1
|
Xiang H, Wang Y, Xu X, Ruan C, Wang K, Cheng W, Zhou M, Liu X, Yao C. Reversible Interconversion between Ag 2 and Ag 6 Clusters and Their Responsive Optical Properties. J Am Chem Soc 2024. [PMID: 39373653 DOI: 10.1021/jacs.4c11727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The exploration of structural interconversion in clusters triggered by external stimuli has attracted significant interest due to its potential to elucidate structure-property relationships of metal clusters. In this study, two types of silver clusters, Ag2 and Ag6, are synthesized. Interestingly, the clusters exhibit reversible transformations in response to changes in the solvent conditions. The structures and optical properties of these clusters are thoroughly characterized using techniques such as mass spectrometry, single-crystal X-ray diffraction, photoluminescence, and radioluminescence spectroscopy. While both Ag2 and Ag6 display excellent photoluminescence properties, Ag2 demonstrates superior performance in X-ray radioluminescence compared to Ag6. Flexible scintillator films fabricated from Ag2 clusters exhibit outstanding X-ray imaging capabilities, achieving a spatial resolution of 15.0 lp/mm and an impressive detection limit for an X-ray dose of 0.58 μGy s-1. This detection limit is nearly 10 times lower than the typical dose rate used in X-ray diagnostics (5.5 μGy s-1). This work introduces a novel approach for designing thiol-free silver clusters capable of solvent-dependent reversible interconversion, offering new insights into the development of silver clusters for advanced X-ray imaging applications.
Collapse
Affiliation(s)
- Huixin Xiang
- Strait Laboratory of Flexible Electronics, Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanze Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Xinqi Xu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Chenhao Ruan
- Strait Laboratory of Flexible Electronics, Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Kunpeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wanyu Cheng
- Strait Laboratory of Flexible Electronics, Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Chuanhao Yao
- Strait Laboratory of Flexible Electronics, Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
2
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
3
|
Jiang K, Ma A, Li Y, Wang J, Yin Z, Wang S. Understanding the decomposition process of the Pt 1Ag 24(SPhCl 2) 18 nanocluster at the atomic level. RSC Adv 2024; 14:10574-10579. [PMID: 38567326 PMCID: PMC10985538 DOI: 10.1039/d4ra01274g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
We report the decomposition of the Pt1Ag24(SPhCl2)18 nanocluster into a crown-like Pt1Ag4(SR)8 (SR = 2,4-SPhCl2 and 4-SPhBr) complex. UV-vis spectra and single crystal X-ray diffraction were used to track the structure-conversion process. Based on the total structure, the differences in ligand exchange rates at different sites and the effects on the stability were mapped out. This work can not only help us understand the ligand exchange behavior of the clusters, but also provide experimental support for the design of stable metal clusters.
Collapse
Affiliation(s)
- Kefan Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Along Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yuansheng Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Jiawei Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Zhengmao Yin
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
4
|
Zhao J, Ziarati A, Rosspeintner A, Bürgi T. Anchoring of Metal Complexes on Au 25 Nanocluster for Enhanced Photocoupled Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202316649. [PMID: 37988181 DOI: 10.1002/anie.202316649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Atomically precise Au nanoclusters (NCs) with discrete energy levels can be used as photosensitizers for CO2 reduction. However, tight ligand capping of Au NCs hinders CO2 adsorption on its active sites. Here, a new hybrid material is obtained by anchoring of thiol functionalized terpyridine metal complexes (metal=Ru, Ni, Fe, Co) on Au NCs by ligand exchange reactions (LERs). The anchoring of Ru and Ni complexes on Au25 NC (Au25 -Ru and Au25 -Ni) leads to adequate CO2 to CO conversion for photocoupled electrocatalytic CO2 reduction (PECR) in terms of high selectivity, with Faradaic efficiency of CO (FECO ) exceeding 90 % in a wide potential range, remarkable activity (CO production rate up to two times higher than that for pristine Au25 PET18 ) and extremely large turnover frequencies (TOFs, 63012 h-1 at -0.97 V for Au25 -Ru and 69989 h-1 at -1.07 V vs. RHE for Au25 -Ni). Moreover, PECR stability test indicates the excellent long-term stability of the modified NCs in contrast with pristine Au NCs. The present approach offers a novel strategy to enhance PECR activity and selectivity, as well as to improve the stability of Au NCs under light illumination, which paves the way for highly active and stable Au NCs catalysts.
