1
|
Xin P, Jiu Z, Shi L, Shu Y, Song Y, Sun Y. Crown-Ether-Based Artificial K + Selective Ionic Filter. Chembiochem 2024:e202400789. [PMID: 39405169 DOI: 10.1002/cbic.202400789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/14/2024] [Indexed: 11/10/2024]
Abstract
In this study, we have successfully synthesized bis (cholesterol-dibenzo-18-crown-6-ether)-pillar[5]arene compound 1 through a click reaction, which could spontaneously insert into lipid bilayers to form ion channel due to the membrane anchor cholesterol group and show significant transport activity of K+ superior to Na+, with a permeability ratio of K+/Na+ equal to 4.58. Compound 1 two crown ether modules act as selective filters similar to natural K+ channel, which are determined to 1 : 2 binding stoichiometry to K+ by Job's plot and NMR titration. This structurally unambiguously unimolecule artificial channel provides ideas for constructing highly K+/Na+ selective molecular filters.
Collapse
Affiliation(s)
- Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Zhihui Jiu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Linlin Shi
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yuqing Shu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yufei Song
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
2
|
Deng S, Li Z, Yuan L, Shen J, Zeng H. Light-Powered Propeller-like Transporter for Boosted Transmembrane Ion Transport. NANO LETTERS 2024; 24:10750-10758. [PMID: 39177063 DOI: 10.1021/acs.nanolett.4c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Membrane-active molecular machines represent a recently emerging, yet important line of expansion in the field of artificial transmembrane transporters. Their hitherto demonstrated limited types (molecular swing, ion fishers, shuttlers, rotors, etc.) certainly call for new inspiring developments. Here, we report a very first motorized ion-transporting carrier-type transporter, i.e., a modularly tunable, light-powered propeller-like transporter derived from Feringa's molecular motor for consistently boosting transmembrane ion transport under continuous UV light irradiation. Based on the EC50 values, the molecular propeller-mediated ion transport activities under UV light irradiation for 300 s are 2.31, 1.74, 2.29, 2.80, and 2.92 times those values obtained without irradiation for Li+, Na+, K+, Rb+, and Cs+ ions, respectively, with EC50 value as low as 0.71 mol % for K+ ion under light irradiation.
Collapse
Affiliation(s)
- Shaowen Deng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, China
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lin Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, China
| | - Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
3
|
Yuan X, Shen J, Zeng H. Artificial transmembrane potassium transporters: designs, functions, mechanisms and applications. Chem Commun (Camb) 2024; 60:482-500. [PMID: 38111319 DOI: 10.1039/d3cc04488b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Potassium channels represent the most prevalent class of ion channels, exerting regulatory control over numerous vital biological processes, including muscle contraction, neurotransmitter release, cell proliferation, and apoptosis. The seamless integration of astonishing functions into a sophisticated structure, as seen in these protein channels, inspires the chemical community to develop artificial versions, gearing toward simplifying their structure while replicating their key functions. In particular, over the past ten years or so, a number of elegant artificial potassium transporters have emerged, demonstrating high selectivity, high transport efficiency or unprecedented transport mechanisms. In this review, we will provide a detailed exposition of these artificial potassium transporters that are derived from a single molecular backbone or self-assembled from multiple components, with their respective structural designs, channel functions, transport mechanisms and biomedical applications thoroughly reviewed.
