1
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
2
|
Turro RF, Brandstätter M, Reisman SE. Nickel-Catalyzed Reductive Alkylation of Heteroaryl Imines. Angew Chem Int Ed Engl 2022; 61:e202207597. [PMID: 35791274 PMCID: PMC9474666 DOI: 10.1002/anie.202207597] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 09/20/2023]
Abstract
The preparation of heterobenzylic amines by a Ni-catalyzed reductive cross-coupling between heteroaryl imines and C(sp3 ) electrophiles is reported. This umpolung-type alkylation proceeds under mild conditions, avoids the pre-generation of organometallic reagents, and exhibits good functional group tolerance. Mechanistic studies are consistent with the imine substrate acting as a redox-active ligand upon coordination to a low-valent Ni center. The resulting bis(2-imino)heterocycle⋅Ni complexes can engage in alkylation reactions with a variety of C(sp3 ) electrophiles, giving heterobenzylic amine products in good yields.
Collapse
Affiliation(s)
- Raymond F Turro
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marco Brandstätter
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarah E Reisman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
3
|
Kitamura T, Yamanishi K, Inoue S, Yan Y, Yano N, Kataoka Y, Handa M, Kawamoto T. Clamshell Palladium(II) Complexes: Suitable Precursors for Photocatalytic Hydrogen Production from Water. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Takuma Kitamura
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Katsunori Yamanishi
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Satoshi Inoue
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Yin‐Nan Yan
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Natsumi Yano
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Yusuke Kataoka
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Makoto Handa
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Tatsuya Kawamoto
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| |
Collapse
|
4
|
Turro RF, Brandstätter M, Reisman SE. Nickel‐Catalyzed Reductive Alkylation of Heteroaryl Imines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raymond F. Turro
- California Institute of Technology Chemistry & Chemical Engineering UNITED STATES
| | - Marco Brandstätter
- California Institute of Technology Chemistry & Chemical Engineering UNITED STATES
| | - Sarah E. Reisman
- California Institute of Technology Divisional Chemistry and Chemical Enineering 1200 E California BoulevardMail Code 101-20 91125 Pasadena UNITED STATES
| |
Collapse
|
5
|
Chen L, Xie B, Li T, Lai C, Cao J, Ji R, Liu M, Li W, Zhang D, He J. Heteroleptic nickel complexes bearing O‐methyldithiophosphate and aminodiphosphine monosulfide ligands as robust molecular electrocatalysts for hydrogen evolution. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luo Chen
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Bin Xie
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Tao Li
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Chuan Lai
- School of Chemistry and Chemical Engineering Sichuan University of Arts and Science Dazhou China
| | - Jia‐Xi Cao
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Ren‐Wu Ji
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Meng‐Nan Liu
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Wei Li
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Dong‐Liang Zhang
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Jia‐Yu He
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| |
Collapse
|
6
|
Hirotsu M, Sanou J, Nakae T, Matsunaga T, Kinoshita I. Crystal structures and electrochemical properties of nickel(II) complexes with N, N', N'', S-tetra-dentate Schiff base ligands. Acta Crystallogr E Crystallogr Commun 2022; 78:500-505. [PMID: 35547792 PMCID: PMC9069516 DOI: 10.1107/s2056989022003954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022]
Abstract
The thiol-ate nickel complexes {2-[({2-[(2-amino-ethyl-κN)(meth-yl)amino-κN]eth-yl}imino-κN)meth-yl]benzene-thiol-ato-κS}nickel(II) chloride, [Ni(C12H18N3S)]Cl (1), and [2-({[2-(piperazin-1-yl-κ2 N 1,N 4)eth-yl]imino-κN}meth-yl)benzene-thiol-ato-κS]nickel(II) hexa-fluoro-phosphate di-chloro-methane monosolvate, [Ni(C13H18N3S)]PF6·CH2Cl2 (2), were synthesized by the reactions of 2-(tert-butyl-thio)-benzaldehyde, tri-amines, and nickel(II) salts. Both complexes have a nickel ion surrounded by an N,N',N'',S-tetra-dentate ligand, forming a square-planar geometry. The terminal N,N-chelating moiety is N,N-di-alkyl-ethane-1,2-di-amine for 1 and 1-alkyl-piperazine for 2. The N-Ni-N bite angle in the terminal N,N-chelate ring in 2 [76.05 (10)°] is much smaller than that in 1 [86.16 (6)°]. Cyclic voltammograms of 1 and 2 in aqueous media indicated that the reduction and oxidation potentials of 2 are more positive than those of 1. The smaller bite angle of the terminal piperazine chelate in 2 reduces the electron-donating ability of the tetra-dentate ligand, resulting in a positive shift of the redox potentials. Both complexes exhibit catalytic activity for proton reduction, and the piperazine moiety in 2 is effective in reducing the overpotential.