Collapse
Affiliation(s)
- Jiangtao Zhao
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | - Abolfazl Ziarati
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| |
Collapse
|
5
|
Zou X, Kang X, Zhu M. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chem Soc Rev 2023; 52:5892-5967. [PMID: 37577838 DOI: 10.1039/d2cs00876a] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metal nanoclusters serve as an emerging class of modular nanomaterials. The transformation of metal nanoclusters has been fully reflected in their studies from every aspect, including the structural evolution analysis, physicochemical property regulation, and practical application promotion. In this review, we highlight the driving forces for transforming atomically precise metal nanoclusters and summarize the related transforming principles and fundamentals. Several driving forces for transforming nanoclusters are meticulously reviewed herein: ligand-exchange-induced transformations, metal-exchange-induced transformations, intercluster reactions, photochemical transformations, oxidation/reduction-induced transformations, and other factors (intrinsic instability, pH, temperature, and metal salts) triggering transformations. The exploitation of transforming principles to customize the preparations, structures, physicochemical properties, and practical applications of metal nanoclusters is also disclosed. At the end of this review, we provide our perspectives and highlight the challenges remaining for future research on the transformation of metal nanoclusters. Our intended audience is the broader scientific community interested in metal nanoclusters, and we believe that this review will provide researchers with a comprehensive synthetic toolbox and insights on the research fundamentals needed to realize more cluster-based nanomaterials with customized compositions, structures, and properties.
Collapse
Affiliation(s)
- Xuejuan Zou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
6
|
Zhao J, Ziarati A, Rosspeintner A, Wang Y, Bürgi T. Engineering ligand chemistry on Au 25 nanoclusters: from unique ligand addition to precisely controllable ligand exchange. Chem Sci 2023; 14:7665-7674. [PMID: 37476726 PMCID: PMC10355100 DOI: 10.1039/d3sc01177a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
Au25 nanoclusters (NCs) protected by 18 thiol-ligands (Au25SR18, SR is a thiolate ligand) are the prototype of atomically precise thiolate-protected gold NCs. Studies concerning the alteration of the number of surface ligands for a given Au25SR18 NC are scarce. Herein we report the conversion of hydrophobic Au25PET18 (PET = 2-phenylethylthiolate) NCs to Au25SR19 [Au25PET18(metal complex)1] induced by ligand exchange reactions (LERs) with thiolated terpyridine-metal complexes (metal complex, metal = Ru, Fe, Co, Ni) under mild conditions (room temperature and low amounts of incoming ligands). Interestingly, we found that the ligand addition reaction on Au25PET18 NCs is metal dependent. Ru and Co complexes preferentially lead to the formation of Au25SR19 whereas Fe and Ni complexes favor ligand exchange reactions. High-resolution electrospray ionization mass spectrometry (HRESI-MS) was used to determine the molecular formula of Au25SR19 NCs. The photophysical properties of Au25PET18(Ru complex)1 are distinctly different from Au25PET18. The absorption spectrum is drastically changed upon addition of the extra ligand and the photoluminescence quantum yield of Au25PET18(Ru complex)1 is 14 times and 3 times higher than that of pristine Au25PET18 and Au25PET17(Ru complex)1, respectively. Interestingly, only one surface ligand (PET) could be substituted by the metal complex when neutral Au25PET18 was used for ligand exchange whereas two ligands could be exchanged when starting with negatively charged Au25PET18. This charge dependence provides a strategy to precisely control the number of exchanged ligands at the surface of NCs.