Collapse
Affiliation(s)
- Xiyu Yuan
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Jie Shen
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| |
Collapse
|
4
|
Vicente-Garcia C, Colomer I. Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry. Nat Rev Chem 2023; 7:710-731. [PMID: 37726383 DOI: 10.1038/s41570-023-00532-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023]
Abstract
Lipopeptides are amphiphilic peptides in which an aliphatic chain is attached to either the C or N terminus of peptides. Their self-assembly - into micelles, vesicles, nanotubes, fibres or nanobelts - leads to applications in nanotechnology, catalysis or medicinal chemistry. Self-organization of lipopeptides is dependent on both the length of the lipid tail and the amino acid sequence, in which the chirality of the peptide sequence can be transmitted into the supramolecular species. This Review describes the use of lipopeptides to design synthetic advanced dynamic supramolecular systems, nanostructured materials or self-responsive delivery systems in the area of medical biotechnology. We examine the influence of external stimuli, the ability of lipopeptide-derived structures to adapt over time and their application as medicinal agents with antibacterial, antifungal, antiviral or anticancer activities. Finally, we discuss the catalytic efficiency of lipopeptides, with the aim of building minimal synthetic enzymes, and recent efforts to incorporate metals into lipopeptide assemblies.
Collapse
Affiliation(s)
| | - Ignacio Colomer
- IMDEA-Nanociencia, Madrid, Spain.
- Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain.
| |
Collapse
|
5
|
Shen J, R D, Li Z, Oh H, Behera H, Joshi H, Kumar M, Aksimentiev A, Zeng H. Sulfur-Containing Foldamer-Based Artificial Lithium Channels. Angew Chem Int Ed Engl 2023; 62:e202305623. [PMID: 37539755 DOI: 10.1002/anie.202305623] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Unlike many other biologically relevant ions (Na+ , K+ , Ca2+ , Cl- , etc) and protons, whose cellular concentrations are closely regulated by highly selective channel proteins, Li+ ion is unusual in that its concentration is well tolerated over many orders of magnitude and that no lithium-specific channel proteins have so far been identified. While one naturally evolved primary pathway for Li+ ions to traverse across the cell membrane is through sodium channels by competing with Na+ ions, highly sought-after artificial lithium-transporting channels remain a major challenge to develop. Here we show that sulfur-containing organic nanotubes derived from intramolecularly H-bonded helically folded aromatic foldamers of 3.6 Å in hollow cavity diameter could facilitate highly selective and efficient transmembrane transport of Li+ ions, with high transport selectivity factors of 15.3 and 19.9 over Na+ and K+ ions, respectively.
Collapse
Affiliation(s)
- Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Deepa R
- Department of BioTechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Hyeonji Oh
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Harekrushna Behera
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Himanshu Joshi
- Department of BioTechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| |
Collapse
|
6
|
Jin L, Sun C, Li Z, Shen J, Zeng H. A K +-selective channel with a record-high K +/Na + selectivity of 20.1. Chem Commun (Camb) 2023; 59:3610-3613. [PMID: 36891811 DOI: 10.1039/d2cc04396c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
For compounds each containing a phenylalanine moiety with its two ends amidated to have a 15-crown-5 unit and an alkyl chain, a simple tuning of the alkyl chain length delivered a K+-selective channel with a record-high K+/Na+ selectivity of 20.1.
Collapse
Affiliation(s)
- Lei Jin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China
| | - Chang Sun
- College of Textile Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jie Shen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Huaqiang Zeng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
7
|
Cholesterol-stabilized membrane-active nanopores with anticancer activities. Nat Commun 2022; 13:5985. [PMID: 36216956 PMCID: PMC9551035 DOI: 10.1038/s41467-022-33639-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Cholesterol-enhanced pore formation is one evolutionary means cholesterol-free bacterial cells utilize to specifically target cholesterol-rich eukaryotic cells, thus escaping the toxicity these membrane-lytic pores might have brought onto themselves. Here, we present a class of artificial cholesterol-dependent nanopores, manifesting nanopore formation sensitivity, up-regulated by cholesterol of up to 50 mol% (relative to the lipid molecules). The high modularity in the amphiphilic molecular backbone enables a facile tuning of pore size and consequently channel activity. Possessing a nano-sized cavity of ~ 1.6 nm in diameter, our most active channel Ch-C1 can transport nanometer-sized molecules as large as 5(6)-carboxyfluorescein and display potent anticancer activity (IC50 = 3.8 µM) toward human hepatocellular carcinomas, with high selectivity index values of 12.5 and >130 against normal human liver and kidney cells, respectively. Bacterial cells utilize cholesterol-enhanced pore formation to specifically target eukaryotic cells. Here, the authors present a class of bio-inspired, cholesterol-enhanced nanopores which display anticancer activities in vitro.