Collapse
Affiliation(s)
- Masakazu Hirotsu
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
| | - Junhei Sanou
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Toyotaka Nakae
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takumi Matsunaga
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Isamu Kinoshita
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
7
|
Brown J, Ovens J, Richeson D. Elucidating Two Distinct Pathways for Electrocatalytic Hydrogen Production Using Co II Pincer Complexes. CHEMSUSCHEM 2022; 15:e202102542. [PMID: 35041773 DOI: 10.1002/cssc.202102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen gas is a sustainable energy source with water as the sole combustion product. As a result, efforts to catalyze H2 production are pertinent and widespread. The electrocatalytic H2 generating capabilities of two CoII complexes, [Co(κ3 -2,6-{Ph2 PNR}2 (NC5 H3 ))Br2 ] with R=H (I) or R=Me (II), were presented for a variety of proton sources including trifluoroacetic acid (TFA), acetic acid (AA), and trifluoroethanol (TFE). Cyclic voltammetry and controlled potential coulometry demonstrated that electrocatalysis from I and II occurred at two different potentials and are associated with different reduction processes. Density functional theory analysis provided insight into the identities of the catalyst and supported two distinct reaction pathways for electrocatalytic proton reduction. Specifically, stronger acids (e. g., AA, TFA) proceeded at -1.31 to -1.45 V through a MI /MIII pathway while sources with higher pKa values (e. g., TFE, H2 O) generated hydrogen at -2.4 V via M0 /MII ligand-assisted metal-centered reduction.
Collapse
Affiliation(s)
- Josh Brown
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1 N 6 N5, Canada
| | - Jeffrey Ovens
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1 N 6 N5, Canada
| | - Darrin Richeson
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa, ON K1 N 6 N5, Canada
| |
Collapse
|
8
|
Phelan BT, Mara MW, Chen LX. Excited-state structural dynamics of nickel complexes probed by optical and X-ray transient absorption spectroscopies: insights and implications. Chem Commun (Camb) 2021; 57:11904-11921. [PMID: 34695174 DOI: 10.1039/d1cc03875c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Excited states of nickel complexes undergo a variety of photochemical processes, such as charge transfer, ligation/deligation, and redox reactions, relevant to solar energy conversion and photocatalysis. The efficiencies of the aforementioned processes are closely coupled to the molecular structures in the ground and excited states. The conventional optical transient absorption spectroscopy has revealed important excited-state pathways and kinetics, but information regarding the metal center, in particular transient structural and electronic properties, remains limited. These deficiencies are addressed by X-ray transient absorption (XTA) spectroscopy, a detailed probe of 3d orbital occupancy, oxidation state and coordination geometry. The examples of excited-state structural dynamics of nickel porphyrin and nickel phthalocyanine have been described from our previous studies with highlights on the unique structural information obtained by XTA spectroscopy. We close by surveying prospective applications of XTA spectroscopy to active areas of Ni-based photocatalysis based on the knowledge gained from our previous studies.
Collapse
Affiliation(s)
- Brian T Phelan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Michael W Mara
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. .,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. .,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
9
|
Siafarika P, Papanikolaou M, Kabanos T, Kalampounias A. Probing the equilibrium between mono- and di-nuclear nickel(II)-diamidate {[NiII(DQPD)]x, x = 1,2} complexes in chloroform solutions by combining acoustic and vibrational spectroscopies and molecular orbital calculations. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119950] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Guan R, Zhao H, Cao L, Jiang H, Zhang M. Ruthenium/acid co-catalyzed reductive α-phosphinoylation of 1,8-naphthyridines with diarylphosphine oxides. Org Chem Front 2021. [DOI: 10.1039/d0qo01284j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
By an in situ coupling-interrupted transfer hydrogenation strategy, a direct construction of novel α-phosphinoyl 1,2,3,4-tetrahydronaphthyridines via ruthenium/acid co-catalyzed reductive α-phosphinoylation of 1,8-naphthyridines with diarylphosphine oxides is demonstrated.
Collapse
Affiliation(s)
- Rongqing Guan
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Liang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|