Collapse
Affiliation(s)
- Jiangtao Zhao
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Abolfazl Ziarati
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Yanan Wang
- Department of Chemical Engineering, University of Michigan Ann Arbor 2800 MI USA
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| |
Collapse
|
7
|
Yan L, Li P, Zhu Q, Kumar A, Sun K, Tian S, Sun X. Atomically precise electrocatalysts for oxygen reduction reaction. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Pan Y, Han Z, Chen S, Wei K, Wei X. Metallic nanoclusters: From synthetic challenges to applications of their unique properties in food contamination detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Wang Y, Bürgi T. Evidence for stereoelectronic effects in ligand exchange reactions on Au 25 nanoclusters. NANOSCALE 2022; 14:2456-2464. [PMID: 35099491 PMCID: PMC8830761 DOI: 10.1039/d1nr07602g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 06/01/2023]
Abstract
Ligand exchange reaction (LER) is an important post-synthesis strategy and has been studied widely. The mechanism of this dynamic process for gold nanoclusters proved to be associative (SN2). Many factors affect the LER of clusters, including stability, solubility, chirality, electronic properties and so on. Some of these factors are not well understood and need further exploration. Here, we use a chiral fluoro-substituted ligand (R)-5,5',6,6',7,7',8,8'-octafluoro-[1,1'-binaphthalene]-2,2'-dithiol (8F-R-BINAS) to investigate the stereoelectronic and stereospecific effects during LER on achiral Au25 cluster. It is demonstrated that the fluorine-substituted BINAS significantly decreases the LER reactivity both at the molecule and the related cluster level. The stereoelectronic effect is global and can be transmitted to the cluster surface. In contrast, the stereospecific effect is marginal.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland. thomas.buergi@unige
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland. thomas.buergi@unige
| |
Collapse
|
10
|
Zhu Q, Huang X, Zeng Y, Sun K, Zhou L, Liu Y, Luo L, Tian S, Sun X. Controllable synthesis and electrocatalytic applications of atomically precise gold nanoclusters. NANOSCALE ADVANCES 2021; 3:6330-6341. [PMID: 36133485 PMCID: PMC9417523 DOI: 10.1039/d1na00514f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/28/2021] [Indexed: 06/16/2023]
Abstract
Nanoclusters are composed of metal atoms and ligands with sizes up to 2-3 nm. Due to their stability and unique structure, gold nanoclusters with precise atomic numbers have been widely studied. Until now, atomically precise gold nanoclusters have been synthesised by various methods. Common ones include the Brust-Schiffrin method and the size-focusing method. With more detailed research on gold nanoclusters, more novel methods have been adopted to synthesise atomically precise gold nanoclusters, such as anti-galvanic reduction, ligand-exchange reactions from metal nanoclusters, the seed growth method, and so on. Besides, the nanoclusters also have many unique properties in electrochemical catalyses, such as the ORR, OER, etc., which are helpful for the development of the energy and environment. In this review, the synthesis methods and electrochemical applications of atomically accurate gold nanoclusters in recent years are introduced.
Collapse
Affiliation(s)
- Qingyi Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaoxiao Huang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Yunchu Zeng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Kai Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Linlin Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Yuying Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Liang Luo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Shubo Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
11
|
Truttmann V, Pollitt S, Drexler H, Nandan SP, Eder D, Barrabés N, Rupprechter G. Selective ligand exchange synthesis of Au 16(2-PET) 14 from Au 15(SG) 13. J Chem Phys 2021; 155:161102. [PMID: 34717367 DOI: 10.1063/5.0062534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Replacement of protecting ligands of gold nanoclusters by ligand exchange has become an established post-synthetic tool for selectively modifying the nanoclusters' properties. Several Au nanoclusters are known to additionally undergo size transformations upon ligand exchange, enabling access to cluster structures that are difficult to obtain by direct synthesis. This work reports on the selective size transformation of Au15(SG)13 (SG: glutathione) nanoclusters to Au16(2-PET)14 (2-PET: 2-phenylethanethiol) nanoclusters through a two-phase ligand exchange process at room temperature. Among several parameters evaluated, the addition of a large excess of exchange thiol (2-PET) to the organic phase was identified as the key factor for the structure conversion. After exchange, the nature of the clusters was determined by UV-vis, electrospray ionization-time of flight mass spectrometry, attenuated total reflection-Fourier transform infrared, and extended x-ray absorption fine-structure spectroscopy. The obtained Au16(2-PET)14 clusters proved to be exceptionally stable in solution, showing only slightly diminished UV-vis absorption features after 3 days, even when exposed to an excess of thiol ligands.