Collapse
|
8
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022; 61:e202200259. [DOI: 10.1002/anie.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
9
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
10
|
Abstract
Both biological and artificial membrane transporters mediate passive transmembrane ion flux predominantly via either channel or carrier mechanisms, tightly regulating the transport of materials entering and exiting the cell. One early elegant example unclassifiable as carriers or channels was reported by Smith who derivatized a phospholipid molecule into an anion transporter, facilitating membrane transport via a two-station relay mechanism (Smith et al. J. Am. Chem. Soc. 2008, 130, 17274-17275). Our journey toward blurring or even breaking the boundaries defined by the carrier and channel mechanisms starts in January of 2018 when seeing a child swinging on the swing at the playground park. Since then, I have been wondering whether we could build a nanoscale-sized molecular swing able to perform the swing function at the molecular level to induce transmembrane ion flux. Such research journey culminates in several membrane-active artificial molecular machines, including molecular swings, ion fishers, ion swimmers, rotors, tetrapuses and dodecapuses that permeabilize the membrane via swinging, ion-fishing, swimming, rotating, or swing-relaying actions, respectively. Except for molecular ion swimmers, these unconventional membrane transporters in their most stable states readily span across the entire membrane in a way akin to channels. With built-in flexible arms that can swing or bend in the dynamic membrane environment, they transport ions via constantly changing ion permeation pathways that are more defined than carriers but less defined than channels. Applying the same benzo-crown ether groups as the sole ion-binding and -transporting units, these transporters however differ immensely in ion transport property. While the maximal K+ transport activity is achieved by the molecular swing also termed "motional channel" that displays an EC50 value of 0.021 mol % relative to lipid and transports K+ ions at rate 27% faster than gramicidin A, the highest K+/Na+ selectivity of 18.3 is attained by the molecular ion fisher, with the highest Na+/K+ selectivity of 13.7 by the molecular dodecapus. Having EC50 values of 0.49-1.60 mol % and K+/Na+ values of 1.1-6.3, molecular rotors and tetrapuses are found to be generally active but weakly to moderately K+-selective. For molecular ion swimmers that contain 10 to 14 carbon atom alkyl linkers, they all turn out to be highly active (EC50 = 0.18-0.41 mol %) and highly selective (RK+/RNa+ = 7.0-9.5) transporters. Of special note are crown ether-appended molecular dodecapuses that establish the C60-fullerene core as an excellent platform to allow for a direct translation of solution binding affinity to transmembrane ion transport selectivity, providing a de novo basis for rationally designing artificial ion transporters with high transport selectivity. Considering remarkable cytotoxic activities displayed by molecular swings and ion swimmers, the varied types of existing and emerging unconventional membrane transporters with enhanced activities and selectivities eventually might lead to medical benefits in the future.
Collapse
Affiliation(s)
- Jie Shen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Changliang Ren
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huaqiang Zeng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| |
Collapse
|
11
|
Zhang H, Li X, Hou J, Jiang L, Wang H. Angstrom-scale ion channels towards single-ion selectivity. Chem Soc Rev 2022; 51:2224-2254. [PMID: 35225300 DOI: 10.1039/d1cs00582k] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Artificial ion channels with ion permeability and selectivity comparable to their biological counterparts are highly desired for efficient separation, biosensing, and energy conversion technologies. In the past two decades, both nanoscale and sub-nanoscale ion channels have been successfully fabricated to mimic biological ion channels. Although nanoscale ion channels have achieved intelligent gating and rectification properties, they cannot realize high ion selectivity, especially single-ion selectivity. Artificial angstrom-sized ion channels with narrow pore sizes <1 nm and well-defined pore structures mimicking biological channels have accomplished high ion conductivity and single-ion selectivity. This review comprehensively summarizes the research progress in the rational design and synthesis of artificial subnanometer-sized ion channels with zero-dimensional to three-dimensional pore structures. Then we discuss cation/anion, mono-/di-valent cation, mono-/di-valent anion, and single-ion selectivities of the synthetic ion channels and highlight their potential applications in high-efficiency ion separation, energy conversion, and biological therapeutics. The gaps of single-ion selectivity between artificial and natural channels and the connections between ion selectivity and permeability of synthetic ion channels are covered. Finally, the challenges that need to be addressed in this research field and the perspective of angstrom-scale ion channels are discussed.
