1
|
Li QY, Kaur R, Meador WE, Roy JK, Leszczynski J, Delcamp JH. Fused Double Donor Design with a Cross-Conjugated Dibenzosilin for Dye-Sensitized Solar Cells. ACS OMEGA 2023; 8:29234-29246. [PMID: 37599963 PMCID: PMC10433491 DOI: 10.1021/acsomega.3c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Dye-sensitized solar cells (DSCs) can provide a clean energy solution to growing energy demands. In order to have devices of high performance, sensitizers that are able to absorb in the near-infrared region (NIR) are needed. Stronger electron donors are needed for intramolecular charge-transfer sensitizers to access longer wavelength photons. Thus, two novel organic dyes with a cross-conjugated dibenzosilin double donor design are studied herein. The double donor delocalizes multiple filled orbitals across both amine donors due to the fused design that planarizes the donor as observed computationally, which improves intramolecular charge-transfer strength. The dyes are studied via density functional theory (DFT), optical spectroscopy, electrochemistry, and in DSC devices. The studies indicate that the dye design can reduce recombination losses, allowing for improved DSC device performances relative to a single arylamine donor. The reduction in recombination losses is attributed to the six alkyl chains that are incorporated into the donor, which offer good surface protection.
Collapse
Affiliation(s)
- Qing Yun Li
- Department
of Chemistry and Biochemistry, University
of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
| | - Ravinder Kaur
- Department
of Chemistry and Biochemistry, University
of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
| | - William E. Meador
- Department
of Chemistry and Biochemistry, University
of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
| | - Juganta K. Roy
- Interdisciplinary
Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric
Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Jerzy Leszczynski
- Interdisciplinary
Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric
Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Jared H. Delcamp
- Department
of Chemistry and Biochemistry, University
of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, 2230 Tenth Street, Wright-Patterson AFB, Ohio 45433, United States
- UES
Inc., 4401 Dayton-Xenia
Road, Dayton, Ohio 45432, United States
| |
Collapse
|
2
|
Raithel AL, Meador WE, Kim TY, Staples RJ, Delcamp JH, Hamann TW. Molecular Switch Cobalt Redox Shuttle with a Tunable Hexadentate Ligand. J Am Chem Soc 2023; 145:1367-1377. [PMID: 36595559 DOI: 10.1021/jacs.2c12017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Strong-field hexadentate ligands were synthesized and coordinated to cobalt metal centers to result in three new low-spin to low-spin Co(III/II) redox couples. The ligand backbone has been modified with dimethyl amine groups to result in redox potential tuning of the Co(III/II) redox couples from -200 to -430 mV versus Fc+/0. The redox couples surprisingly undergo a reversible molecular switch rearrangement from five-coordinate Co(II) to six-coordinate Co(III) despite the ligands being hexadentate. The complexes exhibit modestly faster electron self-exchange rate constants of 2.2-4.2 M-1 s-1 compared to the high-spin to low-spin redox couple [Co(bpy)3]3+/2+ at 0.27 M-1 s-1, which is attributed to the change in spin state being somewhat offset by this coordination switching behavior. The complexes were utilized as redox shuttles in dye-sensitized solar cells with the near-IR AP25 + D35 dye system and exhibited improved photocurrents over the [Co(bpy)3]3+/2+ redox shuttle (19.8 vs 18.0 mA/cm2). Future directions point toward pairing the low-spin to low-spin Co(II/III) tunable series to dyes with significantly more negative highest occupied molecular orbital potentials that absorb into the near-IR where outer sphere redox shuttles have failed to produce efficient dye regeneration.
