1
|
Jiang R, Nilam M, Hennig A, Nau WM. Dual-Color Real-Time Chemosensing of a Compartmentalized Reaction Network Involving Enzyme-Induced Membrane Permeation of Peptides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306922. [PMID: 37703578 DOI: 10.1002/adma.202306922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Indexed: 09/15/2023]
Abstract
The design of synthetic systems with interrelated reaction sequences that model incipient biological complexity is limited by physicochemical tools that allow the direct monitoring of the individual processes in real-time. To mimic a simple digestion-resorption sequence, the authors have designed compartmentalized liposomal systems that incorporate extra- and intravesicular chemosensing ensembles. The extravesicular reporter pair consists of cucurbit[7]uril and methylene blue to monitor the enzymatic cleavage of short enkephalin-related peptides by thermolysin through a switch-off fluorescence response ("digestion"). Because the substrate is membrane-impermeable, but the dipeptide product is permeable, uptake of the latter into the pre-formed liposomes occurs as a follow-up process. The intravesicular chemosensing ensemble consists of i) cucurbit[8]uril, 2-anilinonaphthalene-6-sulfonic acid, and methyl viologen or ii) cucurbit[7]uril and berberine to monitor the uptake ("resorption") of the enzymatic products through the liposomal membranes by i) a switch-on or ii) a switch-off fluorescence response. The dyes are designed to allow selective optical excitation and read-out of the extra- and intravesicular dyes, which allow for dual-color chemosensing and, therefore, kinetic discrimination of the two sequential reactions.
Collapse
Affiliation(s)
- Ruixue Jiang
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Mohamed Nilam
- Center for Cellular Nanoanalytics (CellNanOs), Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs), Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| |
Collapse
|
2
|
Chen-Wu J, Máximo P, Remón P, Parola AJ, Basílio N, Pischel U. Phototransduction in a supramolecular cascade: a mimic for essential features of the vision process. Chem Commun (Camb) 2023; 59:3431-3434. [PMID: 36857686 DOI: 10.1039/d3cc00384a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The tailored design of a light-triggered supramolecular cascade results in an artificial machinery that assimilates the transduction of photons into chemical communication and the final release of a neurotransmitter. This is reminiscent of key steps in the natural vision process.
Collapse
Affiliation(s)
- Jialei Chen-Wu
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071, Huelva, Spain.
| | - Patrícia Máximo
- Laboratorio Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnología, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Patricia Remón
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071, Huelva, Spain.
| | - A Jorge Parola
- Laboratorio Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnología, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Nuno Basílio
- Laboratorio Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnología, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Uwe Pischel
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071, Huelva, Spain.
| |
Collapse
|
3
|
Zhou JL, Li YH, Zhang YM, Chen L, Liu Y. Enhanced molecular binding affinity toward aromatic dications by anthracene-derived crown ethers in water. Org Biomol Chem 2022; 21:107-114. [PMID: 36484413 DOI: 10.1039/d2ob02010f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pursuit of high molecular binding affinity using conventional crown ethers in water remains a challenging task in the field of supramolecular chemistry and may hold great promise in the creation of advanced biocompatible nanoconstructs. In this work, the molecular binding strength toward a series of structurally relevant cationic guests has been greatly enhanced by tetrasulfonated 1,5-dianthracenyl-42-crown-10 and as investigated by means of 1H NMR, UV-vis, and fluorescence spectroscopy, the host-guest association constants can reach up to 108 M-1 order of magnitude in aqueous solution. X-ray crystal diffraction analysis further demonstrates that the aromatic dication can be tightly encapsulated in the ring of anthracene-derived crown ether via multiple π-stacking and electrostatic interactions. Meanwhile, the obtained association constants are remarkably higher than the ones in the cases of the known benzene- and naphthalene-derived sulfonated crown ethers, substantiating that the appropriate extension of π-conjugation in the molecular skeleton of crown ether is a feasible method in attaining a highly affiliative host-guest complex. Taken together, our results indicate that the anthracene-based sulfonated crown ether can be developed as a new family of water-soluble macrocyclic receptors in the fabrication of functional nanoarchitectures.
