1
|
Gao Y, Zhang J, Yang W, Dai H, Wang J. Tailoring anisotropic ZnO/wood-structural holocellulose hybrids for dye degradation through nanoinsertion controlled. Int J Biol Macromol 2024:137076. [PMID: 39481713 DOI: 10.1016/j.ijbiomac.2024.137076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Nanostructured inorganic/wood-structural holocellulose hybrids offer new potential applications, including mechanical energy conversion, superhydrophobic materials, gas adsorption and so on. Owing to the anisotropy of wood, controlled the morphology of mineral particles inside porous holocellulose scaffold is still far from satisfactory. In this work, a homogeneous zinc oxide (ZnO) decoration inside wood-structural holocellulose scaffold was presented while the morphology, distribution and content of ZnO micro-nano particles were controllable through changing the conditions of hydrothermal growth. The holocellulose scaffold was prepared through delignification and periodate oxidation, which is favorable for Zn2+ capture and ZnO nuclei form because of the surface charge increased. The controlled ZnO insertion were realized by changing metal salt concentration, temperature and hydrothermal time. The obtained multilayer ZnO could provide multiple light refractions and reflections and enhance the utilization of light. Consequently, with a minor ZnO loading (15 wt%), the ZnO/wood-structural hybrids could totally degraded methyl orange and methyl blue in 6 h. This novel and scalable synthesis method shows potential in both the design and photocatalytic activity of holocellulose hybrids.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Jingxiang Zhang
- Key Laboratory of Mechanics On Disaster and Environment in Western China and the Ministry of Education of China (Lanzhou University), Lanzhou 730000, China; College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Jizeng Wang
- Key Laboratory of Mechanics On Disaster and Environment in Western China and the Ministry of Education of China (Lanzhou University), Lanzhou 730000, China; College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Baminejhad P, Sheikhhosseini E, Yahyazadehfar M. Synthesis of cobalt- ferrite and zinc oxide metal nanoparticles based-bentonite using SDS and their investigation as catalysts in synthesis of benzylbarbiturocoumarins. Front Chem 2024; 12:1434488. [PMID: 39189017 PMCID: PMC11345271 DOI: 10.3389/fchem.2024.1434488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
In this research, a suitable and efficient CoFe2O4@ZnO@Bentonite nano-catalyst was designed and synthesized by using zinc oxide (ZnO) and cobalt ferrite (CoFe2O4) nanoparticles and bentonite by microwave irradiation. Characteristics of the synthesized nanocomposite were investigated by Fourier transform infrared (FT-IR), scanning electron microscope (SEM), energy dispersive X-ray (EDX), transmission electron microscope (TEM), X-ray diffraction (XRD), Bruner- Emmett-Teller (BET) and vibrating sample magnetometer (VSM) techniques. The produced catalyst was effectively employed as a supported solid acid catalyst in mildly agitated three-component reactions involving aromatic aldehydes, 4-hydroxycoumarin, and 1,3-dimethyl-barbituric acid in a single pot to produce benzylbarbiturocoumarins. Starting materials were condensed via three C-C bond formation by CoFe2O4@ZnO@Bentonite as an efficient, recyclable, and environmentally safe nanocatalyst to obtain target products. The advantages of this method include using a natural substrate, small amounts of catalyst, aqueous media, performing reactions at ambient temperature, simple separation and purification of products, and good yields with short reaction times.
Collapse
|
3
|
Fioravanti A, Mazzocchi M, Marani P, Pedrielli F, Carotta MC, Sacerdoti M, Valsania MC, Morandi S. Highly Efficient and Reproducible Sonochemical Synthesis of ZnO Nanocrystals. Chempluschem 2024; 89:e202400005. [PMID: 38462788 DOI: 10.1002/cplu.202400005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Sonochemical synthesis can be a facile, fast, efficient, versatile and economical way to prepare a large variety of conventional or novel nanostructured materials (metallic, magnetic, semiconducting, polymeric, etc.). In this work, zinc oxide nanocrystals were synthesized by irradiating and heating at 90 °C in a commercial ultrasonic bath a water solution of zinc nitrate hexahydrate and ammonia solution or hexamethylenetetramine as base catalysts. The evolution of the powder morphology and its crystalline structure were investigated at different times of ultrasonic irradiation (0-9 hours) and compared with those of samples obtained by only heating the solutions in a muffle furnace in order to enlighten the growth mechanism. It resulted that: i) the crystal morphology depends on the selected base, ii) for samples obtained by using ultrasounds, the homogeneity of the powders depends on the irradiation time, iii) by comparing all samples obtained at 7 hours of heating, the aspect ratio of the crystals is higher for those that also underwent to ultrasounds.
