1
|
McCarthy DR, Xu K, Schenkelberg ME, Balegamire NAN, Liang H, Bellino SA, Li J, Schneebeli ST. Kinetically controlled synthesis of rotaxane geometric isomers. Chem Sci 2024; 15:4860-4870. [PMID: 38550687 PMCID: PMC10967009 DOI: 10.1039/d3sc04412b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/24/2024] [Indexed: 04/30/2024] Open
Abstract
Geometric isomerism in mechanically interlocked systems-which arises when the axle of a mechanically interlocked molecule is oriented, and the macrocyclic component is facially dissymmetric-can provide enhanced functionality for directional transport and polymerization catalysis. We now introduce a kinetically controlled strategy to control geometric isomerism in [2]rotaxanes. Our synthesis provides the major geometric isomer with high selectivity, broadening synthetic access to such interlocked structures. Starting from a readily accessible [2]rotaxane with a symmetrical axle, one of the two stoppers is activated selectively for stopper exchange by the substituents on the ring component. High selectivities are achieved in these reactions, based on coupling the selective formation reactions leading to the major products with inversely selective depletion reactions for the minor products. Specifically, in our reaction system, the desired (major) product forms faster in the first step, while the undesired (minor) product subsequently reacts away faster in the second step. Quantitative 1H NMR data, fit to a detailed kinetic model, demonstrates that this effect (which is conceptually closely related to minor enantiomer recycling and related processes) can significantly improve the intrinsic selectivity of the reactions. Our results serve as proof of principle for how multiple selective reaction steps can work together to enhance the stereoselectivity of synthetic processes forming complex mechanically interlocked molecules.
Collapse
Affiliation(s)
- Dillon R McCarthy
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Ke Xu
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Mica E Schenkelberg
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Nils A N Balegamire
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Huiming Liang
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Shea A Bellino
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Jianing Li
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Severin T Schneebeli
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
2
|
Nandi M, Bej S, Jana T, Ghosh P. From construction to application of a new generation of interlocked molecules composed of heteroditopic wheels. Chem Commun (Camb) 2023. [PMID: 38015500 DOI: 10.1039/d3cc03778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Over the last few decades, research on mechanically interlocked molecules has significantly evolved owing to their unique structural features and interesting properties. A substantial percentage of the reported works have focused on the synthetic strategies, leading to the preparation of functional MIMs for their applications in the chemical, materials, and biomedical sciences. Importantly, various macrocyclic wheels with specific heteroditopicity (including phenanthroline, amide, amine, oxy-ether, isophthalamide, calixarene and triazole) and threading axles (bipyridine, phenanthroline, pyridinium, triazolium, etc.) have been designed to synthesize targeted multifunctional mononuclear/multinuclear pseudorotaxanes, rotaxanes and catenanes. The structural uniqueness of these interlocked systems is advantageous owing to the presence of mechanical bonds with specific three-dimensional cavities. Furthermore, their multi-functionalities and preorganised structural entities exhibit a high potential for versatile applications, like switching, shuttling, dynamic properties, recognition and sensing. In this feature article, we describe some of the most recent advances in the construction and chemical behaviour of a new generation of interlocked molecules, primarily focusing on heteroditopic wheels and their applications in different directions of the modern research area. Furthermore, we outline the future prospects and significant perspectives of the new generation heteroditopic wheel based interlocked molecules in different emerging areas of science.
Collapse
Affiliation(s)
- Mandira Nandi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Somnath Bej
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Tarun Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
3
|
Puigcerver J, Alajarin M, Martinez-Cuezva A, Berna J. Modulating the shuttling motion of [2]rotaxanes built of p-xylylenediamine units through permethylation at the benzylic positions of the ring. Org Biomol Chem 2023; 21:9070-9075. [PMID: 37938860 DOI: 10.1039/d3ob01611k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
In this study, we show the effect of the gem-dimethyl substitution at the four benzylic carbons of the ring on the internal dynamics of two-station [2]rotaxanes. Such structural modification of the polyamide macrocycles promotes a drastic change of the internal dynamics as shown by variable-temperature (VT) 1H NMR experiments. We determined that the shuttling rates of the octamethylated macrocycle along a series of symmetrical threads were significantly faster compared to the non-substituted ring. This effect was particularly pronounced in the fumaramide-based system, in which the rate was 27 times faster than that of the model system.
Collapse
Affiliation(s)
- Julio Puigcerver
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain.
| | - Mateo Alajarin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain.
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain.
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain.
| |
Collapse
|
4
|
Heidecker AA, Stasi M, Spears A, Boekhoven J, Pöthig A. Silver and Gold Pillarplex Pseudorotaxanes from α,ω-Dicarboxylic Acids. Chempluschem 2023; 88:e202300234. [PMID: 37306394 DOI: 10.1002/cplu.202300234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
A series of pseudorotaxanes with supramolecular organometallic silver(I) and gold(I) pillarplexes acting as rings and different α,ω-dicarboxylic acids as axle components are reported. The successful formation of the host-guest complexes is shown by 1 H NMR spectroscopy and respective NMR titration. Additional evaluation with ITC titration experiments yielded dissociation constants (Kd ) ranging from 10-5 to 10-7 M. Single-crystal X-Ray diffraction analysis reveals a particularly exciting pore alignment of different examples in the solid state depending on the length of the guest. The work highlights, that dicarboxylic acids can penetrate the tight tubular pillarplex pore, paving the way to future mechanically interlocked molecules and materials.