Collapse
Affiliation(s)
- Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Xingya Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
Miao M, Shao X, Cai W. Conformational Change from U- to I-Shape of Ion Transporters Facilitates K + Transport across Lipid Bilayers. J Phys Chem B 2022; 126:1520-1528. [PMID: 35142530 DOI: 10.1021/acs.jpcb.1c09423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated, at the atomic level, the ion-fishing mechanism underlying the ion transport across membranes mediated by an artificial ion transporter composed of a hydroxyl-rich cholesterol group, a flexible alkyl chain, and a crown ether. Our results show that the transporter can spontaneously insert into the membrane and switch between the folded (U-shaped) and extended (I-shaped) conformations. The free-energy profile associated with the conformational transition indicates that compared with the U-shaped conformation of the transporter, the I-shaped one is thermodynamically more favorable. Furthermore, the free-energy profiles describing the ion translocation reveal that the transporter capturing the ion in U-shape on one side of the membrane and releasing it in I-shape on the other side constitutes a key way for the highly efficient transport of K+ ions. We present herewith a rigorous and rational framework to decipher the detailed ion-fishing mechanism of transmembrane ion transport with exceptionally high activity.
Collapse
Affiliation(s)
- Mengyao Miao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Shen J, Han JJY, Ye R, Zeng H. Molecular rotors as a class of generally highly active ion transporters. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1082-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Bickerton LE, Johnson TG, Kerckhoffs A, Langton MJ. Supramolecular chemistry in lipid bilayer membranes. Chem Sci 2021; 12:11252-11274. [PMID: 34567493 PMCID: PMC8409493 DOI: 10.1039/d1sc03545b] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Lipid bilayer membranes form compartments requisite for life. Interfacing supramolecular systems, including receptors, catalysts, signal transducers and ion transporters, enables the function of the membrane to be controlled in artificial and living cellular compartments. In this perspective, we take stock of the current state of the art of this rapidly expanding field, and discuss prospects for the future in both fundamental science and applications in biology and medicine.
Collapse
Affiliation(s)
- Laura E Bickerton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Toby G Johnson
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Aidan Kerckhoffs
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
15
|
Roy A, Shen J, Joshi H, Song W, Tu YM, Chowdhury R, Ye R, Li N, Ren C, Kumar M, Aksimentiev A, Zeng H. Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons. NATURE NANOTECHNOLOGY 2021; 16:911-917. [PMID: 34017100 DOI: 10.1038/s41565-021-00915-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The outstanding capacity of aquaporins (AQPs) for mediating highly selective superfast water transport1-7 has inspired recent development of supramolecular monovalent ion-excluding artificial water channels (AWCs). AWC-based bioinspired membranes are proposed for desalination, water purification and other separation applications8-18. While some recent progress has been made in synthesizing AWCs that approach the water permeability and ion selectivity of AQPs, a hallmark feature of AQPs-high water transport while excluding protons-has not been reproduced. We report a class of biomimetic, helically folded pore-forming polymeric foldamers that can serve as long-sought-after highly selective ultrafast water-conducting channels with performance exceeding those of AQPs (1.1 × 1010 water molecules per second for AQP1), with high water-over-monovalent-ion transport selectivity (~108 water molecules over Cl- ion) conferred by the modularly tunable hydrophobicity of the interior pore surface. The best-performing AWC reported here delivers water transport at an exceptionally high rate, namely, 2.5 times that of AQP1, while concurrently rejecting salts (NaCl and KCl) and even protons.