Collapse
Affiliation(s)
- Vera Truttmann
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC, 1060 Vienna, Austria
| | - Stephan Pollitt
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC, 1060 Vienna, Austria
| | - Hedda Drexler
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC, 1060 Vienna, Austria
| | - Sreejith P Nandan
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC, 1060 Vienna, Austria
| | - Dominik Eder
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC, 1060 Vienna, Austria
| | - Noelia Barrabés
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC, 1060 Vienna, Austria
| | - Günther Rupprechter
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC, 1060 Vienna, Austria
| |
Collapse
|
12
|
Glutathione Disulfide as a Reducing, Capping, and Mass-Separating Agent for the Synthesis and Enrichment of Gold Nanoclusters. NANOMATERIALS 2021; 11:nano11092258. [PMID: 34578574 PMCID: PMC8472339 DOI: 10.3390/nano11092258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/20/2022]
Abstract
Water-soluble nanoclusters, which are facilely enrichable without changes in the original properties, are highly demanded in many disciplines. In this contribution, a new class of gold nanoclusters (AuNCs) was synthesized using glutathione disulfide (GSSG) as a reducing and capping agent under intermittent heating mode. The as-prepared GSSG–AuNCs had a higher quantum yield (4.1%) compared to the conventional glutathione-protected AuNCs (1.8%). Moreover, by simply introducing the GSSG–AuNC solution to acetonitrile at a volume ratio of 1:7, a new bottom phase was formed, in which GSSG–AuNCs could be 400-fold enriched without changes in properties, with a percentage recovery higher than 99%. The enrichment approach did not need additional instruments and was potentially suitable for large-scale enrichment of nanoclusters. Further, density functional theory calculations indicated that the hydrogen bonding between GSSG and acetonitrile plays a key role for the bottom phase formation. Our work suggests that the highly emissive GSSG–AuNCs possess great potential not only in fluorescent measurements but also in other scenarios in which high-concentration AuNCs may be needed, such as catalysis, drug delivery, and electronic and optical industries.