Collapse
Affiliation(s)
- Alexandra A Heidecker
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Center (CRC), Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| | - Michele Stasi
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Supramolecular Chemistry Lichtenbergstraße 4, 85748, Garching, Germany
| | - Alexander Spears
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Center (CRC), Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| | - Job Boekhoven
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Supramolecular Chemistry Lichtenbergstraße 4, 85748, Garching, Germany
| | - Alexander Pöthig
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Center (CRC), Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| |
Collapse
|
5
|
Bektas N, Aydogan A. A poly-pseudorotaxane constructed by threading pillar[5]arene onto an ion-pair recognition-based calix[4]pyrrole supramolecular polymer. Org Biomol Chem 2023; 21:1862-1867. [PMID: 36799237 DOI: 10.1039/d2ob02268k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The ion-pair recognition ability of calix[4]pyrrole was utilized to form a multicomponent monomeric assembly and a linear supramolecular polymer via concurrent anion and bis-cation complexation. The inherent dynamic interactions of these assemblies were further used to construct pseudorotaxanes in monomeric and supramolecular polymer forms with pillar[5]arene.
Collapse
Affiliation(s)
- Necla Bektas
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye.
| | - Abdullah Aydogan
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye.
| |
Collapse
|
6
|
Yang L, Nie CY, Han Y, Ye JM, Liu W, Yan CG. Construction and crystal structures of pillar[5]arene-based bis-[1]rotaxanes via quadruple hydrogen bonding of ureidopyrimidinone. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2142122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lu Yang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Cui-Yin Nie
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun-Mei Ye
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenlong Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Kato K, Maeda K, Mizuno M, Nishina Y, Fa S, Ohtani S, Ogoshi T. Room‐Temperature Ring‐Opening Polymerization of δ‐Valerolactone and ϵ‐Caprolactone Caused by Uptake into Porous Pillar[5]arene Crystals. Angew Chem Int Ed Engl 2022; 61:e202212874. [DOI: 10.1002/anie.202212874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Koki Maeda
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Motohiro Mizuno
- Graduate School of Natural Science and Technology Kanazawa University
- NanoMaterials Research Institute (NanoMaRi) Kanazawa University Kakuma-machi Kanazawa, 920-1192 Japan
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences Okayama University Okayama 700-8530 Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
- WPI Nano Life Science Institute Kanazawa University Kakuma-machi Kanazawa, 920-1192 Japan
| |
Collapse
|
8
|
Bej S, Nandi M, Ghosh P. Development of fluorophoric [2]pseudorotaxanes and [2]rotaxane: selective sensing of Zn(II). Org Biomol Chem 2022; 20:7284-7293. [PMID: 36052954 DOI: 10.1039/d2ob01210c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorophoric [2]pseudorotaxanes {NiPR1(ClO4)2-NiPR3(ClO4)2} are synthesized by utilizing newly designed fluorophoric bidentate ligands (L1-L3) and a heteroditopic naphthalene containing macrocycle (NaphMC) with high yields via Ni(II) templation and π-π stacking interactions. Subsequently, a fluorophoric [2]rotaxane (NAPRTX) is established through a Cu(I) catalysed click reaction between an azide terminated pseudorotaxane, {NiPR4(ClO4)2}, which contains the newly designed fluorophoric ligand L4, and alkyne terminated bulky stopper units. All these fluorophoric [2]pseudorotaxanes and the [2]rotaxane were characterized using numerous techniques such as mass spectrometry, NMR, UV/Vis, PL, and elemental analysis, wherever applicable. Furthermore, to investigate the effect of the fluorophoric moieties, the coordinating ability of chelating units, and size and shape of the three dimensional cavity generated by the mechanical bond in the interlocked [2]rotaxane (NAPRTX), we have performed a sensing study of various metal ions. Thus, the interlocked [2]rotaxane is found to have potential as a selective fluorescent sensor for Zn(II) metal ions over other transition, alkali and alkaline earth metal ions, where the 2,2'-bipyridyl arylvinylene moiety of the axle acts as a fluorescence signalling unit.