Collapse
Affiliation(s)
- Arundhati Roy
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore
| | - Jie Shen
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Woochul Song
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yu-Ming Tu
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Ruijuan Ye
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
| | - Ning Li
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore
| | | | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huaqiang Zeng
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China.
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
16
|
Shen J, Ye R, Zeng H. Crystal Packing‐Guided Construction of Hetero‐Oligomeric Peptidic Ensembles as Synthetic 3‐in‐1 Transporters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Shen
- Department of Chemistry College of Science Hainan University Haikou Hainan 570228 China
| | - Ruijuan Ye
- Department of Chemistry College of Science Hainan University Haikou Hainan 570228 China
| | - Huaqiang Zeng
- Department of Chemistry College of Science Hainan University Haikou Hainan 570228 China
| |
Collapse
|
17
|
Maslowska-Jarzyna K, Korczak ML, Chmielewski MJ. Boosting Anion Transport Activity of Diamidocarbazoles by Electron Withdrawing Substituents. Front Chem 2021; 9:690035. [PMID: 34095089 PMCID: PMC8172623 DOI: 10.3389/fchem.2021.690035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Artificial chloride transporters have been intensely investigated in view of their potential medicinal applications. Recently, we have established 1,8-diamidocarbazoles as a versatile platform for the development of active chloride carriers. In the present contribution, we investigate the influence of various electron-withdrawing substituents in positions 3 and 6 of the carbazole core on the chloride transport activity of these anionophores. Using lucigenin assay and large unilamellar vesicles as models, the 3,6-dicyano- and 3,6-dinitro- substituted receptors were found to be highly active and perfectly deliverable chloride transporters, with EC50,270s value as low as 22 nM for the Cl-/NO3 - exchange. Mechanistic studies revealed that diamidocarbazoles form 1:1 complexes with chloride in lipid bilayers and facilitate chloride/nitrate exchange by carrier mechanism. Furthermore, owing to its increased acidity, the 3,6-dinitro- substituted receptor acts as a pH-switchable transporter, with physiologically relevant apparent pKa of 6.4.
Collapse
Affiliation(s)
| | | | - Michał J. Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Shen J, Ye R, Zeng H. Crystal Packing-Guided Construction of Hetero-Oligomeric Peptidic Ensembles as Synthetic 3-in-1 Transporters. Angew Chem Int Ed Engl 2021; 60:12924-12930. [PMID: 33755290 DOI: 10.1002/anie.202101489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Strategies to generate heteromeric peptidic ensembles via a social self-sorting process are limited. Herein, we report a crystal packing-inspired social self-sorting strategy broadly applicable to diverse types of H-bonded peptidic frameworks. Specifically, a crystal structure of H-bonded alkyl chain-appended monopeptides reveals an inter-chain separation distance of 4.8 Å dictated by the H-bonded amide groups, which is larger than 4.1 Å separation distance desired by the tightly packed straight alkyl chains. This incompatibility results in loosely packed alkyl chains, prompting us to investigate and validate the feasibility of applying bulky tert-butyl groups, modified with an anion-binding group, to alternatively interpenetrate the straight alkyl chains, modified with a crown ether group. Structurally, this social self-sorting approach generates highly stable hetero-oligomeric ensembles, having alternated anion- and cation-binding units vertically aligned to the same side. Functionally, these hetero-oligomeric ensembles promote transmembrane transport of cations, anions and more interestingly zwitterionic species such as amino acids.
