1
|
Baykov SV, Semenov AV, Presnukhina SI, Tarasenko MV, Shetnev AA, Frontera A, Boyarskiy VP, Kukushkin VY. Hybrid 2D Supramolecular Organic Frameworks (SOFs) Assembled by the Cooperative Action of Hydrogen and Halogen Bonding and π⋯π Stacking Interactions. Int J Mol Sci 2024; 25:2062. [PMID: 38396739 PMCID: PMC10889172 DOI: 10.3390/ijms25042062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The cis- and trans-isomers of 6-(3-(3,4-dichlorophenyl)-1,2,4-oxadiazol-5-yl)cyclohex-3-ene-1-carboxylic acid (cis-A and trans-A) were obtained by the reaction of 3,4-dichloro-N'-hydroxybenzimidamide and cis-1,2,3,6-tetrahydrophthalic anhydride. Cocrystals of cis-A with appropriate solvents (cis-A‧½(1,2-DCE), cis-A‧½(1,2-DBE), and cis-A‧½C6H14) were grown from 1,2-dichloroethane (1,2-DCE), 1,2-dibromoethane (1,2-DBE), and a n-hexane/CHCl3 mixture and then characterized by X-ray crystallography. In their structures, cis-A is self-assembled to give a hybrid 2D supramolecular organic framework (SOF) formed by the cooperative action of O-H⋯O hydrogen bonding, Cl⋯O halogen bonding, and π⋯π stacking. The self-assembled cis-A divides the space between the 2D SOF layers into infinite hollow tunnels incorporating solvent molecules. The energy contribution of each noncovalent interaction to the occurrence of the 2D SOF was verified by several theoretical approaches, including MEP and combined QTAIM and NCIplot analyses. The consideration of the theoretical data proved that hydrogen bonding (approx. -15.2 kcal/mol) is the most important interaction, followed by π⋯π stacking (approx. -11.1 kcal/mol); meanwhile, the contribution of halogen bonding (approx. -3.6 kcal/mol) is the smallest among these interactions. The structure of the isomeric compound trans-A does not exhibit a 2D SOF architecture. It is assembled by the combined action of hydrogen bonding and π⋯π stacking, without the involvement of halogen bonds. A comparison of the cis-A structures with that of trans-A indicated that halogen bonding, although it has the lowest energy in cis-A-based cocrystals, plays a significant role in the crystal design of the hybrid 2D SOF. The majority of the reported porous halogen-bonded organic frameworks were assembled via iodine and bromine-based contacts, while chlorine-based systems-which, in our case, are structure-directing-were unknown before this study.
Collapse
Affiliation(s)
- Sergey V. Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia; (S.V.B.); (A.V.S.); (S.I.P.); (V.Y.K.)
| | - Artem V. Semenov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia; (S.V.B.); (A.V.S.); (S.I.P.); (V.Y.K.)
| | - Sofia I. Presnukhina
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia; (S.V.B.); (A.V.S.); (S.I.P.); (V.Y.K.)
| | - Marina V. Tarasenko
- Pharmaceutical Technology Transfer Center, Ushinsky Yaroslavl State Pedagogical University, 108 Respublikanskaya St., 150000 Yaroslavl, Russia; (M.V.T.); (A.A.S.)
| | - Anton A. Shetnev
- Pharmaceutical Technology Transfer Center, Ushinsky Yaroslavl State Pedagogical University, 108 Respublikanskaya St., 150000 Yaroslavl, Russia; (M.V.T.); (A.A.S.)
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain;
| | - Vadim P. Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia; (S.V.B.); (A.V.S.); (S.I.P.); (V.Y.K.)
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia; (S.V.B.); (A.V.S.); (S.I.P.); (V.Y.K.)