Collapse
Affiliation(s)
- Somnath Bej
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Mandira Nandi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
9
|
|
10
|
Kato K, Fa S, Ohtani S, Shi TH, Brouwer AM, Ogoshi T. Noncovalently bound and mechanically interlocked systems using pillar[ n]arenes. Chem Soc Rev 2022; 51:3648-3687. [PMID: 35445234 DOI: 10.1039/d2cs00169a] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pillar[n]arenes are pillar-shaped macrocyclic compounds owing to the methylene bridges linking the para-positions of the units. Owing to their unique pillar-shaped structures, these compounds exhibit various excellent properties compared with other cyclic host molecules, such as versatile functionality using various organic synthesis techniques, substituent-dependent solubility, cavity-size-dependent host-guest properties in organic media, and unit rotation along with planar chiral inversion. These advantages have enabled the high-yield synthesis and rational design of pillar[n]arene-based mechanically interlocked molecules (MIMs). In particular, new types of pillar[n]arene-based MIMs that can dynamically convert between interlocked and unlocked states through unit rotation have been produced. The highly symmetrical pillar-shaped structures of pillar[n]arenes result in simple NMR spectra, which are useful for studying the motion of pillar[n]arene wheels in MIMs and creating sophisticated MIMs with higher-order structures. The creation and application of polymeric MIMs based on pillar[n]arenes is also discussed.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
11
|
Heidecker AA, Bohn M, Pöthig A. Crystal structure of a hexacationic Ag(I)-pillarplex-dodecyl-diammonium pseudo-rotaxane as terephthalate salt. Z KRIST-CRYST MATER 2022. [DOI: 10.1515/zkri-2021-2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A new pseudo-rotaxane, consisting of a tubular, organometallic Ag-pillarplex ring and dodecyldiammonium axle component, is introduced and investigated towards potential non-covalent interactions by Full Interaction Maps (FIMs). FIMs predict regions of probable supramolecular interactions solely at the organic ligands, namely the rim and the aromatic rings of the pillarplex. The results were compared to structural parameters experimentally obtained by single-crystal X-ray diffraction. The pseudo-rotaxane was crystallized as a hydrated terephthalate salt, and the molecular and the crystal structure are discussed. The experimentally observed interactions are quantified using Hirshfeld surface analysis. In contrast to the FIMs prediction, four different interaction modes can be experimentally observed in the solid-state: encapsulation of a guest molecule, hydrogen bonding, π- and metal interactions.
Collapse
Affiliation(s)
- Alexandra A. Heidecker
- Department of Chemistry & Catalysis Research Center , Technische Universität München , Ernst-Otto-Fischer-Straße 1, D-85748 Garching , Germany
| | - Moritz Bohn
- Department of Chemistry & Catalysis Research Center , Technische Universität München , Ernst-Otto-Fischer-Straße 1, D-85748 Garching , Germany
| | - Alexander Pöthig
- Department of Chemistry & Catalysis Research Center , Technische Universität München , Ernst-Otto-Fischer-Straße 1, D-85748 Garching , Germany
| |
Collapse
|
12
|
Peng Z, Xu XQ, Wang XQ, Shi X, Wang W, Yang HB. Rotaxane-branched radical dendrimers with TEMPO termini. Chem Commun (Camb) 2022; 58:2006-2009. [PMID: 35050273 DOI: 10.1039/d1cc06158e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The precise synthesis of novel rotaxane-branched radical dendrimers Gn-TEMPO (n = 1-3) with up to 24 TEMPO radicals as termini was successfully achieved, from which nanoparticles with a good longitudinal relaxivity were further prepared, thus making them potential candidates as promising contrast agents for magnetic resonance imaging.
Collapse
Affiliation(s)
- Zhiyong Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| | - Xiao-Qin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| |
Collapse
|
13
|
Al-Azemi TF, Vinodh M. External-stimulus-triggered conformational inversion of mechanically self-locked pseudo[1]catenane and gemini-catenanes based on A1/A2-alkyne-azide-difunctionalized pillar[5]arenes. RSC Adv 2022; 12:1797-1806. [PMID: 35425178 PMCID: PMC8979204 DOI: 10.1039/d1ra09043g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a methodology for constructing mechanically self-locked molecules (MSMs) through the efficient intramolecular copper(i)-catalyzed alkyne–azide cycloaddition (CuAAC) of self-threaded A1/A2-azido-propargyl-difunctionalized pillar[5]arenes. The obtained monomeric “pseudo[1]catenane” and dimeric “gemini-catenane” were isolated and fully characterized using mass spectrometry, nuclear magnetic resonance (NMR) spectroscopy, and X-ray crystallography. Upon investigation by 1H NMR spectroscopy in chloroform, the observed motion for the threaded ring in the pseudo[1]catenane was reversibly controlled by the temperature, as demonstrated by variable-temperature 1H NMR studies. Two gemini-catenane stereoisomers were also isolated in which the two pillar[5]arene moieties threaded by two decyl chains were aligned in different topologies. Furthermore, the conformational inversion of pseudo[1]catenane and the gemini-catenanes triggered by solvents and guests was investigated and probed using 1H NMR spectroscopy, isothermal titration calorimetry, and single-crystal X-ray analysis. Mechanically self-locked molecules (MSMs) through the efficient intramolecular copper(i)-catalyzed alkyne–azide cycloaddition (CuAAC) of self-threaded A1/A2-azido-propargyl-difunctionalized pillar[5]arenes.![]()
Collapse
Affiliation(s)
- Talal F Al-Azemi
- Chemistry Department, Kuwait University P.O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| | - Mickey Vinodh
- Chemistry Department, Kuwait University P.O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| |
Collapse
|
14
|
Masai H, Oka Y, Terao J. Precision synthesis of linear oligorotaxanes and polyrotaxanes achieving well-defined positions and numbers of cyclic components on the axle. Chem Commun (Camb) 2021; 58:1644-1660. [PMID: 34927653 DOI: 10.1039/d1cc03507j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interest in macromolecules has increased because of their functional properties, which can be tuned using precise organic synthetic methods. For example, desired functions have been imparted by controlling the nanoscale structures of such macromolecules. In particular, compounds with interlocked structures, including rotaxanes, have attracted attention because of their unique supramolecular structures. In such supramolecular structures, the mobility and freedom of the macrocycles are restricted by an axle and dependent on those of other macrocycles, which imparts unique functions to these threaded structures. Recently, methods for the ultrafine engineering and synthesis, as well as functions, of "defined" rotaxane structures that are not statistically dispersed on the axle (i.e., control over the number and position of cyclic molecules) have been reported. Various synthetic strategies allow access to such well-defined linear oligo- and polyrotaxanes, including [1]rotaxanes and [n]rotaxanes (mostly n > 3). These state-of-the-art synthetic methods have resulted in unique functions of these oligo-and polyrotaxane materials. Herein, we review the effective synthetic protocols and functions of precisely constructed one-dimensional oligomers and polymers bearing defined threaded structures, and discuss the latest reports and trends.