Collapse
Affiliation(s)
- Jie Shen
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, 570228, China
| | - Ruijuan Ye
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, 570228, China
| | - Huaqiang Zeng
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
19
|
Zhang H, Ye R, Mu Y, Li T, Zeng H. Small Molecule-Based Highly Active and Selective K + Transporters with Potent Anticancer Activities. NANO LETTERS 2021; 21:1384-1391. [PMID: 33464086 DOI: 10.1021/acs.nanolett.0c04134] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report here a novel class of cation transporters with extreme simplicity, opening a whole new dimension of scientific research for finding small molecule-based cation transporters for therapeutic applications. Comprising three modular components (a headgroup, a flexible alkyl chain-derived body, and a crown ether-derived foot for ion binding), these transporters efficiently (EC50 = 0.18-0.41 mol % relative to lipid) and selectively (K+/Na+ selectivity = 7.0-9.5) move K+ ions across the membrane. Importantly, the most active (EC50 = 0.18-0.22 mol %) and highly selective series of transporters A12, B12, and C12 concurrently possess potent anticancer activities with IC50 values as low as 4.35 ± 0.91 and 6.00 ± 0.13 μM toward HeLa and PC3 cells, respectively. Notably, a mere replacement of the 18-crown-6 unit in the structure with 12-crown-4 or 15-crown-5 units completely annihilates the cation-transporting ability.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| | - Ruijuan Ye
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Tianhu Li
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| | - Huaqiang Zeng
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| |
Collapse
|
20
|
Li N, Chen F, Shen J, Zhang H, Wang T, Ye R, Li T, Loh TP, Yang YY, Zeng H. Buckyball-Based Spherical Display of Crown Ethers for De Novo Custom Design of Ion Transport Selectivity. J Am Chem Soc 2020; 142:21082-21090. [PMID: 33274928 DOI: 10.1021/jacs.0c09655] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Searching for membrane-active synthetic analogues that are structurally simple yet functionally comparable to natural channel proteins has been of central research interest in the past four decades, yet custom design of the ion transport selectivity still remains a grand challenge. Here we report on a suite of buckyball-based molecular balls (MBs), enabling transmembrane ion transport selectivity to be custom designable. The modularly tunable MBm-Cn (m = 4-7; n = 6-12) structures consist of a C60-fullerene core, flexible alkyl linkers Cn (i.e., C6 for n-C6H12 group), and peripherally aligned benzo-3m-crown-m ethers (i.e., m = 4 for benzo-12-crown-4) as ion-transporting units. Screening a matrix of 16 such MBs, combinatorially derived from four different crown units and four different Cn linkers, intriguingly revealed that their transport selectivity well resembles the intrinsic ion binding affinity of the respective benzo-crown units present, making custom design of the transport selectivity possible. Specifically, MB4s, containing benzo-12-crown-4 units, all are Li+-selective in transmembrane ion transport, with the most active MB4-C10 exhibiting an EC50(Li+) value of 0.13 μM (corresponding to 0.13 mol % of the lipid present) while excluding all other monovalent alkali-metal ions. Likewise, the most Na+ selective MB5-C8 and K+ selective MB6-C8 demonstrate high Na+/K+ and K+/Na+ selectivity values of 13.7 and 7.8, respectively. For selectivity to Rb+ and Cs+ ions, the most active MB7-C8 displays exceptionally high transport efficiencies, with an EC50(Rb+) value of 105 nM (0.11 mol %) and an EC50(Cs+) value of 77 nM (0.079 mol %).
Collapse
Affiliation(s)
- Ning Li
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Feng Chen
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Jie Shen
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Hao Zhang
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, People's Republic of China
| | - Tianxiang Wang
- School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Ruijuan Ye
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, People's Republic of China
| | - Tianhu Li
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, People's Republic of China
| | - Teck Peng Loh
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, People's Republic of China.,School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #07-01, The Nanos, Singapore 138669
| | - Huaqiang Zeng
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, People's Republic of China
| |
Collapse
|