1
|
Gori A, Lodigiani G, Colombarolli SG, Bergamaschi G, Vitali A. Cell Penetrating Peptides: Classification, Mechanisms, Methods of Study, and Applications. ChemMedChem 2023; 18:e202300236. [PMID: 37389978 DOI: 10.1002/cmdc.202300236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Cell-penetrating peptides (CPPs) encompass a class of peptides that possess the remarkable ability to cross cell membranes and deliver various types of cargoes, including drugs, nucleic acids, and proteins, into cells. For this reason, CPPs are largely investigated in drug delivery applications in the context of many diseases, such as cancer, diabetes, and genetic disorders. While sharing this functionality and some common structural features, such as a high content of positively charged amino acids, CPPs represent an extremely diverse group of elements, which can differentiate under many aspects. In this review, we summarize the most common characteristics of CPPs, introduce their main distinctive features, mechanistic aspects that drive their function, and outline the most widely used techniques for their structural and functional studies. We highlight current gaps and future perspectives in this field, which have the potential to significantly impact the future field of drug delivery and therapeutics.
Collapse
Affiliation(s)
- Alessandro Gori
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Giulia Lodigiani
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Stella G Colombarolli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| | - Greta Bergamaschi
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Alberto Vitali
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| |
Collapse
|
2
|
Geng J, Wang J, Wang H. Emerging Landscape of Cell-Penetrating Peptide-Mediated Organelle Restoration and Replacement. ACS Pharmacol Transl Sci 2023; 6:229-244. [PMID: 36798470 PMCID: PMC9926530 DOI: 10.1021/acsptsci.2c00229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 01/18/2023]
Abstract
Organelles are specialized subunits within a cell membrane that perform specific roles or functions, and their dysfunction can lead to a variety of pathophysiologies including developmental defects, aging, and diseases (cancer, cardiovascular and neurodegenerative diseases). Recent studies have shown that cell-penetrating peptide (CPP)-based pharmacological therapies delivered to organelles or even directly resulting in organelle replacement can restore cell function and improve or prevent disease. In this review, we summarized the current developments in the precise delivery of exogenous cargoes via CPPs at the organelle level, CPP-mediated organelle delivery, and discuss their feasibility as next-generation targeting strategies for the diagnosis and treatment of diseases at the organelle level.
Collapse
Affiliation(s)
- Jingping Geng
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097Warszawa, Poland
| | - Jing Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| | - Hu Wang
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| |
Collapse
|
3
|
Huang H, Kiick KL. Peptide-based assembled nanostructures that can direct cellular responses. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac92b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Natural originated materials have been well-studied over the past several decades owing to their higher biocompatibility compared to the traditional polymers. Peptides, consisting of amino acids, are among the most popular programable building blocks, which is becoming a growing interest in nanobiotechnology. Structures assembled using those biomimetic peptides allow the exploration of chemical sequences beyond those been routinely used in biology. In this Review, we discussed the most recent experimental discoveries on the peptide-based assembled nanostructures and their potential application at the cellular level such as drug delivery. In particular, we explored the fundamental principles of peptide self-assembly and the most recent development in improving their interactions with biological systems. We believe that as the fundamental knowledge of the peptide assemblies evolves, the more sophisticated and versatile nanostructures can be built, with promising biomedical applications.
Collapse
|
4
|
Cerrato CP, Langel Ü. An update on cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv 2022; 19:133-146. [PMID: 35086398 DOI: 10.1080/17425247.2022.2034784] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Cell-penetrating peptide (CPP) technologies represent an important strategy to address drug delivery to specific intracellular compartments by covalent conjugation to targeting sequences, potentially enabling strategies to combat most diseases. AREAS COVERED This updated review article provides an overview of current intracellular organelle targeting by CPP. The targeting strategies of CPP and CPP/cargo complexes to specific cells or intracellular organelles are summarized, and the review provides an update on the current data for their pharmacological and therapeutical applications. EXPERT OPINION Targeted drug delivery is moving from the level of tissue or specific pathogenic cell to the level of specific organelle that is the target of the drug, an important aspect in drug design and development. Organelle-targeted drug delivery results in improved efficacy, ability to control mode of action, reduction of undesired toxicities and side effects, and possibility to overcome drug resistance mechanisms.