Collapse
Affiliation(s)
- Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| | - Yuki Oka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| |
Collapse
|
15
|
Sayed M, Pal H. An overview from simple host-guest systems to progressively complex supramolecular assemblies. Phys Chem Chem Phys 2021; 23:26085-26107. [PMID: 34787121 DOI: 10.1039/d1cp03556h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular chemistry involving macrocyclic hosts is a highly interdisciplinary and fast-growing research field in chemistry, biochemistry, and materials science. Host-guest based supramolecular assemblies, as constructed through non-covalent interactions, are highly dynamic in nature, and can be tuned easily using their responses to various external stimuli, providing a convenient approach to achieve excellent functional materials. Macrocyclic hosts, particularly cyclodextrins, cucurbit[n]urils, and calix[n]arenes, which have unique features like possessing hydrophobic cavities of different sizes, along with hydrophilic external surfaces, which are also amenable towards easy derivatizations, are versatile cavitands or host molecules to encapsulate diverse guest molecules to form stable host-guest complexes with many unique structures and properties. Interestingly, host-guest complexes possessing amphiphilic properties can easily lead to the formation of various advanced supramolecular assemblies, like pseudorotaxanes, rotaxanes, polyrotaxanes, supramolecular polymers, micelles, vesicles, supramolecular nanostructures, and so on. Moreover, these supramolecular assemblies, with varied morphologies and responsiveness towards external stimuli, have immense potential for applications in nanotechnology, materials science, biosensors, drug delivery, analytical chemistry and biomedical sciences. In this perspective, we present a stimulating overview, discussing simple host-guest systems to complex supramolecular assemblies in a systematic manner, aiming to encourage future researchers in this fascinating area of supramolecular chemistry to develop advanced supramolecular materials with superior functionalities, for their deployment in diverse applied areas.
Collapse
Affiliation(s)
- Mhejabeen Sayed
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Haridas Pal
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.,Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| |
Collapse
|
16
|
Shi C, Li H, Shi X, Zhao L, Qiu H. Chiral pillar[n]arenes: Conformation inversion, material preparation and applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Ollerton K, Greenaway RL, Slater AG. Enabling Technology for Supramolecular Chemistry. Front Chem 2021; 9:774987. [PMID: 34869224 PMCID: PMC8634592 DOI: 10.3389/fchem.2021.774987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Supramolecular materials-materials that exploit non-covalent interactions-are increasing in structural complexity, selectivity, function, stability, and scalability, but their use in applications has been comparatively limited. In this Minireview, we summarize the opportunities presented by enabling technology-flow chemistry, high-throughput screening, and automation-to wield greater control over the processes in supramolecular chemistry and accelerate the discovery and use of self-assembled systems. Finally, we give an outlook for how these tools could transform the future of the field.
Collapse
Affiliation(s)
- Katie Ollerton
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca L. Greenaway
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Anna G. Slater
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Abstract
During recent decades, the blossoming of the field of mechanically interlocked molecules (MIMs), i.e., molecules containing mechanical or topological bonds such as rotaxanes, catenanes, and knots, has been reported in the literature. Taking advantage of the rapid development of diverse synthetic strategies, the precise control of both the architectures and topologies of MIMs has become realizable, which thus enables the construction of MIMs with specially desired functions. By mimicking biomolecular machines, a variety of MIM-based artificial molecular machines such as molecular shuttles, molecular muscles, molecular motors, and molecular assemblers have been constructed and operated by relying on the unique interlocked structures and controllable intramolecular movements. Two pioneers in this field, J. Fraser Stoddart and Jean-Pierre Sauvage, were awarded the 2016 Nobel Prize in Chemistry, thereby marking a golden age of MIMs. Along with the burgeoning of MIMs, the engineering of mechanical bonds into macromolecular scaffolds such as polymers or dendrimers has become an attractive topic since the targeted novel mechanically bonded macromolecules would feature interesting processable and mechanical properties, making them excellent candidates for practical applications such as device fabrication or smart materials. In particular, rotaxane dendrimers, attributed to the combination of the advantageous features of both rotaxanes (controllable dynamic motions) and dendrimers (nanoscale highly branched architectures), have evolved as versatile platforms for extensive applications such as gene delivery, light harvesting, and molecular nanoreactors. However, compared with the widely investigated polyrotaxanes and polycatenanes, in-depth investigations on rotaxane dendrimers have rarely been explored mainly because of the synthetic challenge that makes the preparation of diverse rotaxane dendrimers, especially high-generation ones, extremely difficult. During recent years, through the rational design and synthesis of organometallic rotaxane units as key building blocks, the employment of a controllable divergent approach led to the successful synthesis of a variety of rotaxane dendrimers with precise arrangements of rotaxane units as well as stimuli-responsive sites and functional groups. More importantly, on the basis of the synthetic accessibility to diverse rotaxane dendrimers, rotaxane dendrimers have been proven to hold great promise for extensive applications in diverse fields such as light harvesting, photocatalysis, and soft actuators. In this Account, we summarize our expedition in rotaxane dendrimers, including addressing the synthetic challenges, investigating their stimuli-responsive properties, expanding their potential applications, and inventing higher-order daisy chain dendrimers. We believe that this Account will inspire scientists from various disciplines to explore these appealing and versatile higher-order mechanically bonded macromolecules.
