1
|
Xiang R, Wang X. Advanced Self‐Standing Electrodes for Water Electrolysis: A Mini‐review on Strategies for Further Performance Enhancement. ChemElectroChem 2022. [DOI: 10.1002/celc.202200029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rui Xiang
- Chongqing University of Science and Technology - New Campus: Chongqing University of Science and Technology Chemisty and Chemical Engneering No. 20, East University town road, Shapingba district 401331 Chongqing CHINA
| | - Xingyu Wang
- Chongqing University of Science and Technology - New Campus: Chongqing University of Science and Technology Chemisty and Chemcal Engneering CHINA
| |
Collapse
|
2
|
Chen W, Lan W, Wang H, Zhang A, Liu C. Engineering of sugarcane bagasse based porous carbon nanofiber-supported the CoP/Co2P heterostructure for efficient overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Zhai W, Sakthivel T, Chen F, Du C, Yu H, Dai Z. Amorphous materials for elementary-gas-involved electrocatalysis: an overview. NANOSCALE 2021; 13:19783-19811. [PMID: 34846414 DOI: 10.1039/d1nr06764h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Given the critical demands on energy conversion, storage, and transportation, tremendous interest has been devoted to the field of material development related to energy harvesting, recently. As the only route towards energy utilization, the carriers with the characteristics of low carbon are regarded as the future choice, e.g., hydrogen and ammonia. To this end, electrocatalysis provides a green way to access these substances. However, the unfulfilled conversion efficiency is the bottleneck for practical application. In this review, the promising characteristics of amorphous materials and the amorphous-induced electrocatalytic enhancement (AIEE) were emphasized. In the beginning, the characteristics of amorphous materials are briefly summarized. The basic mechanism of heterogeneous electrocatalytic reactions is illustrated, including the hydrogen/oxygen evolution and oxygen/nitrogen reduction. In the third part, the electrocatalytic performance of amorphous materials is discussed in detail, and the mechanism of AIEE is highlighted. In the last section of this review, the challenges and outlook for the development of amorphous enhanced electrocatalysis are presented.
Collapse
Affiliation(s)
- Wenfang Zhai
- College of Electrical Engineering and Automation, Guilin University of Electronic Technology, Guilin 541000, PR China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| | - Thangavel Sakthivel
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710129, China
| | - Chengfeng Du
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710129, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Hong Yu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710129, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Zhengfei Dai
- College of Electrical Engineering and Automation, Guilin University of Electronic Technology, Guilin 541000, PR China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| |
Collapse
|
4
|
Elakkiya R, Maduraiveeran G. Iron sulphide rice grain nanostructures as potential electrocatalysts for an improved oxygen evolution reaction. NANOSCALE 2021; 13:14837-14846. [PMID: 34533173 DOI: 10.1039/d1nr04138j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Iron based chalcogenides are considered a promising group of electro-active materials for various electrochemical technologies. Herein we demonstrate a facile fabrication of various iron sulphide (FeS) nanostructures, including rice grains (RGS)-, nanoflowers (NFS)- and nanoparticles (NPS)-like surface morphologies via electrochemical, solvothermal and chemical strategies, respectively. The as-developed FeS nanostructures have been employed as electrocatalysts for the oxygen evolution reaction (OER) in an alkaline electrolyte. Among other FeS nanostructures, FeS rice grains (FeS-RGS) exhibited an outstanding OER activity with a low onset potential (∼1.37 V), low overpotential (∼0.20 V), small Tafel slope (∼54.2 mV dec-1), high mass activity (∼5.4 A g-1), and high durability, outperforming the commercial state-of-the-art RuO2 catalyst. The high-performance OER activity of the FeS-RGS is associated not only to the synergistic effect of Fe and S, but also to the direct growth (binder-free) and edges of rice grain structures, offering a large number of electrochemical active sites and ensuring fast-diffusion of OH- ions of the nanostructures. The present one-step, low-cost and highly scalable preparation of FeS-RGS nanostructures provides new possibilities of morphology and synthetic methodology dependence of OER electrocatalysts for effective hydrogen production.
Collapse
Affiliation(s)
- Rajasekaran Elakkiya
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu-603203, India.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu-603203, India.
| |
Collapse
|
5
|
Qian Q, Wang F, Zhang X, Zhao Q. Direct electro-phosphorization of nickel and cobalt films in hypophosphite solution for efficient hydrogen evolution. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Gu W, Pan Z, Tao H, Guo Y, Pu J, Zhong C, Li J, Ye C, Zhou Q. Boron-modulated surface of hollow nickel framework for improved hydrogen evolution. Chem Commun (Camb) 2021; 57:2404-2407. [PMID: 33543740 DOI: 10.1039/d0cc08084e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hollow Ni framework (HNF) is designed and prepared to utilize the exterior and interior surface active sites of a Ni-based binder-free and support-free electrode. Furthermore, the more efficient Ni-B active sites are then in situ introduced on the surface of HNF. This micro/nano structure engineering, together with the surface boron modulation, results in a synergistically enhanced catalytic effect for the HER performance.
Collapse
Affiliation(s)
- Weishi Gu
- Institute of Environmental Health & Green Chemistry, School of Public Health, Nantong University, Jiangsu 226019, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Li SH, Qi MY, Tang ZR, Xu YJ. Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chem Soc Rev 2021; 50:7539-7586. [PMID: 34002737 DOI: 10.1039/d1cs00323b] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal phosphides (MPs) with unique and desirable physicochemical properties provide promising potential in practical applications, such as the catalysis, gas/humidity sensor, environmental remediation, and energy storage fields, especially for transition metal phosphides (TMPs) and MPs consisting of group IIIA and IVA metal elements. Most studies, however, on the synthesis of MP nanomaterials still face intractable challenges, encompassing the need for a more thorough understanding of the growth mechanism, strategies for large-scale synthesis of targeted high-quality MPs, and practical achievement of functional applications. This review aims at providing a comprehensive update on the controllable synthetic strategies for MPs from various metal sources. Additionally, different passivation strategies for engineering the structural and electronic properties of MP nanostructures are scrutinized. Then, we showcase the implementable applications of MP-based materials in emerging sustainable catalytic fields including electrocatalysis, photocatalysis, mild thermocatalysis, and related hybrid systems. Finally, we offer a rational perspective on future opportunities and remaining challenges for the development of MPs in the materials science and sustainable catalysis fields.
Collapse
Affiliation(s)
- Shao-Hai Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
8
|
Wang C, Yang P, Wang B. Effect of Ni ions on thermal condensation kinetics and morphology of g-C3N4 nanosheets and their photo- and electro-chemical activity evolution. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Shankar A, Elakkiya R, Maduraiveeran G. Self-supported fabrication and electrochemical water splitting study of transition-metal sulphide nanostructured electrodes. NEW J CHEM 2020. [DOI: 10.1039/d0nj00192a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal sulphide (TMS) nanostructures exhibit the electrocatalytic OER activity following the order: FeS > CoS > NiS > CuS.
Collapse
Affiliation(s)
- Ayyavu Shankar
- Materials Electrochemistry Laboratory
- Department of Chemistry
- SRM Institute of Science and Technology
- Kattankulathur
- India
| | - Rajasekaran Elakkiya
- Materials Electrochemistry Laboratory
- Department of Chemistry
- SRM Institute of Science and Technology
- Kattankulathur
- India
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory
- Department of Chemistry
- SRM Institute of Science and Technology
- Kattankulathur
- India
| |
Collapse
|