Collapse
Affiliation(s)
- Jia-Liang Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yan-Hong Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Ling Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
4
|
Nilam M, Hennig A. Enzyme assays with supramolecular chemosensors - the label-free approach. RSC Adv 2022; 12:10725-10748. [PMID: 35425010 PMCID: PMC8984408 DOI: 10.1039/d1ra08617k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 12/20/2022] Open
Abstract
Enzyme activity measurements are essential for many research areas, e.g., for the identification of inhibitors in drug discovery, in bioengineering of enzyme mutants for biotechnological applications, or in bioanalytical chemistry as parts of biosensors. In particular in high-throughput screening (HTS), sensitive optical detection is most preferred and numerous absorption and fluorescence spectroscopy-based enzyme assays have been developed, which most frequently require time-consuming fluorescent labelling that may interfere with biological recognition. The use of supramolecular chemosensors, which can specifically signal analytes with fluorescence-based read-out methods, affords an attractive and label-free alternative to more established enzyme assays. We provide herein a comprehensive review that summarizes the current state-of-the-art of supramolecular enzyme assays ranging from early examples with covalent chemosensors to the most recent applications of supramolecular tandem enzyme assays, which utilize common and often commercially available combinations of macrocyclic host molecules (e.g. cyclodextrins, calixarenes, and cucurbiturils) and fluorescent dyes as self-assembled reporter pairs for assaying enzyme activity.
Collapse
Affiliation(s)
- Mohamed Nilam
- Department of Biology/Chemistry, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück Barbarastr. 7 D-49076 Osnabrück Germany
| | - Andreas Hennig
- Department of Biology/Chemistry, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück Barbarastr. 7 D-49076 Osnabrück Germany
| |
Collapse
|
5
|
Nie H, Wei Z, Ni XL, Liu Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem Rev 2022; 122:9032-9077. [PMID: 35312308 DOI: 10.1021/acs.chemrev.1c01050] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cucurbit[n]urils (Q[n]s or CB[n]s), as a classical of artificial organic macrocyclic hosts, were found to have excellent advantages in the fabricating of tunable and smart organic luminescent materials in aqueous media and the solid state with high emitting efficiency under the rigid pumpkin-shaped structure-derived macrocyclic-confinement effect in recent years. This review aims to give a systematically up-to-date overview of the Q[n]-based supramolecular organic luminescent emissions from the confined spaces triggered host-guest complexes, including the assembly fashions and the mechanisms of the macrocycle-based luminescent complexes, as well as their applications. Finally, challenges and outlook are provided. Since this class of Q[n]-based supramolecular organic luminescent emissions, which have essentially derived from the cavity-dependent confinement effect and the resulting assembly fashions, emerged only a few years ago, we hope this review will provide valuable information for the further development of macrocycle-based light-emitting materials and other related research fields.
Collapse
Affiliation(s)
- Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhen Wei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xin-Long Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Miskolczy Z, Megyesi M, Sinn S, Biedermann F, Biczók L. Simultaneous analyte indicator binding assay (SBA) for the monitoring of reversible host-guest complexation kinetics. Chem Commun (Camb) 2021; 57:12663-12666. [PMID: 34775505 DOI: 10.1039/d1cc04888k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Very little information is available on the kinetics of the self-assembly and dissociation of optically silent building blocks despite the importance of such data in the rational design of tailor-made host-guest systems. We introduce here a novel time-resolved method that enables the simultaneous determination of complex formation and complex dissociation rate constants for inclusion-type host-guest complexes. The simultaneous analyte indicator binding assay (SBA) gives also direct access to binding affinities, thus largely simplifying the experimental procedure for a full kinetic and thermodynamic characterisation of host-guest systems.
Collapse
Affiliation(s)
- Zsombor Miskolczy
- Research Centre for Natural Sciences, Institute of Materials and Environmental, Chemistry, Eötvös Loránd Research Network (ELKH), P.O. Box 286, 1519 Budapest, Hungary.
| | - Mónika Megyesi
- Research Centre for Natural Sciences, Institute of Materials and Environmental, Chemistry, Eötvös Loránd Research Network (ELKH), P.O. Box 286, 1519 Budapest, Hungary.
| | - Stephan Sinn
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Frank Biedermann
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - László Biczók
- Research Centre for Natural Sciences, Institute of Materials and Environmental, Chemistry, Eötvös Loránd Research Network (ELKH), P.O. Box 286, 1519 Budapest, Hungary.
| |
Collapse
|
7
|
Alnajjar MA, Nau WM, Hennig A. A reference scale of cucurbit[7]uril binding affinities. Org Biomol Chem 2021; 19:8521-8529. [PMID: 34378628 DOI: 10.1039/d1ob01304a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The accurate determination of ultra-high binding affinities in supramolecular host-guest chemistry is a challenging endeavour because direct binding titrations are generally limited to affinities <106 M-1 due to sensitivity constraints of common titration methods. To determine higher affinities, competitive titrations are usually performed, in which one compound with a well established binding affinity serves as a reference. Herein, we propose a reference scale for such competitive titrations with the host cucurbit[7]uril (CB7) comprising binding affinities in the range from 103 to 1015 M-1. The suggested reference compounds are commercially available and will aid in the future determination of CB7 binding affinities for stimuli-responsive host-guest systems.