Collapse
Affiliation(s)
- Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People’s Republic of China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People’s Republic of China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People’s Republic of China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People’s Republic of China
| |
Collapse
|
19
|
Li ZH, Yang HL, Wei TB, Lin Q. Investigation of the assembly mechanism of N1, N4-di (pyridin-4-yl) terephthalamide with pillar[5]arene: Experiment and quantum chemical study. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Kaizerman-Kane D, Hadar M, Joseph R, Logviniuk D, Zafrani Y, Fridman M, Cohen Y. Design Guidelines for Cationic Pillar[n]arenes that Prevent Biofilm Formation by Gram-Positive Pathogens. ACS Infect Dis 2021; 7:579-585. [PMID: 33657813 PMCID: PMC8041275 DOI: 10.1021/acsinfecdis.0c00662] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Bacterial biofilms are a major threat
to human health, causing
persistent infections that lead to millions of fatalities worldwide
every year. Biofilms also cause billions of dollars of damage annually
by interfering with industrial processes. Recently, cationic pillararenes
were found to be potent inhibitors of biofilm formation in Gram-positive
bacteria. To identify the structural features of pillararenes that
result in antibiofilm activity, we evaluated the activity of 16 cationic
pillar[5]arene derivatives including that of the first cationic water-soluble
pillar[5]arene-based rotaxane. Twelve of the derivatives were potent
inhibitors of biofilm formation by Gram-positive pathogens. Structure
activity analyses of our pillararene derivatives indicated that positively
charged head groups are critical for the observed antibiofilm activity.
Although certain changes in the lipophilicity of the substituents
on the positively charged head groups are tolerated, dramatic elevation
in the hydrophobicity of the substituents or an increase in steric
bulk on these positive charges abolishes the antibiofilm activity.
An increase in the overall positive charge from 10 to 20 did not affect
the activity significantly, but pillararenes with 5 positive charges
and 5 long alkyl chains had reduced activity. Surprisingly, the cavity
of the pillar[n]arene is not essential for the observed activity,
although the macrocyclic structure of the pillar[n]arene core, which
facilitates the clustering of the positive charges, appears important.
Interestingly, the compounds found to be efficient inhibitors of biofilm
formation were nonhemolytic at concentrations that are ∼100-fold
of their MBIC50 (the minimal concentration of a compound
at which at least 50% inhibition of biofilm formation was observed
compared to untreated cells). The structure–activity relationship
guidelines established here pave the way for a rational design of
potent cationic pillar[n]arene-based antibiofilm agents.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Roymon Joseph
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Dana Logviniuk
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74000, Israel
| | - Micha Fridman
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
21
|
A supramolecular complex of hydrazide-pillar[5]arene and bisdemethoxycurcumin with potential anti-cancer activity. Bioorg Chem 2021; 110:104764. [PMID: 33657507 DOI: 10.1016/j.bioorg.2021.104764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/21/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
Pillar[5]arene complexes of the naturally occurring compound bisdemethoxycurcumin (BDMC) were acquired for improving the water solubility and stability of BDMC. As a family member of curcuminoid compounds, BDMC has many interesting therapeutic properties. However, its low aqueous solubility and stability resulted in poor availability and restricted the clinical efficacy. Pillar[5]arenes with hydrophilic ends and a hydrophobic cavity could include with BDMC based on size matching. The synthesized hydrazide-pillar[5]arene (HP5A) and BDMC had a strong host-guest interaction with a 1:1 binding stoichiometry. Furthermore, the HP5A ⊃ BDMC complex could self-assemble into well-defined fibers in water/ethanol solution. This supramolecular complex worked well in vitro for inhibiting the proliferation of hepatoma carcinoma cells HepG2. Remarkably, this method of complexation with pillar[5]arenes visibly reduced the undesirable side effects on normal cells without weakening the anti-cancer activity of the drugs. We expected that the obtained host-guest complex and fibrous assembly would provide a promising platform for delivering drugs with low water solubility.