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russia
| |
Collapse
|
2
|
Maji S, Natarajan R. A Halogen-Bonded Organic Framework (XOF) Emissive Cocrystal for Acid Vapor and Explosive Sensing, and Iodine Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302902. [PMID: 37394720 DOI: 10.1002/smll.202302902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Indexed: 07/04/2023]
Abstract
There is a strong and urgent need for efficient materials that can capture radioactive iodine atoms from nuclear waste. This work presents a novel strategy to develop porous materials for iodine capture by employing halogen bonding, mechanochemistry and crystal engineering. 3D halogen-bonded organic frameworks (XOFs) with guest-accessible permanent pores are exciting targets in crystal engineering for developing functional materials, and this work reports the first example of such a structure. The new-found XOF, namely TIEPE-DABCO, exhibits enhanced emission in the solid state and turn-off emission sensing of acid vapors and explosives like picric acid in nanomolar quantity. TIEPE-DABCO captures iodine from the gas phase (3.23 g g-1 at 75 °C and 1.40 g g-1 at rt), organic solvents (2.1 g g-1 ), and aqueous solutions (1.8 g g-1 in the pH range of 3-8); the latter with fast kinetics. The captured iodine can be retained for more than 7 days without any leaching, but readily released using methanol, when required. TIEPE-DABCO can be recycled for iodine capture several times without any loss of storage capacity. The results presented in this work demonstrate the potential of mechanochemical cocrystal engineering with halogen bonding as an approach to develop porous materials for iodine capture and sensing.
Collapse
Affiliation(s)
- Suman Maji
- Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramalingam Natarajan
- Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Soldatova NS, Postnikov PS, Ivanov DM, Semyonov OV, Kukurina OS, Guselnikova O, Yamauchi Y, Wirth T, Zhdankin VV, Yusubov MS, Gomila RM, Frontera A, Resnati G, Kukushkin VY. Zwitterionic iodonium species afford halogen bond-based porous organic frameworks. Chem Sci 2022; 13:5650-5658. [PMID: 35694330 PMCID: PMC9116302 DOI: 10.1039/d2sc00892k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Porous architectures characterized by parallel channels arranged in honeycomb or rectangular patterns are identified in two polymorphic crystals of a zwitterionic 4-(aryliodonio)-benzenesulfonate. The channels are filled with disordered water molecules which can be reversibly removed on heating. Consistent with the remarkable strength and directionality of the halogen bonds (XBs) driving the crystal packing formation, the porous structure is stable and fully preserved on almost quantitative removal and readsorption of water. The porous systems described here are the first reported cases of one-component 3D organic frameworks whose assembly is driven by XB only (XOFs). These systems are a proof of concept for the ability of zwitterionic aryliodonium tectons in affording robust one-component 3D XOFs. The high directionality and strength of the XBs formed by these zwitterions and the geometrical constraints resulting from the tendency of their hypervalent iodine atoms to act as bidentate XB donors might be key factors in determining this ability.
Collapse
Affiliation(s)
- Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- Department of Solid State Engineering, Institute of Chemical Technology Prague 16628 Czech Republic
| | - Daniil M Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- Institute of Chemistry, Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Oleg V Semyonov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Olga S Kukurina
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Olga Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
| | - Thomas Wirth
- School of Chemistry, Cardiff University Park Place Cardiff UK
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth MN 55812 USA
| | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Rosa M Gomila
- Serveis Científico-Tècnics, Universitat de les Illes Balears Crta. de Valldemossa Km 7.5 07122 Palma de Mallorca Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears Crta. de Valldemossa Km 7.5 07122 Palma de Mallorca Spain
| | - Giuseppe Resnati
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- NFMLab, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta"; Politecnico di Milano via Mancinelli 7 I-20131 Milano Italy
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| |
Collapse
|
4
|
Nieland E, Komisarek D, Hohloch S, Wurst K, Vasylyeva V, Weingart O, Schmidt BM. Supramolecular networks by imine halogen bonding. Chem Commun (Camb) 2022; 58:5233-5236. [PMID: 35388831 DOI: 10.1039/d2cc00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Halogen bonding of neutral donors using imine groups of porous organic cage compounds as acceptors leads to the formation of halogen-bonded frameworks. We report the use of two different imine cages, in combination with three electron-poor halogen bond donors. Four resulting solid-state structures elucidated by single-crystal X-ray analysis are presented and analysed for the first time by plane-wave DFT calculations and QTAIM-analyses of the entire unit cells, demonstrating the formation of halogen bonds within the networks. The supramolecular frameworks can be obtained either from solution or mechanochemically by liquid-assisted grinding.
