong Ding
- Key Laboratory of Environmental Medicine and EngineeringMinistry of EducationDepartment of Nutrition and Food HygieneSchool of Public Health, Southeast UniversityNanjing210009P. R. China
| | - Yaru Wang
- Key Laboratory of Environmental Medicine and EngineeringMinistry of EducationDepartment of Nutrition and Food HygieneSchool of Public Health, Southeast UniversityNanjing210009P. R. China
| | - Yuxin Gui
- Key Laboratory of Environmental Medicine and EngineeringMinistry of EducationDepartment of Nutrition and Food HygieneSchool of Public Health, Southeast UniversityNanjing210009P. R. China
| | - Chuankun Yang
- Center of Clinical Laboratory MedicineZhongda Hospital, Southeast UniversityNanjing210009P. R. China
| |
Collapse
|
2
|
Yan S, Lan H, Wu Z, Sun Y, Tu M, Pan D. Cleavable molecular beacon-based loop-mediated isothermal amplification assay for the detection of adulterated chicken in meat. Anal Bioanal Chem 2022; 414:8081-8091. [PMID: 36152037 DOI: 10.1007/s00216-022-04342-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
A simple, sensitive, specific and fast method based on the loop-mediated isothermal amplification (LAMP) technique and cleavable molecular beacon (CMB) was developed for chicken authentication detection. LAMP and CMB were used for DNA amplification and amplicon analysis, respectively. Targeting the mitochondrial cytochrome b gene of chickens, five primers and one CMB probe were designed, and their specificity was validated against nine other animal species. The structure of CMB and concentrations of dNTPs, MgSO4, betaine, RNase H2, primers and CMB were optimized. The CMB-LAMP assay was completed within 17 min, and its limit of detection for chicken DNA was 1.5 pg μL-1. Chicken adulteration as low as 0.5% was detected in beef, and no cross-reactivity was observed. Finally, this assay was successfully applied to 20 commercial meat products. When combined with our developed DNA extraction method (the extraction time was 1 min: lysis for 10 s, washing for 20 s and elution for 30 s), the entire process (from DNA extraction to results analysis) was able to be completed within 20 min, which is at least 10 min shorter than other LAMP-based methods. Our method showed great potential for the on-site detection of chicken adulteration in meat.
Collapse
Affiliation(s)
- Song Yan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Hangzhen Lan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China.
| | - Zhen Wu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Yangying Sun
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Maolin Tu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China. .,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China.
| |
Collapse
|
3
|
Wan L, Ma J, Yi J, Dong Y, Niu R, Su Y, Li Q, Dan Zhu, Chao J, Su S, Fan C, Wang L, Wan Y. CRISPR-empowered hybridization chain reaction amplification for an attomolar electrochemical sensor. Chem Commun (Camb) 2022; 58:8826-8829. [PMID: 35848536 DOI: 10.1039/d2cc01155g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid pathogen screening holds the key against certain viral infections, especially in an overwhelming pandemic. Herein, a CRISPR-empowered electrochemical biosensor was designed for the ultrasensitive detection of the avian influenza A (H7N9) virus gene sequence. Combining the CRISPR/Cas system, a signal-amplification strategy and a high-conductivity sensing substrate, the developed biosensor showed an ultrawide dynamic range, an ultralow detection limit, and excellent selectivity for H7N9 detection, providing a potential sensing platform for the simple, fast, sensitive, and on-site detection of infectious diseases.
