1
|
Sandelin E, Schilling L, Saha E, Ruiu A, Neutze R, Sundén H, Wallentin CJ. Spatiotemporal Release of Singlet Oxygen in Low Molecular Weight Organo-Gels Upon Thermal or Photochemical External Stimuli. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400827. [PMID: 38660701 DOI: 10.1002/smll.202400827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/12/2024] [Indexed: 04/26/2024]
Abstract
The first example of a material capable of spatiotemporal catch and release of singlet oxygen (1O2) in gel phase is presented. Several low molecular weight organogelators based around an oxotriphenylhexanoate (OTHO) core are developed and optimized with regard to; their gelation properties, and ability of releasing 1O2 upon thermal and/or photochemical external stimuli, in both gel phase and solution. Remarkably, reversible phase transitioning between the gel and solution phase are also demonstrated. Taken together two complementary modes of releasing 1O2, one thermally controlled over time, and one rapid release by means of photochemical stimuli is disclosed. These findings represent the first phase reversible system where function and aggregation properties can be controlled independently, and thus pave the way for novel applications in material sciences as well as in life sciences.
Collapse
Affiliation(s)
- Emil Sandelin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-413 90, Sweden
| | - Leonard Schilling
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, SE-221 00, Sweden
| | - Ekata Saha
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-413 90, Sweden
| | - Andrea Ruiu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-413 90, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-413 90, Sweden
| | - Henrik Sundén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-413 90, Sweden
| | - Carl-Johan Wallentin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-413 90, Sweden
| |
Collapse
|
2
|
Aryal P, Morris J, Adhikari SB, Bietsch J, Wang G. Synthesis and Self-Assembling Properties of Carbohydrate- and Diarylethene-Based Photoswitchable Molecular Gelators. Molecules 2023; 28:6228. [PMID: 37687056 PMCID: PMC10488493 DOI: 10.3390/molecules28176228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Carbohydrate-based low-molecular-weight gelators are interesting new materials with many potential applications. These compounds can be designed to include multiple stimuli-responsive functional groups. In this study, we designed and synthesized several chemically responsive bola-glycolipids and dimeric carbohydrate- and diarylethene-based photoswitchable derivatives. The dimeric glycolipids formed stable gels in a variety of solvent systems. The best performing gelators in this series contained decanedioic and dithienylethene (DTE) spacers, which formed gels in eight and nine of the tested solvents, respectively. The two new DTE-containing esters possessed interesting photoswitching properties and DTE derivative 7 was found to have versatile gelation properties in many solvents, including DMSO solutions at low concentrations. The gels formed by these compounds were stable under acidic conditions and tended to hydrolyze under basic conditions. Several gels were used to absorb rhodamine B and Toluidine blue from aqueous solutions. In this study, we demonstrated the rational design of molecular gelators which incorporated photoresponsive and pH responsive functions, leading to the discovery of multiple effective stimuli-responsive gelators.
Collapse
Affiliation(s)
| | | | | | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Avenue, Norfolk, VA 23529-0126, USA; (P.A.); (J.M.); (S.B.A.); (J.B.)
| |
Collapse
|
3
|
Rajasekar M, Lavanya M. Gel scaffolds and emerging applications in biomedicine. RSC Adv 2022; 12:15925-15949. [PMID: 35733685 PMCID: PMC9134220 DOI: 10.1039/d2ra00924b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/11/2022] [Indexed: 12/30/2022] Open
Abstract
Nowadays, gels are formed by small molecules self-assembling under the influence of various non-covalent interactions. They can be easily perturbed, which allows for the careful tweaking of their properties. They are kinetically confined, and following production, they usually do not demonstrate time-variable changes in material properties. When exposed to external stimuli such as temperature, pH, light, enzymes, redox, and chemical analytes, such materials may become switchable, leading to the reconfiguration of the gel matrix into a different type of network. The transformations allow gel-to-gel transitions, while the changes in the molecular aggregation result in the alteration of the physical and chemical properties of the gel with time. Here, we discuss various methods used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. The dynamic modification of gels allows the construction of an array of gels with various properties from a single material, which eventually extends the limit of application of the gels.