Collapse
Affiliation(s)
- Austin L Raithel
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan48823, United States
| | - William E Meador
- Department of Chemistry and Biochemistry, Coulter Hall, University of Mississippi, University, Mississippi38677, United States
| | - Tea-Yon Kim
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan48823, United States
| | - Richard J Staples
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan48823, United States
| | - Jared H Delcamp
- UES, Inc. Research Scientist, Air Force Research Labs, Materials and Manufacturing Directorate, 2230 Tenth Street B655 R198, WPAFB, Ohio45433-7817, United States
| | - Thomas W Hamann
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan48823, United States
| |
Collapse
|
3
|
Jadhav AP, Singh AK, Maibam A, Krishnamurty S, Krishnamoorthy K, Nithyanandhan J. D-A-D-based Unsymmetrical Thiosquaraine Dye for the Dye-Sensitized Solar Cells †. Photochem Photobiol 2022; 99:529-537. [PMID: 36582053 DOI: 10.1111/php.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
In dye-sensitized solar cell, modulating the electronic properties of the sensitizer by varying the donor, π-spacer, acceptor and anchoring groups help optimizing the structure of the dye for better device performance. Here, a donor-acceptor-donor-based unsymmetrical thiosquaraine sensitizer (SQ5S) has been designed and synthesized. Photophysical, electrochemical, theoretical and photovoltaic characterizations of SQ5S dye have been compared with its oxygen analog, SQ5. The incorporation of the sulfur atom in the acceptor unit of SQ5S dye showed an intense peak at 688 nm, which was 38 nm of red-shifted and showed the panchromatic light harvesting response with the onset of 850 nm compared with SQ5 dye. The LUMO and HOMO energy levels are well aligned with the conduction band of TiO2 and the redox potential of electrolyte for the charge injection and the dye-regeneration processes, respectively. Photovoltaic efficiency of 1.51% (VOC 610 mV, JSC 3.07 mA cm-2 , ff 81%) has been achieved for SQ5S dye, whereas SQ5 showed the device performance of 5.43% (VOC 723 mV, JSC 9.3 mA cm-2 , ff 80%). The decreased device performance for the dye SQ5S has been attributed to the favorable intersystem crossing process associated with the photoexcited SQ5S that reduces the driving force for the charge injection process.
Collapse
Affiliation(s)
- Avinash P Jadhav
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory and CSIR-Network of Institutes for Solar Energy, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ambarish Kumar Singh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory and CSIR-Network of Institutes for Solar Energy, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashakiran Maibam
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory and CSIR-Network of Institutes for Solar Energy, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sailaja Krishnamurty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory and CSIR-Network of Institutes for Solar Energy, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kothandam Krishnamoorthy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Polymer Science and Engineering Division, CSIR-National Chemical Laboratory and CSIR-Network of Institutes for Solar Energy, Pune, India
| | - Jayaraj Nithyanandhan
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory and CSIR-Network of Institutes for Solar Energy, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Electronic and photovoltaic properties of triphenylamine-based molecules with D-π-A-A structures. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Muñoz-García AB, Benesperi I, Boschloo G, Concepcion JJ, Delcamp JH, Gibson EA, Meyer GJ, Pavone M, Pettersson H, Hagfeldt A, Freitag M. Dye-sensitized solar cells strike back. Chem Soc Rev 2021; 50:12450-12550. [PMID: 34590638 PMCID: PMC8591630 DOI: 10.1039/d0cs01336f] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Dye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs and dye-sensitized photoelectrochemical cells (DSPECs) have experienced a renaissance as the best technology for several niche applications that take advantage of DSCs' unique combination of properties: at low cost, they are composed of non-toxic materials, are colorful, transparent, and very efficient in low light conditions. This review summarizes the advancements in the field over the last decade, encompassing all aspects of the DSC technology: theoretical studies, characterization techniques, materials, applications as solar cells and as drivers for the synthesis of solar fuels, and commercialization efforts from various companies.