Collapse
|
13
|
Wang Y, Makkonen E, Chen X, Bürgi T. Absolute configuration retention of a configurationally labile ligand during dynamic processes of thiolate protected gold clusters. Chem Sci 2021; 12:9413-9419. [PMID: 34349915 PMCID: PMC8278927 DOI: 10.1039/d1sc01702k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/04/2021] [Indexed: 12/04/2022] Open
Abstract
Monolayer protected metal clusters are dynamic nanoscale objects. For example, the chiral Au38(2-PET)24 cluster (2-PET: 2-phenylethylthiolate) racemizes at moderate temperature. In addition, ligands and metal atoms can easily exchange between clusters. Such processes are important for applications of monolayer protected metal clusters; however, the mechanistic study of such processes turns out to be challenging. Here we use a configurationally labile, axially chiral ligand, biphenyl-2,2'-dithiol (R/S-BiDi), as a probe to study dynamic cluster processes. It is shown that the ligand exchange of free R/S-BiDi on a chiral Au38(2-PET)24 cluster is diastereospecific. Using chiral chromatography, isolated single diastereomers of the type anticlockwise/clockwise-Au38(2-PET)22(R/S-BiDi)1 could be isolated. Upon heating, the cluster framework racemizes, while the R/S-BiDi ligand does not. These findings demonstrate that during cluster racemization and/or ligand exchange between clusters, the R/S-BiDi ligand is sufficiently confined, thus preventing its racemization, and exclude the possibility that the ligand desorbs from the cluster surface.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Esko Makkonen
- Department of Applied Physics, Aalto University Otakaari 1 FI-02150 Espoo Finland
| | - Xi Chen
- Department of Applied Physics, Aalto University Otakaari 1 FI-02150 Espoo Finland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| |
Collapse
|
14
|
Kawawaki T, Ebina A, Hosokawa Y, Ozaki S, Suzuki D, Hossain S, Negishi Y. Thiolate-Protected Metal Nanoclusters: Recent Development in Synthesis, Understanding of Reaction, and Application in Energy and Environmental Field. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005328. [PMID: 33522090 DOI: 10.1002/smll.202005328] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Metal nanoclusters (NCs), which are composed of about 250 or fewer metal atoms, possess great potential as novel functional materials. Fundamental research on metal NCs gradually started in the 1960s, and since 2000, thiolate (SR)-protected metal NCs have been the main metal NCs actively studied. The precise and systematic isolation of SR-protected metal NCs has been achieved in 2005. Since then, research on SR-protected metal NCs for both basic science and practical application has rapidly expanded. This review describes this recent progress in the field of SR-protected metal NCs in three areas: synthesis, understanding, and application. Specifically, the recent study of alloy NCs and connected structures composed of NCs is highlighted in the "synthesis" section, recent knowledge on the reactivity of NCs in solution is highlighted in the "understanding" section, and the applications of NCs in the energy and environmental field are highlighted in the "application" section. This review provides insight on the current state of research on SR-protected metal NCs and discusses the challenges to be overcome for further development in this field as well as the possibilities that these materials can contribute to solving the problems facing modern society.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ayano Ebina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yasunaga Hosokawa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Shuhei Ozaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Daiki Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
15
|
Chai J, Yang S, Chen T, Li Q, Wang S, Zhu M. Chiral Inversion and Conservation of Clusters: A Case Study of Racemic Ag 32Cu 12 Nanocluster. Inorg Chem 2021; 60:9050-9056. [PMID: 34061506 DOI: 10.1021/acs.inorgchem.1c01049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chiral metal nanoclusters have been widely reported, but their separation and optical stabilization remain challenging. We used a deracemization strategy to accomplish the enantioseparation of a racemic mixture of [Ag32Cu12(CH3COO)12(SAdm)12(P(CH3OPh)3)4] (M44) in a yield exceeding 50%, forming two optically active [Ag32Cu12(R/S-Cl(CH3)CHCOO)12(SAdm)12(P(CH3OPh)3)4] (R/S-M44') enantiomers. The optical activity of these products was conserved after exchange of the chiral carboxyl ligands with achiral ligand (Br-), to give two additional optically active nanoclusters R/S-[Ag28Cu16Br12(SAdm)12(P(CH3OPh)3)4] (R/S(Br)-M44). The crystal structures of the above nanoclusters were determined by single-crystal X-ray crystallography. Based on these structures, the chiral transformation and conservation are mapped out.