Collapse
Affiliation(s)
- Mani Rajasekar
- Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University) Chennai - 600 119 Tamilnadu India +91-44-24503814 +91-9710230530
| | - Manivannan Lavanya
- Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University) Chennai - 600 119 Tamilnadu India +91-44-24503814 +91-9710230530
| |
Collapse
|
4
|
Otaegui JR, Ruiz-Molina D, Latterini L, Hernando J, Roscini C. Thermoresponsive multicolor-emissive materials based on solid lipid nanoparticles. MATERIALS HORIZONS 2021; 8:3043-3054. [PMID: 34724522 DOI: 10.1039/d1mh01050f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the recent advances in the field of thermofluorochromism, the fabrication of thermoresponsive multicolor-emissive materials in a simple, low-cost and versatile manner still remains a challenge. Herein we accomplish this goal by expanding the concept of matrix-induced thermofluorochromism, where a sudden two-state variation of dyes' emission is promoted by the solid-liquid transition of a surrounding phase change material (e.g., paraffins). We demonstrate that this behavior can be transferred to the nanoscale by the synthesis of dye-loaded solid lipid nanoparticles, different types of which can then be combined into a single platform to obtain multicolor thermofluorochromism using a single type of emitter. Because of the reduced dimensions of these particles, they can be utilized to prepare transparent nanocomposites and inkjet-printed patterns showing complex thermoresponsive luminescence signals and applications ranging from smart displays to thermal sensing and high-security anti-counterfeiting.
Collapse
Affiliation(s)
- Jaume Ramon Otaegui
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain.
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C/n, Campus UAB, Cerdanyola del Vallès 08193, Spain.
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain.
| | - Loredana Latterini
- Department of Chemistry, Biology and Biotechnology, Perugia University, Via Elce di sotto, 8, Perugia 06123, Italy
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C/n, Campus UAB, Cerdanyola del Vallès 08193, Spain.
| | - Claudio Roscini
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain.
| |
Collapse
|
5
|
Zacharias SC, Kamlar M, Sundén H. Exploring Supramolecular Gels in Flow-Type Chemistry—Design and Preparation of Stationary Phases. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Savannah C. Zacharias
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Martin Kamlar
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Henrik Sundén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| |
Collapse
|
6
|
Kamlar M, Henriksson E, Císařová I, Malo M, Sundén H. Synthesis of cis-Oriented Vicinal Diphenylethylenes through a Lewis Acid-Promoted Annulation of Oxotriphenylhexanoates. J Org Chem 2021; 86:8660-8671. [PMID: 34138578 PMCID: PMC8279482 DOI: 10.1021/acs.joc.1c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study explores the synthesis of cyclic cis-vicinal phenyl ethylenes from oxotriphenylhexanoates. The reaction is a BBr3-promoted cyclization of 1,6-ketoesters (1) to five-membered diketo compounds (2). The synthesis is interesting as it constitutes one of the few examples of modular stereoselective synthesis of structures with a cis-oriented vicinal diphenylethylene. The core structure of 2 can be smoothly derivatized, which makes it a promising synthetic building block for further stereoselective synthetic applications.
Collapse
Affiliation(s)
- Martin Kamlar
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Kemivägen 10, 412 96 Gothenburg, Sweden.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Elin Henriksson
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Marcus Malo
- University of Gothenburg, Department of Chemistry and Molecular Biology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Henrik Sundén
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Kemivägen 10, 412 96 Gothenburg, Sweden.,University of Gothenburg, Department of Chemistry and Molecular Biology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
7
|
Panja S, Adams DJ. Stimuli responsive dynamic transformations in supramolecular gels. Chem Soc Rev 2021; 50:5165-5200. [PMID: 33646219 DOI: 10.1039/d0cs01166e] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular gels are formed by the self-assembly of small molecules under the influence of various non-covalent interactions. As the interactions are individually weak and reversible, it is possible to perturb the gels easily, which in turn enables fine tuning of their properties. Synthetic supramolecular gels are kinetically trapped and usually do not show time variable changes in material properties after formation. However, such materials potentially become switchable when exposed to external stimuli like temperature, pH, light, enzyme, redox, and chemical analytes resulting in reconfiguration of gel matrix into a different type of network. Such transformations allow gel-to-gel transitions while the changes in the molecular aggregation result in alteration of physical and chemical properties of the gel with time. Here, we discuss various methods that have been used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. We also describe methods that allow time-dependent autonomous switching of gels into different networks enabling synthesis of next generation functional materials. Dynamic modification of gels allows construction of an array of supramolecular gels with various properties from a single material which eventually extend the limit of applications of the gels. In some cases, gel-to-gel transitions lead to materials that cannot be accessed directly. Finally, we point out the necessity and possibility of further exploration of the field.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