Collapse
Affiliation(s)
- Esther Nieland
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | - Daniel Komisarek
- Institut für Anorganische Chemie und Strukturchemie I, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Stephan Hohloch
- Institut für Allgemeine, Anorganische und Theoretische Chemie, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Institut für Allgemeine, Anorganische und Theoretische Chemie, Universität Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Vera Vasylyeva
- Institut für Anorganische Chemie und Strukturchemie I, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
5
|
Xue PC, Chen Q, Chen X, Han Y, Liang M. Luminescent organic porous crystals from non-cyclic molecules and their applications. CrystEngComm 2022. [DOI: 10.1039/d1ce01702k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic porous crystals from small and non-cyclic organic molecules can be constructed by various intermolecular weak interactions. Owing to their precise stacking types, intermolecular interaction and pore microstructure, the relationship...
Collapse
|
6
|
Gong G, Lv S, Han J, Xie F, Li Q, Xia N, Zeng W, Chen Y, Wang L, Wang J, Chen S. Halogen‐Bonded Organic Framework (XOF) Based on Iodonium‐Bridged N⋅⋅⋅I
+
⋅⋅⋅N Interactions: A Type of Diphase Periodic Organic Network. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Guanfei Gong
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Siheng Lv
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Jixin Han
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Fei Xie
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 China
| | - Qian Li
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Ning Xia
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Wei Zeng
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Yi Chen
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Lu Wang
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Jike Wang
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Shigui Chen
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| |
Collapse
|
7
|
Gong G, Lv S, Han J, Xie F, Li Q, Xia N, Zeng W, Chen Y, Wang L, Wang J, Chen S. Halogen‐Bonded Organic Framework (XOF) Based on Iodonium‐Bridged N⋅⋅⋅I
+
⋅⋅⋅N Interactions: A Type of Diphase Periodic Organic Network. Angew Chem Int Ed Engl 2021; 60:14831-14835. [DOI: 10.1002/anie.202102448] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/27/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Guanfei Gong
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Siheng Lv
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Jixin Han
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Fei Xie
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 China
| | - Qian Li
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Ning Xia
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Wei Zeng
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Yi Chen
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Lu Wang
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Jike Wang
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| | - Shigui Chen
- The Center for Precision Synthesis The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei 430072 P. R. China
| |
Collapse
|
8
|
Halogen-Bonding-Driven Self-Assembly of Solvates of Tetrabromoterephthalic Acid. CRYSTALS 2021. [DOI: 10.3390/cryst11020198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Halogen bonding is one of the most interesting noncovalent attractions capable of self-assembly and recognition processes in both solution and solid phase. In this contribution, we report on the formation of two solvates of tetrabromoterephthalic acid (H2Br4tp) with acetonitrile (MeCN) and methanol (MeOH) viz. H2Br4tp·2MeCN (1MeCN) and H2Br4tp·2MeOH (2MeOH). The host structures of both 1MeCN and 2MeOH are assembled via the occurrence of simultaneous Br···Br, Br···O, and Br···π halogen bonding interactions, existing between the H2Br4tp molecular tectons. Among them, the cooperative effect of the dominant halogen bond in combination with hydrogen bonding interactions gave rise to different supramolecular assemblies, whereas the strength of the halogen bond depends on the type of hydrogen bond between the molecules of H2Br4tp and the solvents. These materials show a reversible release/resorption of solvent molecules accompanied by evident crystallographic phase transitions.