Collapse
Affiliation(s)
- Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.,Department Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Sha Yang
- Department Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Tao Chen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.,School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.,Department Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
16
|
Wang Y, Bürgi T. Ligand exchange reactions on thiolate-protected gold nanoclusters. NANOSCALE ADVANCES 2021; 3:2710-2727. [PMID: 34046556 PMCID: PMC8130898 DOI: 10.1039/d1na00178g] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/02/2021] [Indexed: 05/08/2023]
Abstract
As a versatile post-synthesis modification method, ligand exchange reaction exhibits great potential to extend the space of accessible nanoclusters. In this review, we summarized this process for thiolate-protected gold nanoclusters. In order to better understand this reaction we will first provide the necessary background on the synthesis and structure of various gold clusters, such as Au25(SR)18, Au38(SR)24, and Au102(SR)44. The previous investigations illustrated that ligand exchange is enabled by the chemical properties and flexible gold-sulfur interface of nanoclusters. It is generally believed that ligand exchange follows a SN2-like mechanism, which is supported both by experiments and calculations. More interesting, several studies show that ligand exchange takes place at preferred sites, i.e. thiolate groups -SR, on the ligand shell of nanoclusters. With the help of ligand exchange reactions many functionalities could be imparted to gold nanoclusters including the introduced of chirality to achiral nanoclusters, size transformation and phase transfer of nanoclusters, and the addition of fluorescence or biological labels. Ligand exchange was also used to amplify the enantiomeric excess of an intrinsically chiral cluster. Ligand exchange reaction accelerates the prosperity of the nanocluster field, and also extends the diversity of precise nanoclusters.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| |
Collapse
|
17
|
Wang J, Wang ZY, Li SJ, Zang SQ, Mak TCW. Carboranealkynyl-Protected Gold Nanoclusters: Size Conversion and UV/Vis-NIR Optical Properties. Angew Chem Int Ed Engl 2021; 60:5959-5964. [PMID: 33314503 DOI: 10.1002/anie.202013027] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/10/2020] [Indexed: 01/02/2023]
Abstract
Structure evolution has become an effective way to assemble novel monolayer-protected metal nanomolecules. However, evolution with alkynyl-stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl-protected gold nanocluster [Au28 (C4 B10 H11 )12 (tht)8 ]3+ (Au28 , tht=tetrahydrothiophene) possessing an open-shell electronic structure with 13 free electrons, which was isolated by a facile self-reduction method with 9-HC≡C-closo-1,2-C2 B10 H11 as the two-in-one reducing and protecting agent. Notably, Au28 undergoes a complete transformation in methanol into a stable and smaller-sized nanocluster [Au23 (C4 B10 H11 )9 (tht)6 ]2+ (Au23 ) bearing 12 valence electrons and crystal-field-like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI-MS and UV/Vis absorption spectra. Au28 and Au23 both display optical absorption covering the UV/Vis-NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields.
Collapse
Affiliation(s)
- Jie Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Thomas C W Mak
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
18
|
Wang J, Wang Z, Li S, Zang S, Mak TCW. Carboranealkynyl‐Protected Gold Nanoclusters: Size Conversion and UV/Vis–NIR Optical Properties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jie Wang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhao‐Yang Wang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Shi‐Jun Li
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Shuang‐Quan Zang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Thomas C. W. Mak
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong SAR China
| |
Collapse
|
19
|
Li T, Li Q, Yang S, Xu L, Chai J, Li P, Zhu M. Surface engineering of linearly fused Au 13 units using diphosphine and Cd doping. Chem Commun (Camb) 2021; 57:4682-4685. [PMID: 33977990 DOI: 10.1039/d1cc00577d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, surface engineering was delicately performed to assemble two new Au-Cd alloy nanoclusters, including [Cd2Au17(S-c-C6H11)12(DPPP)2](BPh4) and Cd2Au29(TBBT)17(DPPF)2. Both the Au13 (in Cd2Au17) and Au25 (in Cd2Au29) cores were covered by two identical Au2Cd(SR)6 motifs and two diphosphine ligands. In addition, their optical properties were explored to give clues on the kernel- and surface-dependent electronic structures.