Collapse
Affiliation(s)
| | - Ülo Langel
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
5
|
Yang Y, Li R, Zhang S, Zhang X. A fluorescent nanoprobe based on cell-penetrating peptides and quantum dots for ratiometric monitoring of pH fluctuation in lysosomes. Talanta 2021; 227:122208. [PMID: 33714476 DOI: 10.1016/j.talanta.2021.122208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
A lysosome-targeting ratiometric fluorescent nanoprobe based on cell-penetrating peptides (CPPs) and quantum dots (QDs) has been developed for monitoring pH fluctuation in living cells. The as-prepared nanoprobe is constructed by Rhodamine B labeled R9RGD CPPs as H+ response unit and the red fluorescent QDs as reference unit to achieve ratiometric pH measurement. With the help of RhB-R9RGD CPPs, the nanoprobe efficiently stains lysosomes and enables discernment of lysosomal pH fluctuation in cells treated with different pH buffers and drug stimulation. The method of using dye labeled CPPs to realize functionalization of nanoparticle in one-step reported herein is expected to obtain wider applications in the detection of subcellular active substances by combining different small molecular probes and functional peptides.
Collapse
Affiliation(s)
- Yan Yang
- College of Chemical Engineering, Qinghai University, Xining, 810016, China; Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Rui Li
- College of Chemical Engineering, Qinghai University, Xining, 810016, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Du H, Wang X, Yang Q, Wu W. Quantum dot: Lightning invisible foodborne pathogens. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Hu J, Yao J, Wang J, Pan LY, Qiu JG, Zhang CY. A single quantum dot-based fluorescence resonance energy transfer biosensor for antibody-free detection of ten-eleven translocation 1. Chem Commun (Camb) 2021; 57:3543-3546. [PMID: 33870340 DOI: 10.1039/d1cc01057c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We developed a single quantum dot-based fluorescence resonance energy transfer biosensor for antibody-free detection of ten-eleven translocation 1 (TET1). This biosensor can sensitively detect TET1 in a homogeneous manner without the involvement of any specific antibodies, and it can be used for accurate measurement of TET1 activity in human neuroblastoma cells and the screening of TET1 inhibitors.
Collapse
Affiliation(s)
- Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | | | |
Collapse
|
8
|
Chanda K, MM B. Light emitting probes – approaches for interdisciplinary applications. Chem Soc Rev 2021; 50:3706-3719. [DOI: 10.1039/d0cs01444c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Luminescent probes are key components of sensors to detect numerous bio- and chemical-analytes with high sensitivity and specificity. Sensing is the response of events like self-immolation, FRET, electron/charge transfer, etc. upon interaction.
Collapse
Affiliation(s)
- Kaushik Chanda
- Department of Chemistry
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore 632014
- India
| | - Balamurali MM
- Chemistry Division
- School of Advanced Sciences
- Vellore Institute of Technology
- Chennai 600127
- India
| |
Collapse
|
9
|
Rhodamine hydrazone as a lysosome-targetable pH biomarker for the selective differentiation of cancer cells from normal cells. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Chen B, Wang Y, Ma W, Cheng H, Sun H, Wang H, Huang J, He X, Wang K. A Mimosa-Inspired Cell-Surface-Anchored Ratiometric DNA Nanosensor for High-Resolution and Sensitive Response of Target Tumor Extracellular pH. Anal Chem 2020; 92:15104-15111. [DOI: 10.1021/acs.analchem.0c03250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Biao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yitan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Huanhuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Huizhen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
11
|
Choi DH, Lee D, Jo BS, Park KS, Lee KE, Choi JK, Park YJ, Lee JY, Park YS. A Synthetic Cell-Penetrating Heparin-Binding Peptide Derived from BMP4 with Anti-Inflammatory and Chondrogenic Functions for the Treatment of Arthritis. Int J Mol Sci 2020; 21:ijms21124251. [PMID: 32549254 PMCID: PMC7352680 DOI: 10.3390/ijms21124251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
We report dual therapeutic effects of a synthetic heparin-binding peptide (HBP) corresponding to residues 15–24 of the heparin binding site in BMP4 in a collagen-induced rheumatic arthritis model (CIA) for the first time. The cell penetrating capacity of HBP led to improved cartilage recovery and anti-inflammatory effects via down-regulation of the iNOS-IFNγ-IL6 signaling pathway in inflamed RAW264.7 cells. Both arthritis and paw swelling scores were significantly improved following HBP injection into CIA model mice. Anti-rheumatic effects were accelerated upon combined treatment with Enbrel® and HBP. Serum IFNγ and IL6 concentrations were markedly reduced following intraperitoneal HBP injection in CIA mice. The anti-rheumatic effects of HBP in mice were similar to those of Enbrel®. Furthermore, the combination of Enbrel® and HBP induced similar anti-rheumatic and anti-inflammatory effects as Enbrel®. We further investigated the effect of HBP on damaged chondrocytes in CIA mice. Regenerative capacity of HBP was confirmed based on increased expression of chondrocyte biomarker genes, including aggrecan, collagen type II and TNFα, in adult human knee chondrocytes. These findings collectively support the utility of our cell-permeable bifunctional HBP with anti-inflammatory and chondrogenic properties as a potential source of therapeutic agents for degenerative inflammatory diseases.