Collapse
|
9
|
Liang WJ, Wang H, Chen X, Zhang TT, Bai YF, Feng F, Jin WJ. Ternary Cocrystals with Large Soft Cavities: A 1,4-diiodotetrafluorobenzene (DITFB)⋅4-Biphenylpyridine N-oxide (BPNO) Host Assembled by Inclusion of Planar Aromatic Guests. Chempluschem 2021; 86:252-258. [PMID: 33555637 DOI: 10.1002/cplu.202000779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/27/2021] [Indexed: 11/10/2022]
Abstract
A large soft-cavity host composed of 1,4-diiodotetrafluorobenzene (DITFB) and 4-biphenylpyridine N-oxide (BPNO) is assembled under the mediation of a planar aromatic guest molecule (pyrene or perylene) through C-I⋅⋅⋅- O-N+ halogen bonds and π-hole⋅⋅⋅π bonds. Single-crystal X-ray diffraction reveals that guest molecules can be completely encapsulated in the four-layer host cavity to assemble ternary host-guest cocrystals; namely, Pyr@DITFB ⋅ BPNO and Per@DITFB ⋅ BPNO. The luminescence of these ternary cocrystals originates from their discrete guest molecules, which exhibit pure-blue and yellow emissions, respectively, that are localized at 425 nm and in the range of 485 to 578 nm, respectively. In addition, the contribution of different fragments to the stabilization of the crystal structure is estimated by computational chemistry. These cocrystals have significant potential for use in optical applications or materials, such as photonics or organic light-emitting diodes, respectively, that require to avoid the aggregation between luminophores.
Collapse
Affiliation(s)
- Wen Juan Liang
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, 037009, P. R. China
| | - Hui Wang
- College of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004, P. R. China
| | - Xue Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ting Ting Zhang
- College of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, 041004, P. R. China
| | - Yun Feng Bai
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, 037009, P. R. China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, 037009, P. R. China
| | - Wei Jun Jin
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi, 037009, P. R. China.,College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
10
|
Zhou J, Stojanović L, Berezin AA, Battisti T, Gill A, Kariuki BM, Bonifazi D, Crespo-Otero R, Wasielewski MR, Wu YL. Organic room-temperature phosphorescence from halogen-bonded organic frameworks: hidden electronic effects in rigidified chromophores. Chem Sci 2020; 12:767-773. [PMID: 34163810 PMCID: PMC8178982 DOI: 10.1039/d0sc04646a] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/04/2020] [Indexed: 01/11/2023] Open
Abstract
Development of purely organic materials displaying room-temperature phosphorescence (RTP) will expand the toolbox of inorganic phosphors for imaging, sensing or display applications. While molecular solids were found to suppress non-radiative energy dissipation and make the RTP process kinetically favourable, such an effect should be enhanced by the presence of multivalent directional non-covalent interactions. Here we report phosphorescence of a series of fast triplet-forming tetraethyl naphthalene-1,4,5,8-tetracarboxylates. Various numbers of bromo substituents were introduced to modulate intermolecular halogen-bonding interactions. Bright RTP with quantum yields up to 20% was observed when the molecule is surrounded by a Br⋯O halogen-bonded network. Spectroscopic and computational analyses revealed that judicious heavy-atom positioning suppresses non-radiative relaxation and enhances intersystem crossing at the same time. The latter effect was found to be facilitated by the orbital angular momentum change, in addition to the conventional heavy-atom effect. Our results suggest the potential of multivalent non-covalent interactions for excited-state conformation and electronic control.
Collapse
Affiliation(s)
- Jiawang Zhou
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University Evanston Illinois 60208-3113 USA
| | - Ljiljana Stojanović
- School of Biological and Chemical Sciences, Queen Mary University of London London E1 4NS UK
| | | | | | - Abigail Gill
- School of Chemistry, Cardiff University Cardiff CF10 3AT UK
| | | | - Davide Bonifazi
- School of Chemistry, Cardiff University Cardiff CF10 3AT UK
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna Währinger Str. 38 Vienna 1090 Austria
| | - Rachel Crespo-Otero
- School of Biological and Chemical Sciences, Queen Mary University of London London E1 4NS UK
| | - Michael R Wasielewski
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University Evanston Illinois 60208-3113 USA
| | - Yi-Lin Wu
- School of Chemistry, Cardiff University Cardiff CF10 3AT UK
| |
Collapse
|