Collapse
Affiliation(s)
- Tianrong Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Qinzhen Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Sha Yang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Liyun Xu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Jinsong Chai
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Peng Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| |
Collapse
|
20
|
Li Q, Yang S, Chen T, Jin S, Chai J, Zhang H, Zhu M. Structure determination of a metastable Au 22(SAdm) 16 nanocluster and its spontaneous transformation into Au 21(SAdm) 15. NANOSCALE 2020; 12:23694-23699. [PMID: 33226059 DOI: 10.1039/d0nr07124b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is of great interest to investigate the evolution pattern of gold nanoclusters (Au NCs) due to its significance in understanding the growth mechanism and origin of Au NCs. Capture of metastable cluster intermediates is an effective way to meet this demand since they provide valuable information for understanding the conversion pathway of Au NCs. However, it is still challenging to obtain metastable Au NCs, especially thiol-protected Au NCs, and solve their structures. In this work, a metastable thiol-protected gold nanocluster, Au22(SAdm)16 (Au22), was synthesized and its structure was determined by single crystal X-ray diffraction. Au22 shows a close structure-evolution correlation with Au21(SAdm)15 (Au21). The symmetric Au10 kernel of Au21 is twisted by the insertion of an additional Au-SR unit on the motif during its structure evolution into Au22. The distortion in structures results in significantly distinguishing absorption and emission spectra between Au22 and Au21. Noteworthily, the structure correlation between Au22 and Au21 was also found experimentally that Au22 can spontaneously transform into Au21 due to the metastability of Au22 in solution. This size conversion process was monitored by time-dependent UV-vis spectroscopy and ESI-MS. Furthermore, the solvent effect on the size conversion process was also investigated. This transformation from Au22 to Au21 provides a unique platform for studies on the evolution pattern of gold nanoclusters at the single atom level.
Collapse
Affiliation(s)
- Qinzhen Li
- School of Physics and Materials Science, Anhui University, Hefei, Anhui 230601, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Baghdasaryan A, Martin K, Lawson Daku LM, Mastropasqua Talamo M, Avarvari N, Bürgi T. Ligand exchange reactions on the chiral Au 38 cluster: CD modulation caused by the modification of the ligand shell composition. NANOSCALE 2020; 12:18160-18170. [PMID: 32856033 DOI: 10.1039/d0nr03824e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ligand exchange reactions have become a highly versatile post-synthetic strategy to accurately engineer the ligand shell of atomically precise noble metal nanoclusters. Modifying the chemical structure of the exchanging ligand with chromophore substituents or adding chiral centers allow direct functionalization of the cluster with desired properties. As such, post-functionalized gold nanoclusters with unique physicochemical properties find applications in optoelectronics, catalysis and biomedicine. Herein, we successfully carried out ligand exchange reactions between the chiral Au38(2-PET)24 cluster (both racemic and enantiopure forms) and the helically chiral but configurationally labile 2-thio[4]helicene ligand (TH4). The reaction products with a composition of Au38(2-PET)24-x(TH4)x were analyzed using UV-vis spectroscopy and MALDI mass spectrometry. It was found that up to ten 2-PET ligands can be replaced with the helicene ligand on the cluster surface according to MALDI analysis. Consequently, the UV-vis and CD spectra of the cluster have been strongly affected by the ligand exchange reaction. The intensities of the CD signals of Au38(2-PET)24-x(TH4)x were drastically reduced and red shifted with respect to the reference Au38(2-PET)24 cluster. Moreover, the appearance of the other enantiomer in the HPLC chromatogram revealed the partial racemization of the cluster. DFT calculations were performed and they support the experimental observations and show that the observed chiroptical changes in UV-vis and CD spectra are exchange-site dependent. The calculations also demonstrate that charge transfer (CT) transitions occur between the Au38 cluster and the helicene ligand. Thus the ligand is directly involved in these transitions and contributes to the electronic states comprising those transitions.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | - Kévin Martin
- MOLTECH-Anjou, UMR 6200, CNRS, UNIV Angers, 2 bd Lavoisier, 49045 ANGERS Cedex, France
| | - Latévi Max Lawson Daku
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | | - Narcis Avarvari
- MOLTECH-Anjou, UMR 6200, CNRS, UNIV Angers, 2 bd Lavoisier, 49045 ANGERS Cedex, France
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| |
Collapse
|