Collapse
Affiliation(s)
- Da Hyeon Choi
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea; (D.H.C.); (K.E.L.); (J.K.C.)
| | - Dongwoo Lee
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), School of Dentistry, Seoul National University, Seoul 03080, Korea; (D.L.); (B.S.J.); (Y.J.P.)
| | - Beom Soo Jo
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), School of Dentistry, Seoul National University, Seoul 03080, Korea; (D.L.); (B.S.J.); (Y.J.P.)
| | - Kwang-Sook Park
- Department of Dental Regenerative Bioengineering and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Kyeong Eun Lee
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea; (D.H.C.); (K.E.L.); (J.K.C.)
| | - Ju Kwang Choi
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea; (D.H.C.); (K.E.L.); (J.K.C.)
| | - Yoon Jeong Park
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), School of Dentistry, Seoul National University, Seoul 03080, Korea; (D.L.); (B.S.J.); (Y.J.P.)
- Department of Dental Regenerative Bioengineering and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Jue-Yeon Lee
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), School of Dentistry, Seoul National University, Seoul 03080, Korea; (D.L.); (B.S.J.); (Y.J.P.)
- Correspondence: (J.-Y.L.); (Y.S.P.); Tel.: +82-2-765-1976 (J.-Y.L.); +82-43-261-2303 (Y.S.P.)
| | - Yoon Shin Park
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea; (D.H.C.); (K.E.L.); (J.K.C.)
- Correspondence: (J.-Y.L.); (Y.S.P.); Tel.: +82-2-765-1976 (J.-Y.L.); +82-43-261-2303 (Y.S.P.)
| |
Collapse
|
12
|
Xie J, Bi Y, Zhang H, Dong S, Teng L, Lee RJ, Yang Z. Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Front Pharmacol 2020; 11:697. [PMID: 32508641 PMCID: PMC7251059 DOI: 10.3389/fphar.2020.00697] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are short peptides (fewer than 30 amino acids) that have been predominantly used in basic and preclinical research during the last 30 years. Since they are not only capable of translocating themselves into cells but also facilitate drug or CPP/cargo complexes to translocate across the plasma membrane, they have potential applications in the disease diagnosis and therapy, including cancer, inflammation, central nervous system disorders, otologic and ocular disorders, and diabetes. However, no CPPs or CPP/cargo complexes have been approved by the US Food and Drug Administration (FDA). Many issues should be addressed before translating CPPs into clinics. In this review, we summarize recent developments and innovations in preclinical studies and clinical trials based on using CPP for improved delivery, which have revealed that CPPs or CPP-based delivery systems present outstanding diagnostic therapeutic delivery potential.
Collapse
Affiliation(s)
- Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Ye Bi
- Practice Training Center, Changchun University of Chinese Medicine, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Shiyan Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, United States
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
13
|
Xu MM, Jia TT, Li B, Ma W, Chen X, Zhao X, Zang SQ. Tuning the properties of atomically precise gold nanoclusters for biolabeling and drug delivery. Chem Commun (Camb) 2020; 56:8766-8769. [PMID: 32613976 DOI: 10.1039/d0cc03498c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The fluorescent properties of atomically precise nanoclusters have been regulated by solvent-induced atomic structure transformation and cationic polymer-induced self-assembly for cell imaging and drug delivery.
Collapse
Affiliation(s)
- Man-Man Xu
- Green Catalysis Center and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Tong-Tong Jia
- Green Catalysis Center and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Bingjie Li
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450000
- China
| | - Wang Ma
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450000
- China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| | - Xueli Zhao
- Green Catalysis Center and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shuang-Quan Zang
- Green Catalysis Center and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|