Collapse
Affiliation(s)
- Ana Belén Muñoz-García
- Department of Physics "Ettore Pancini", University of Naples Federico II, 80126 Naples, Italy
| | - Iacopo Benesperi
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| | - Gerrit Boschloo
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
| | - Javier J Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Elizabeth A Gibson
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michele Pavone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Anders Hagfeldt
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
- University Management and Management Council, Vice Chancellor, Uppsala University, Segerstedthuset, 752 37 Uppsala, Sweden
| | - Marina Freitag
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| |
Collapse
|
6
|
Liu J, Luo Y, Li L, Wang G, Wang X, Chen Y, Liu B. Photovoltaic Performance of 4,8-Bis(2'-ethylhexylthiophene)thieno[2,3- f]benzofuran-Based Dyes Fabricated with Different Donors in Dye-Sensitized Solar Cells. ACS OMEGA 2020; 5:12440-12450. [PMID: 32548429 PMCID: PMC7271381 DOI: 10.1021/acsomega.0c01255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Thieno[2,3-f]benzofuran (BDF) has the advantages of a highly planarized structure, strong electron-donating ability, high hole mobility, good conjugation, and a wide spectral response range. In recent years, BDF has been widely used in organic solar cells, especially in bulk-heterojunction (BHJ) organic solar cells. In this work, a model molecule PSB-1 was synthesized based on this highly planar fragment and used as a photosensitizer in dye-sensitized solar cells (DSCs), then different aromatic amine donors such as triphenylamine (TPA), carbazole (CZ), and phenothiazine (PTZ) were introduced to the end of PSB-1, and a series of dyes PSB-2, PSB-3, and PSB-4 were designed and synthesized. After that, the relationship among the molecular structure, energy level, and photovoltaic performance of the benzo-[1,2-b:4,5-b']dithiophene (BDT) dye was studied by theoretical calculations, photophysics, electrochemistry, and photovoltaic properties. The results show that the introduction of a strong donor can effectively improve the energy level, absorption spectrum, and photovoltaic performance of PSB-1. Through the preliminary test, we found that the energy conversion efficiency (photovoltaic conversion efficiency-PCE) of PSB-4 is up to 5.5%, which is nearly 90% higher than that of PSB-1 (PCE = 2.9%), while the introduction of a weak donor greatly weakens the effect, in which the PCE of PSB-3 is 3.5%, which is only 20% higher than that of the model molecule. By an analysis of the molecular frontier orbital distribution using theoretical calculations, we found that the electron cloud of the highest occupied orbital level (highest occupied molecular orbital-HOMO) of PSB-3 is mainly distributed on the BDF group so that the electron transfer of excited-state molecules mainly occurs from the BDF to the receptor (CA).
Collapse
Affiliation(s)
- Jun Liu
- College
of Chemsitry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, P. R. China
- Hunan
Provincial Key Laboratory of Water Treatment Functional Materials, Hunan University of Arts and Science, Changde 415000, P. R. China
- Hunan
Province Engineering Research Center of Electroplating Wastewater
Reuse Technology, Hunan University of Arts
and Science, Changde 415000, P. R. China
| | - Yun Luo
- College
of Chemsitry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, P. R. China
| | - Lang Li
- Nanjing
Foreign Language School, Nanjing 210000, P. R. China
| | - Gang Wang
- College
of Chemsitry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, P. R. China
- Hunan
Provincial Key Laboratory of Water Treatment Functional Materials, Hunan University of Arts and Science, Changde 415000, P. R. China
- Hunan
Province Engineering Research Center of Electroplating Wastewater
Reuse Technology, Hunan University of Arts
and Science, Changde 415000, P. R. China
| | - Xiaobo Wang
- College
of Chemsitry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, P. R. China
- Hunan
Provincial Key Laboratory of Water Treatment Functional Materials, Hunan University of Arts and Science, Changde 415000, P. R. China
- Hunan
Province Engineering Research Center of Electroplating Wastewater
Reuse Technology, Hunan University of Arts
and Science, Changde 415000, P. R. China
| | - Yuandao Chen
- College
of Chemsitry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, P. R. China
- Hunan
Provincial Key Laboratory of Water Treatment Functional Materials, Hunan University of Arts and Science, Changde 415000, P. R. China
- Hunan
Province Engineering Research Center of Electroplating Wastewater
Reuse Technology, Hunan University of Arts
and Science, Changde 415000, P. R. China
| | - Bo Liu
- College
of Chemsitry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, P. R. China
- Hunan
Provincial Key Laboratory of Water Treatment Functional Materials, Hunan University of Arts and Science, Changde 415000, P. R. China
- Hunan
Province Engineering Research Center of Electroplating Wastewater
Reuse Technology, Hunan University of Arts
and Science, Changde 415000, P. R. China
| |
Collapse
|
7
|
Cheema H, Watson J, Shinde PS, Rodrigues RR, Pan S, Delcamp JH. Precious metal-free solar-to-fuel generation: SSM-DSCs powering water splitting with NanoCOT and NiMoZn electrocatalysts. Chem Commun (Camb) 2020; 56:1569-1572. [DOI: 10.1039/c9cc09209a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A precious metal-free sequential series multijunction dye-sensitized solar cell (SSM-DSC)-powered water electrolysis system is demonstrated using NanoCOT and NiMoZn electrodes.
Collapse
Affiliation(s)
| | | | - Pravin S. Shinde
- Department of Chemistry and Biochemistry
- The University of Alabama
- Tuscaloosa
- USA
| | | | - Shanlin Pan
- Department of Chemistry and Biochemistry
- The University of Alabama
- Tuscaloosa
- USA
| | | |
Collapse
|