Collapse
|
22
|
Peng C, Liang W, Ji J, Fan C, Kanagaraj K, Wu W, Cheng G, Su D, Zhong Z, Yang C. Pyrene-tiaraed pillar[5]arene: Strong intramolecular excimer emission applicable for photo-writing. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Yang QY, Zhang YM, Ma XQ, Dong HQ, Zhang YF, Guan WL, Yao H, Wei TB, Lin Q. A pillar[5]arene-based fluorescent sensor for sensitive detection of L-Met through a dual-site collaborative mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118569. [PMID: 32526401 DOI: 10.1016/j.saa.2020.118569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
L-Methionine (L-Met) is one of the essential amino acids in human health, efficiently detect L-Met is a significant issue. Herein, a concept "dual-site collaborative recognition" had been successfully introduced into the design and achieved high selective and sensitive recognition of L-Met. In order to realize the "dual-site collaborative recognition", we rationally designed and synthesized an ester functionalized pillar[5]arene-based fluorescent sensor (SP5). And it shows blue Aggregation-induced emission (AIE) fluorescence. In the SP5, the pillar[5]arene group act as C-H···π interactions site, and ester group serve as multi hydrogen bonding acceptor. Interestingly, the SP5 exhibited high selectivity and sensitivity (2.84 × 10-8 M) towards L-Met based on the collaboration of electron-rich cavernous pillar[5]arene group and ester group through C-H···π and H-bond interactions, respectively. This "dual-site collaborative recognition" mechanism has been investigated by 1H NMR, ESI-MS and theoretical calculation including frontier orbital (HOMO and LUMO), electrostatic potential (ESP) and the noncovalent interaction (NCI). These theoretical calculations not only support the proposed host-guest recognition mechanism, but also provided visualized information on the "dual-site collaborative recognition" mode. Furthermore, the concept "dual-site collaborative recognition" is an effective strategy for easily detecting biological molecules.
Collapse
Affiliation(s)
- Qing-Yu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - You-Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China; Gansu Natural Energy Research Institute, Lanzhou, Gansu 730046, China.
| | - Xiao-Qiang Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Hong-Qiang Dong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yun-Fei Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Wen-Li Guan
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Hong Yao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Tai-Bao Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
24
|
Kiruthika J, Srividhya S, Arunachalam M. Anion-Responsive Pseudo[3]rotaxane from a Difunctionalized Pillar[4]arene[1]quinone and a Bis-Imidazolium Cation. Org Lett 2020; 22:7831-7836. [PMID: 33006282 DOI: 10.1021/acs.orglett.0c02710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Synthesis of a new functionalized pillar[4]arene[1]quinone and its host-guest complexation with a bis-imidazolium dication was demonstrated. 1D/2D NMR spectroscopic analyses and high-resolution mass spectrometric analyses showed the formation of the pseudo[3]rotaxane assembly upon host-guest complexation. 1H NMR titration experiments revealed the role of hydrogen bonding motifs in bringing positive cooperativity by comparing the binding constants for the host-guest complexation of pillar[4]arene[1]quinone with a bis-imidazolium guest. Anion-responsiveness of the pseudo[3]rotaxane assembly was also demonstrated.
Collapse
Affiliation(s)
- Jeyavelraman Kiruthika
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Tamil Nadu, India 624 302
| | - Sankar Srividhya
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Tamil Nadu, India 624 302
| | - Murugan Arunachalam
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Tamil Nadu, India 624 302
| |
Collapse
|
25
|
Lou XY, Yang YW. Pillar[n]arene-Based Supramolecular Switches in Solution and on Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003263. [PMID: 32924206 DOI: 10.1002/adma.202003263] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The design and synthesis of new synthetic macrocycles has driven the rapid development of supramolecular chemistry and materials. Pillar[n]arenes, as a new type of macrocyclic compounds, are used as a promising type of building blocks for switchable supramolecular systems due to their versatile functionalization and the ability of binding toward various guest molecules. A number of guests can form inclusion complexes with pillar[n]arenes and their derivatives in solution, which are sensitive to different external triggers. Interestingly, the pursuit of complex stimuli-responsive functional materials and devices has largely motivated the shift of pillar[n]arene-based switches from solution media to surfaces for controllable macroscopic motions on solid platforms. Facilitated by the facile modification of pillar[n]arenes on various solid supports and the dynamic binding of host-guest complexes, numerous functional hybrid materials with adjustable physical or chemical properties and integrated functionalities have been reported in the last decade. Here, the advance of supramolecular switches in solution and on surfaces based on pillar[n]arenes and derivatives with an emphasis on the efforts and the latest contributions from the field is discussed.
Collapse
Affiliation(s)
- Xin-Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
26
|
Ogoshi T, Kotera D, Fa S, Nishida S, Kakuta T, Yamagishi TA, Brouwer AM. A light-operated pillar[6]arene-based molecular shuttle. Chem Commun (Camb) 2020; 56:10871-10874. [PMID: 32789406 DOI: 10.1039/d0cc03945d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A molecular shuttle comprising a pillar[6]arene macrocyclic ring and an axle with two equal-energy-level stations connected by an azobenzene unit was synthesised. The E isomer of the azobenzene functioned as "open gate", allowing the pillar[6]arene ring to rapidly shuttle back-and-forth between the two stations. Ultraviolet irradiation induced photo-isomerisation of the azobenzene from E to Z form. The Z isomer of the azobenzene functioned as a "closed gate", inhibiting shuttling of the pillar[6]arene ring.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. and WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Daisuke Kotera
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Shungo Nishida
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takahiro Kakuta
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan and Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
27
|
Hadar M, Kaizerman-Kane D, Zafrani Y, Cohen Y. Temperature-Dependent and pH-Responsive Pillar[5]arene-Based Complexes and Hydrogen-Bond-Based Supramolecular Pentagonal Boxes in Water. Chemistry 2020; 26:11250-11255. [PMID: 32259332 DOI: 10.1002/chem.202000972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 01/02/2023]
Abstract
Supramolecular systems in water are of paramount importance and those based on hydrogen bonds are both intriguing and scarce. Here, after studying the peculiar host-guest complexes formed between per-dimethylamino-pillar[5]arene (1) and the bis-sulfonates 2 a-c, we describe the formation of the first hydrogen-bond-based supramolecular pentagonal boxes (SPBs), which are stable in water. These pH-responsive SPBs are constructed from 1 as a body, benzene polycarboxylic acids 3 a,b as lid compounds, and 2 a-c as guests. We demonstrate that encapsulation of 2 a-c in pillar[5]arene 1 and in the highly stable water-soluble SPBs, that is, 1(3 a)2 and 1(3 b)2 , is both temperature and pH dependent and, quite interestingly, depends, on the nature of the lid compounds used for capping the boxes even at high pH. We also highlight the difference in the 1 H NMR characteristics of 2 b and 2 c in the cavity of 1 and the SPBs.