Collapse
Affiliation(s)
- Mohammad A Alnajjar
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Werner M Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Andreas Hennig
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany. .,Institute of Chemistry of New Materials, Universität Osnabrück, Barbarastr. 7, 49080 Osnabrück, Germany.
| |
Collapse
|
8
|
Tomeček J, Čablová A, Hromádková A, Novotný J, Marek R, Durník I, Kulhánek P, Prucková Z, Rouchal M, Dastychová L, Vícha R. Modes of Micromolar Host-Guest Binding of β-Cyclodextrin Complexes Revealed by NMR Spectroscopy in Salt Water. J Org Chem 2021; 86:4483-4496. [PMID: 33648337 DOI: 10.1021/acs.joc.0c02917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multitopic supramolecular guests with finely tuned affinities toward widely explored cucurbit[n]urils (CBs) and cyclodextrins (CDs) have been recently designed and tested as functional components of advanced supramolecular systems. We employed various spacers between the adamantane cage and a cationic moiety as a tool for tuning the binding strength toward CB7 to prepare a set of model guests with KCB7 and Kβ-CD values of (0.6-5.0) × 1010 M-1 and (0.6-2.6) × 106 M-1, respectively. These accessible adamantylphenyl-based binding motifs open a way toward supramolecular components with an outstanding affinity toward β-cyclodextrin. 1H NMR experiments performed in 30% CaCl2/D2O at 273 K along with molecular dynamics simulations allowed us to identify two arrangements of the guest@β-CD complexes. The approach, joining experimental and theoretical methods, provided a better understanding of the structure of cyclodextrin complexes and related molecular recognition, which is highly important for the rational design of drug delivery systems, molecular sensors and switches.
Collapse
Affiliation(s)
- Josef Tomeček
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Andrea Čablová
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Aneta Hromádková
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivo Durník
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Kulhánek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zdeňka Prucková
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Michal Rouchal
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Lenka Dastychová
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Robert Vícha
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| |
Collapse
|
9
|
Cai Y, Yan X, Wang S, Zhu Z, Cen M, Ou C, Zhao Q, Yan Q, Wang J, Yao Y. Pillar[5]arene-Based 3D Hybrid Supramolecular Polymer for Green Catalysis in Water. Inorg Chem 2021; 60:2883-2887. [PMID: 33570384 DOI: 10.1021/acs.inorgchem.0c03645] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pillar[n]arene-based supramolecular polymers have attracted great interest because of their tunable morphologies and external stimuli responsiveness. However, most of the investigations of supramolecular polymers previously reported were focused on their formation and transformation, and investigations on their applications are rare. Herein, we designed and prepared hybrid polymeric materials by incorporating Pd nanoparticles into a supramolecular polymer, constructed from a pillar[5]arene dimer and a three-arm guest. The obtained hybrid polymer was fully characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy-energy-dispersive X-ray mapping, and X-ray diffraction technologies. Importantly, the hybrid supramolecular polymeric materials exhibited desirable catalytic activity for reductions of toxic nitroaromatics and C-C bond-forming Suzuki-Miyaura reaction in aqueous solution.
Collapse
Affiliation(s)
- Yan Cai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Xin Yan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Siyuan Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Zhiwen Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Moupan Cen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Changjin Ou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Qin Zhao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Qian Yan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
10
|
Tang H, Thomas SS, Wolf L, Natarajan P, Ko YH, Wilson J, Kim K, Bohne C. Nonlinear Dependence on Na + Ions for the Binding Dynamics of Cucurbit[6]uril with the trans-1-Methyl-4-(4-hydroxystyryl)pyridinium Cation. J Phys Chem B 2020; 124:10219-10225. [PMID: 33140644 DOI: 10.1021/acs.jpcb.0c07554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The binding dynamics of the trans-1-methyl-4-(4-hydroxystyryl)pyridinium cation (HSP+) to cucurbit[6]uril (CB[6]) in the presence of Na+ cations were studied to establish the effect of the relative concentrations of the system's components (HSP+, CB[6], and Na+) on these dynamics. The formation of the HSP+@CB[6] complex was temporally uncoupled from the photoisomerization of trans-HSP+, while a nonlinear effect of the Na+ cation concentration on the HSP+@CB[6] dynamics was observed. This nonlinearity is a consequence of Na+ having the opposite effect on the association and dissociation rate constants for the HSP+@CB[6] complex, creating a conceptual framework for using such nonlinearities to control multistep reactions in cucurbit[n]uril chemistry.