Collapse
Affiliation(s)
- Ling Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jianfeng Ma
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jiasheng Yi
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yan Dong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Renjie Niu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yan Su
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
4
|
Ooi KH, Liu MM, Moo JR, Nimsamer P, Payungporn S, Kaewsapsak P, Tan MH. A Sensitive and Specific Fluorescent RT-LAMP Assay for SARS-CoV-2 Detection in Clinical Samples. ACS Synth Biol 2022; 11:448-463. [PMID: 34981924 DOI: 10.1021/acssynbio.1c00538] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The raging COVID-19 pandemic has created an unprecedented demand for frequent and widespread testing to limit viral transmission. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has emerged as a promising diagnostic platform for rapid detection of SARS-CoV-2, in part because it can be performed with simple instrumentation. However, isothermal amplification methods frequently yield spurious amplicons even in the absence of a template. Consequently, RT-LAMP assays can produce false positive results when they are based on generic intercalating dyes or pH-sensitive indicators. Here, we report the development of a sensitive RT-LAMP assay that leverages on a novel sequence-specific probe to guard against spurious amplicons. We show that our optimized fluorescent assay, termed LANTERN, takes only 30 min to complete and can be applied directly on swab or saliva samples. Furthermore, utilizing clinical RNA samples from 52 patients with COVID-19 infection and 21 healthy individuals, we demonstrate that our diagnostic test exhibits a specificity and positive predictive value of 95% with a sensitivity of 8 copies per reaction. Hence, our new probe-based RT-LAMP assay can serve as an inexpensive method for point-of-need diagnosis of COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Kean Hean Ooi
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, 138672 Singapore
| | - Mengying Mandy Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, 138672 Singapore
| | - Jia Rong Moo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Pattaraporn Nimsamer
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Kaewsapsak
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Meng How Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, 138672 Singapore
| |
Collapse
|
5
|
Varona M, Anderson JL. Advances in Mutation Detection Using Loop-Mediated Isothermal Amplification. ACS OMEGA 2021; 6:3463-3469. [PMID: 33585732 PMCID: PMC7876693 DOI: 10.1021/acsomega.0c06093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/21/2021] [Indexed: 05/25/2023]
Abstract
Detection of mutations and single-nucleotide polymorphisms is highly important for diagnostic applications. Loop-mediated isothermal amplification (LAMP) is a powerful technique for the rapid and sensitive detection of nucleic acids. However, LAMP traditionally does not possess the ability to resolve single-nucleotide differences within the target sequence. Because of its speed and isothermal nature, LAMP is ideally suited for point-of-care applications in resource-limited settings. Recently, different approaches have been developed and applied to enable single-nucleotide differentiation within target sequences. This Mini-Review highlights advancements in mutation detection using LAMP. Methods involving primer design and modification to enable sequence differentiation are discussed. In addition, the development of probe-based detection methods for mutation detection are also covered.
Collapse
|
6
|
Ding X, Yin K, Li Z, Pandian V, Smyth JA, Helal Z, Liu C. Cleavable hairpin beacon-enhanced fluorescence detection of nucleic acid isothermal amplification and smartphone-based readout. Sci Rep 2020; 10:18819. [PMID: 33139727 PMCID: PMC7608614 DOI: 10.1038/s41598-020-75795-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/20/2020] [Indexed: 01/11/2023] Open
Abstract
Fluorescence detection of nucleic acid isothermal amplification utilizing energy-transfer-tagged oligonucleotide probes provides a highly sensitive and specific method for pathogen detection. However, currently available probes suffer from relatively weak fluorescence signals and are not suitable for simple, affordable smartphone-based detection at the point of care. Here, we present a cleavable hairpin beacon (CHB)-enhanced fluorescence detection for isothermal amplification assay. The CHB probe is a single fluorophore-tagged hairpin oligonucleotide with five continuous ribonucleotides which can be cleaved by the ribonuclease to specifically initiate DNA amplification and generate strong fluorescence signals. By coupling with loop-mediated isothermal amplification (LAMP), the CHB probe could detect Borrelia burgdorferi (B. burgdorferi) recA gene with a sensitivity of 100 copies within 25 min and generated stronger specific fluorescence signals which were easily read and analysed by our programmed smartphone. Also, this CHB-enhanced LAMP (CHB-LAMP) assay was successfully demonstrated to detect B. burgdorferi DNA extracted from tick species, showing comparable results to real-time PCR assay. In addition, our CHB probe was compatible with other isothermal amplifications, such as isothermal multiple-self-matching-initiated amplification (IMSA). Therefore, CHB-enhanced fluorescence detection is anticipated to facilitate the development of simple, sensitive smartphone-based point-of-care pathogen diagnostics in resource-limited settings.
Collapse
Affiliation(s)
- Xiong Ding
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Kun Yin
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Ziyue Li
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Vikram Pandian
- Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Joan A Smyth
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Zeinab Helal
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Changchun Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|