Collapse
Affiliation(s)
- Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yossi Zafrani
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74000, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
28
|
Su H, Chen W, Li L, Li B, Zhang ZY, Li C. Coordination-Driven Poly[2]Pseudorotaxanes in Highly Polar Organic Solvent. Front Chem 2020; 8:579. [PMID: 32850622 PMCID: PMC7406859 DOI: 10.3389/fchem.2020.00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/04/2020] [Indexed: 11/13/2022] Open
Abstract
Self-assembly of polypseudorotaxanes in high-polar organic solvents is difficult due to remarkably weak interactions between macrocycles and axles. Reported here is a novel metal-coordinated poly[2]pseudorotaxane constructed by pillar[5]arene, 1,4-bis(4-pyridyl pyridinium)butane, and [PdCl2(PhCN)2] in highly polar organic solvent of dimethyl sulfoxide (DMSO). Utilizing a combination of 1H NMR, NOESY, DOSY, DLS, SEM, and viscosity measurements, the formation of polypseudorotaxane was shown to be dependent on the concentration of [2]pseudorotaxanes/[PdCl2(PhCN)2] and temperature. Furthermore, a temperature-responsive supramolecular gel with reversibly gel-sol transformation was obtained via spontaneous assembly of the polypseudorotaxanes at high concentrations.
Collapse
Affiliation(s)
- Hang Su
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China.,Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, China
| | - Wei Chen
- Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, China
| | - Liang Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Bin Li
- Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, China
| | - Zhi-Yuan Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Chunju Li
- Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, China.,Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, China
| |
Collapse
|
29
|
Guo H, Ye J, Zhang Z, Wang Y, Yuan X, Ou C, Ding Y, Yan C, Wang J, Yao Y. Pillar[5]arene-Based [2]Rotaxane: Synthesis, Characterization, and Application in a Coupling Reaction. Inorg Chem 2020; 59:11915-11919. [PMID: 32815726 DOI: 10.1021/acs.inorgchem.0c01752] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanically interlocked molecules are a class of smart supramolecular species because of their interesting topological structure and application in various areas, such as biology and nanoscience. In this work, we used "multicomponent reaction" to fabricate a new [2]rotaxane based on pillar[5]arene from different small-sized molecules. The molecular structure of the obtained [2]rotaxane R was confirmed by 1H and 13C NMR, high-resolution electrospray ionization mass spectrometry, two-dimensional nuclear Overhauser effect spectroscopy, and density functional theory studies. Interestingly, the [2]rotaxane-based organometallic cross-linked catalyst (Pd@R) was easily constructed via the coordination between triazole groups and Pd(NO3)2. Pd@R proved to be a good catalyst for the Suzuki-Miyaura coupling reaction with excellent stability and repeatability.
Collapse
Affiliation(s)
- Hao Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, P. R. China.,School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Junmei Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, P. R. China
| | - Zhecheng Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Changjin Ou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Chaoguo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, P. R. China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
30
|
Li Q, Wu Y, Liu Y, Shangguan L, Shi B, Zhu H. Rationally Designed Self-Immolative Rotaxane Sensor Based on Pillar[5]arene for Fluoride Sensing. Org Lett 2020; 22:6662-6666. [DOI: 10.1021/acs.orglett.0c02492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Yitao Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Yuezhou Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Liqing Shangguan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Bingbing Shi
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Huangtianzhi Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| |
Collapse
|
31
|
Saura-Sanmartin A, Martinez-Cuezva A, Bautista D, Marzari MRB, Martins MAP, Alajarin M, Berna J. Copper-Linked Rotaxanes for the Building of Photoresponsive Metal Organic Frameworks with Controlled Cargo Delivery. J Am Chem Soc 2020; 142:13442-13449. [PMID: 32646211 DOI: 10.1021/jacs.0c04477] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have prepared a photoresponsive metal-organic framework by using an amide-based [2]rotaxane as linker and copper(II) ions as metal nodes. The interlocked linker was obtained by the hydrogen bond-directed approach employing a fumaramide thread as template of the macrocyclic component, this latter incorporating two carboxyl groups. Single crystal X-ray diffraction analysis of the metal-organic framework, prepared under solvothermal conditions, showed the formation of stacked 2D rhombohedral grids forming channels decorated with the interlocked alkenyl threads. A series of metal-organic frameworks differing in the E/Z olefin ratio were prepared either by the previous isomerization of the linker or by postirradiation of the reticulated materials. By dynamic solid state 2H NMR measurements, using deuterium-labeled materials, we proved that the geometry of the olefinic axis of the interlocked struts determined the obtention of materials with different independent local dynamics as a result of the strength of the intercomponent noncovalent interactions. Moreover, the usefulness of these novel copper-rotaxane materials as molecular dosing containers has also been assayed by the diffusion and photorelease of p-benzoquinone, evaluated in different solvents and temperatures.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia E-30100, Spain