Collapse
Affiliation(s)
- Ambra Fioravanti
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council (CNR), Via Canal Bianco, 28, 44124, Ferrara, Italy
| | - Mauro Mazzocchi
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo, 64, 48018, Faenza, Italy
| | - Pietro Marani
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council (CNR), Via Canal Bianco, 28, 44124, Ferrara, Italy
| | - Francesca Pedrielli
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council (CNR), Via Canal Bianco, 28, 44124, Ferrara, Italy
| | - Maria Cristina Carotta
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council (CNR), Via Canal Bianco, 28, 44124, Ferrara, Italy
| | - Michele Sacerdoti
- Department of Physics and Earth Science, University of Ferrara, Via G. Saragat, 1, 44122, Ferrara, Italy
| | | | - Sara Morandi
- Department of Chemistry, University of Turin, Via P. Giuria, 7, 10125, Turin, Italy
| |
Collapse
|
4
|
Irede EL, Awoyemi RF, Owolabi B, Aworinde OR, Kajola RO, Hazeez A, Raji AA, Ganiyu LO, Onukwuli CO, Onivefu AP, Ifijen IH. Cutting-edge developments in zinc oxide nanoparticles: synthesis and applications for enhanced antimicrobial and UV protection in healthcare solutions. RSC Adv 2024; 14:20992-21034. [PMID: 38962092 PMCID: PMC11220610 DOI: 10.1039/d4ra02452d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
This paper presents a comprehensive review of recent advancements in utilizing zinc oxide nanoparticles (ZnO NPs) to enhance antimicrobial and UV protective properties in healthcare solutions. It delves into the synthesis techniques of ZnO NPs and elucidates their antimicrobial efficacy, exploring the underlying mechanisms governing their action against a spectrum of pathogens. Factors impacting the antimicrobial performance of ZnO NPs, including size, surface characteristics, and environmental variables, are extensively analyzed. Moreover, recent studies showcasing the effectiveness of ZnO NPs against diverse pathogens are critically examined, underscoring their potential utility in combatting microbial infections. The study further investigates the UV protective capabilities of ZnO NPs, elucidating the mechanisms by which they offer UV protection and reviewing recent innovations in leveraging them for UV-blocking applications in healthcare. It also dissects the factors influencing the UV shielding performance of ZnO NPs, such as particle size, dispersion quality, and surface coatings. Additionally, the paper addresses challenges associated with integrating ZnO NPs into healthcare products and presents future perspectives for overcoming these hurdles. It emphasizes the imperative for continued research efforts and collaborative initiatives to fully harness the potential of ZnO NPs in developing advanced healthcare solutions with augmented antimicrobial and UV protective attributes. By advancing our understanding and leveraging innovative approaches, ZnO NPs hold promise for addressing pressing healthcare needs and enhancing patient care outcomes.