Collapse
Affiliation(s)
- Hao Tang
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Suma S Thomas
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Luise Wolf
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Palani Natarajan
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Young Ho Ko
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - James Wilson
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33124, United States
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Cornelia Bohne
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
11
|
Miskolczy Z, Megyesi M, Biczók L, Prabodh A, Biedermann F. Kinetics and Mechanism of Cation-Induced Guest Release from Cucurbit[7]uril. Chemistry 2020; 26:7433-7441. [PMID: 31943402 PMCID: PMC7318709 DOI: 10.1002/chem.201905633] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 12/11/2022]
Abstract
The release of two organic guests from cucurbit[7]uril (CB7) was selectively monitored by the stopped‐flow method in aqueous solutions of inorganic salts to reveal the mechanistic picture in detail. Two contrasting mechanisms were identified: The symmetric dicationic 2,7‐dimethyldiazapyrenium shows a cation‐independent complex dissociation mechanism coupled to deceleration of the ingression in the presence of alkali and alkaline earth cations (Mn+) due to competitive formation of CB7–Mn+ complexes. A much richer, unprecedented kinetic behaviour was observed for the ingression and egression of the monocationic and non‐symmetric berberine (B+). The formation of ternary complex B+–CB7–Mn+ was unambiguously revealed. A difference of more than two orders of magnitude was found in the equilibrium constants of Mn+ binding to B+–CB7 inclusion complex. Large cations, such as K+ and Ba2+, also promoted B+ expulsion from the ternary complex in a bimolecular process. This study reveals a previously hidden mechanistic picture and motivates systematic kinetic investigations of other host–guest systems.
Collapse
Affiliation(s)
- Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, 1519, Budapest, Hungary
| | - Mónika Megyesi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, 1519, Budapest, Hungary
| | - László Biczók
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, 1519, Budapest, Hungary
| | - Amrutha Prabodh
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Abstract
The combination of supramolecular functional systems with biomolecular chemistry has been a fruitful exercise for decades, leading to a greater understanding of biomolecules and to a great variety of applications, for example, in drug delivery and sensing. Within these developments, the phospholipid bilayer membrane, surrounding live cells, with all its functions has also intrigued supramolecular chemists. Herein, recent efforts from the supramolecular chemistry community to mimic natural functions of lipid membranes, such as sensing, molecular recognition, membrane fusion, signal transduction, and gated transport, are reviewed.
Collapse
Affiliation(s)
- Andrea Barba‐Bon
- Department of Life Sciences and ChemistryJacobs University BremenCampus Ring 128759BremenGermany
| | - Mohamed Nilam
- Department of Life Sciences and ChemistryJacobs University BremenCampus Ring 128759BremenGermany
| | - Andreas Hennig
- Department of Life Sciences and ChemistryJacobs University BremenCampus Ring 128759BremenGermany
| |
Collapse
|
13
|
Prabodh A, Sinn S, Grimm L, Miskolczy Z, Megyesi M, Biczók L, Bräse S, Biedermann F. Teaching indicators to unravel the kinetic features of host–guest inclusion complexes. Chem Commun (Camb) 2020; 56:12327-12330. [DOI: 10.1039/d0cc03715j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Three new, practically convenient methods are introduced for measuring kinetic parameters of supramolecular host–guest and protein–ligand complexes. Combined with thermodynamic data, this allows for an in-depth of the binding mechanism.
Collapse
Affiliation(s)
- Amrutha Prabodh
- Karlsruhe Institute of Technology (KIT)
- Institute of Nanotechnology (INT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Stephan Sinn
- Karlsruhe Institute of Technology (KIT)
- Institute of Nanotechnology (INT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Laura Grimm
- Karlsruhe Institute of Technology (KIT)
- Institute of Nanotechnology (INT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry Research Centre for Natural Sciences
- 1117 Budapest
- Hungary
| | - Mónika Megyesi
- Institute of Materials and Environmental Chemistry Research Centre for Natural Sciences
- 1117 Budapest
- Hungary
| | - László Biczók
- Institute of Materials and Environmental Chemistry Research Centre for Natural Sciences
- 1117 Budapest
- Hungary
| | - Stefan Bräse
- Karlsruhe Institute of Technology (KIT)
- Institute of Organic Chemistry (IOC)
- 76131 Karlsruhe
- Germany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS)
| | - Frank Biedermann
- Karlsruhe Institute of Technology (KIT)
- Institute of Nanotechnology (INT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| |
Collapse
|