| | - Alberto Martinez-Cuezva
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia E-30100, Spain
| | - Delia Bautista
- Seccion Universitaria de Instrumentacion Cientifica (SUIC), Area Científica y Tecnica de Investigacion (ACTI), Universidad de Murcia, Murcia E-30100, Spain
| | - Mara R B Marzari
- Nucleo de Quimica de Heterociclos (NUQUIMHE), Departamento de Quimica, Universidad Federal de Santa Maria, Santa Maria-RS 97105-900, Brazil
| | - Marcos A P Martins
- Nucleo de Quimica de Heterociclos (NUQUIMHE), Departamento de Quimica, Universidad Federal de Santa Maria, Santa Maria-RS 97105-900, Brazil
| | - Mateo Alajarin
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia E-30100, Spain
| | - Jose Berna
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia E-30100, Spain
| |
Collapse
|
32
|
An JN, Qu WJ, Zhang QP, Ma XQ, Zhu WB, Zhang YM, Yao H, Lin Q, Wei TB. A pillar[5]arene-based supramolecular polymer network gel and its application in adsorption and removal of organic dye in water. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01000-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Pearce N, Davies ES, Champness NR. per-Alkoxy-pillar[5]arenes as Electron Donors: Electrochemical Properties of Dimethoxy-Pillar[5]arene and Its Corresponding Rotaxane. Molecules 2020; 25:molecules25071627. [PMID: 32252224 PMCID: PMC7180461 DOI: 10.3390/molecules25071627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/13/2023] Open
Abstract
1,4-dimethoxypillar[5]arene undergoes reversible multielectron oxidations forming stable radical cations, a property retained when incorporated in [2]rotaxanes, suggesting that pillar[5]arenes can be employed as viable, yet unreported, electron donors.
Collapse
|
34
|
Padnya P, Gorbachuk V, Stoikov I. The Role of Calix[n]arenes and Pillar[n]arenes in the Design of Silver Nanoparticles: Self-Assembly and Application. Int J Mol Sci 2020; 21:ijms21041425. [PMID: 32093189 PMCID: PMC7073139 DOI: 10.3390/ijms21041425] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
Silver nanoparticles (AgNPs) are an attractive alternative to plasmonic gold nanoparticles. The relative cheapness and redox stability determine the growing interest of researchers in obtaining selective plasmonic and electrochemical (bio)sensors based on silver nanoparticles. The controlled synthesis of metal nanoparticles of a defined morphology is a nontrivial task, important for such fields as biochemistry, catalysis, biosensors and microelectronics. Cyclophanes are well known for their great receptor properties and are of particular interest in the creation of metal nanoparticles due to a variety of cyclophane 3D structures and unique redox abilities. Silver ion-based supramolecular assemblies are attractive due to the possibility of reduction by “soft” reducing agents as well as being accessible precursors for silver nanoparticles of predefined morphology, which are promising for implementation in plasmonic sensors. For this purpose, the chemistry of cyclophanes offers a whole arsenal of approaches: exocyclic ion coordination, association, stabilization of the growth centers of metal nanoparticles, as well as in reduction of silver ions. Thus, this review presents the recent advances in the synthesis and stabilization of Ag (0) nanoparticles based on self-assembly of associates with Ag (I) ions with the participation of bulk platforms of cyclophanes (resorcin[4]arenes, (thia)calix[n]arenes, pillar[n]arenes).
Collapse
Affiliation(s)
- Pavel Padnya
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| | | | - Ivan Stoikov
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| |
Collapse
|
35
|
Santra S, Ghosh P. Fluorophoric [2]rotaxanes: post-synthetic functionalization, conformational fluxionality and metal ion chelation. NEW J CHEM 2020. [DOI: 10.1039/d0nj00353k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorophoric [2]rotaxanes form an exciplex upon interpenetration and the exciplex signals are used to monitor the chelation properties of the interlocked systems.
Collapse
Affiliation(s)
- Saikat Santra
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
- Department of Chemistry
| | - Pradyut Ghosh
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
36
|
Yang K, Zhang Z, Du J, Li W, Pei Z. Host–guest interaction based supramolecular photodynamic therapy systems: a promising candidate in the battle against cancer. Chem Commun (Camb) 2020; 56:5865-5876. [DOI: 10.1039/d0cc02001j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article summarizes recent advances in the development of supramolecular photodynamic therapy based on host–guest interactions.
Collapse
Affiliation(s)
- Kui Yang
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Zhihua Zhang
- Chimie ParisTech
- PSL University
- CNRS
- Institut de Recherche de Chimie Paris
- 75231 Paris
| | - Jie Du
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Wei Li
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
37
|
Tian H, Li R, Lin PH, Meguellati K. Synthesis of a new solvent-responsive pillar[5]arene-based [1]rotaxane molecular machine. NEW J CHEM 2020. [DOI: 10.1039/d0nj01859g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, we designed a new pillar[5]arene-based molecular machine responsive to the polarity of different solvents, which can exist in an interlocked structure in CDCl3 and CD3OD, and can exist in an extended form in DMSO and was studied by 1H and 2D NMR spectroscopy, HR(MS) and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Huasheng Tian
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Runan Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Po-Han Lin
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Kamel Meguellati
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|