8
|
Zhang Z, Zhou Y, Gao T, Yan P, Zou X, Li H. Diastereoselective self-assembly of a triple-stranded europium helicate with light modulated chiroptical properties. Dalton Trans 2021; 50:4604-4612. [PMID: 33710241 DOI: 10.1039/d1dt00251a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chiroptical photoswitches are of increasing interest for their potential in advanced information technologies. Herein, an achiral bis-β-diketonate ligand (o-L) with a photoresponsive diarylethene moiety as a linker was designed, which co-assembled with Eu3+ ions and R- and S-bis(diphenylphosphoryl)-1,10-binaphthyl (R/S-BINAPO) as chiral ancillaries to form dinuclear triple-stranded helicates, [Eu2(o-L)3(R/S-BINAPO)2]. The helicates in the enantiopure form were confirmed by 1H, 19F, 31P NMR and DOSY NMR analyses. Furthermore, the mirror-image CD and CPL spectra also demonstrate the existence of stable ground- and excited-state chiralities in solution. When exposed to alternate ultraviolet and visible light, the helicates showed reversible color variations from colorless to purple, followed by the presence of light-triggered quadruple optical and chiroptical outputs, named CD, PL, CPL and glum switches. With these light-modulated optical outputs, the possibility for the fabrication of IMPLICATION and INHIBIT logic gates was discussed.
Collapse
Affiliation(s)
- Zhihui Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | | | | | | | | | | |
Collapse
|
9
|
MacDonald TSC, Schmidt TW, Beves JE. An All-Photonic Molecular Amplifier and Binary Flip-flop. J Phys Chem Lett 2021; 12:1236-1243. [PMID: 33493395 DOI: 10.1021/acs.jpclett.0c03497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A chemical system is proposed that is capable of amplifying small optical inputs into large changes in internal composition, based on a feedback interaction between switchable fluorescence and visible-light photoswitching. This system would demonstrate bifurcating reaction kinetics under irradiation and reach one of two stable photostationary states depending on the initial composition of the system. This behavior would allow the system to act as a chemical realization of the flip-flop circuit, the fundamental element in sequential logic and binary memory storage. We use detailed numerical modeling to demonstrate the feasibility of the proposed behavior based on known molecular phenomena and comment on some of the conditions required to realize this system.
Collapse
Affiliation(s)
| | - Timothy W Schmidt
- ARC Centre of Excellence in Exciton Science, School of Chemistry, UNSW, Sydney, NSW 2052, Australia
| | | |
Collapse
|
10
|
Barbosa de Mattos DF, Dreos A, Johnstone MD, Runemark A, Sauvée C, Gray V, Moth-Poulsen K, Sundén H, Abrahamsson M. Covalent incorporation of diphenylanthracene in oxotriphenylhexanoate organogels as a quasi-solid photon upconversion matrix. J Chem Phys 2020; 153:214705. [PMID: 33291902 DOI: 10.1063/5.0029307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Triplet-triplet annihilation photon upconversion (TTA-UC) in solid state assemblies are desirable since they can be easily incorporated into devices such as solar cells, thus utilizing more of the solar spectrum. Realizing this is, however, a significant challenge that must circumvent the need for molecular diffusion, poor exciton migration, and detrimental back energy transfer among other hurdles. Here, we show that the above-mentioned issues can be overcome using the versatile and easily synthesized oxotriphenylhexanoate (OTHO) gelator that allows covalent incorporation of chromophores (or other functional units) at well-defined positions. To study the self-assembly properties as well as its use as a TTA-UC platform, we combine the benchmark couple platinum octaethylporphyrin as a sensitizer and 9,10-diphenylanthracene (DPA) as an annihilator, where DPA is covalently linked to the OTHO gelator at different positions. We show that TTA-UC can be achieved in the chromophore-decorated gels and that the position of attachment affects the photophysical properties as well as triplet energy transfer and triplet-triplet annihilation. This study not only provides proof-of-principle for the covalent approach but also highlights the need for a detailed mechanistic insight into the photophysical processes underpinning solid state TTA-UC.
Collapse
Affiliation(s)
- Deise F Barbosa de Mattos
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ambra Dreos
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mark D Johnstone
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - August Runemark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Claire Sauvée
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Victor Gray
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Henrik Sundén
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Maria Abrahamsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|