Collapse
Affiliation(s)
| | - Raymond Femi Awoyemi
- Department of Chemistry, Mississippi State University Starkville Mississippi MS 39762 USA
| | - Babatunde Owolabi
- Department of Civil Engineering, University of Alabama Tuscaloosa Alabama AL 35487 USA
| | | | - Rofiat Odunayo Kajola
- Department of Biomedical Engineering, University of Rochester 500 Joseph C. Wilson Blvd. Rochester NY 14627 USA
| | - Ajibola Hazeez
- Department of Urban and Regional Planning, University of Lagos Lagos Nigeria
| | - Ayuba Adawale Raji
- Department of Surveying and Geo-Informatics, Bells University of Technology Ota Ogun State Nigeria
| | | | - Chimezie O Onukwuli
- Department of Chemistry, Eastern New Mexico University Portales New Mexico USA
| | - Asishana Paul Onivefu
- Department of Chemistry and Biochemistry, University of Delaware Newark DE 19716 USA
| | - Ikhazuagbe Hilary Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| |
Collapse
|
5
|
Sun P, Lv Z, Sun C. Study on the Synthesis of Nano Zinc Oxide Particles under Supercritical Hydrothermal Conditions. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:844. [PMID: 38786800 PMCID: PMC11123760 DOI: 10.3390/nano14100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
The supercritical hydrothermal synthesis of nanomaterials has gained significant attention due to its straightforward operation and the excellent performance of the resulting products. In this study, the supercritical hydrothermal method was used with Zn(CH3COO)2·2H2O as the precursor and deionized water and ethanol as the solvent. Nano-ZnO was synthesized under different reaction temperatures (300~500 °C), reaction times (5~15 min), reaction pressures (22~30 MPa), precursor concentrations (0.1~0.5 mol/L), and ratios of precursor to organic solvent (C2H5OH) (2:1~1:4). The effects of synthesis conditions on the morphology and size of ZnO were studied. It was found that properly increasing hydrothermal temperature and pressure and extending the hydrothermal time are conducive to the more regular morphology and smaller size of ZnO particles, which is mainly achieved through the change of reaction conditions affecting the hydrothermal reaction rate. Moreover, the addition of ethanol makes the morphology of nano-zno more regular and significantly inhibits the agglomeration phenomenon. In addition to the change in physical properties of the solvent, this may also be related to the chemical bond established between ethanol and ZnO. The results show that the optimum synthesis conditions of ZnO are 450 °C, 26 MPa, 0.3 mol/L, 10 min, and the molar ratio of precursor to ethanol is 1:3.
Collapse
Affiliation(s)
- Panpan Sun
- College of Mechanical & Electrical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (Z.L.); (C.S.)
| | | | | |
Collapse
|
6
|
Sekar K, Doineau R, Mayarambakam S, Schmaltz B, Poulin-Vittrant G. Control of ZnO nanowires growth in flexible perovskite solar cells: A mini-review. Heliyon 2024; 10:e24706. [PMID: 38322830 PMCID: PMC10844130 DOI: 10.1016/j.heliyon.2024.e24706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Due to their excellent properties, Zinc oxide nanowires (ZnO NW) have been attractive and considered as a promising electron-transporting layer (ETL) in flexible Perovskite Solar Cells (FPSCs). Since the first report on ZnO NWs-based FPSCs giving 2.6 % power conversion efficiency (in 2013), great improvements have been made, allowing to reach up to∼15 % nowadays. However, some issues still need to be addressed, especially on flexible substrates, to achieve uniform and well-aligned ZnO NWs via low-cost chemical solution techniques. Several parameters, such as the growing method (time, temperature, precursors concentration), addition of seed layer (thickness, roughness, annealing temperature) and substrate (rigid or flexible), play a crucial role in ZnO NWs properties (i.e., length, diameter, density and aspect ratio). In this review, these parameters allowing to control the properties of ZnO NWs, like the growth techniques, utilization of seed layers and the growing method (time or precursors concentration) have been summarized. Then, a particular focus on the ZnO NW's role in FPSCs as well as the use of these results on the development of ZnO NWs-based FPSCs have been highlighted.
Collapse
Affiliation(s)
- Karthick Sekar
- GREMAN UMR 7347, Université de Tours, CNRS, INSA Centre Val de Loire, 37071 Tours, France
| | - Raphaël Doineau
- GREMAN UMR 7347, Université de Tours, CNRS, INSA Centre Val de Loire, 37071 Tours, France
| | | | - Bruno Schmaltz
- PCM2E EA 6299, Université de Tours, Parc de Grandmont, 37200 Tours, France
| | | |
Collapse
|
7
|
Sasidhar N, Vidya YS, Manjunatha HC, Soundar R, Munirathnam R, Seenappa L, Sridhar KN, Manjunatha S, Krishnakanth E. Progress towards blue emitting MgO-ZnO-Ga 2O 3 nanocomposites synthesized by bio mediated route. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123901. [PMID: 38262295 DOI: 10.1016/j.saa.2024.123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/28/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
MgO-ZnO-Ga2O3 nanocomposites are synthesized by solution combustion method using Aloe Vera gel as a reducing agent to increase the efficiency of blue emission. The appearance of Bragg reflections corresponding to MgO, ZnO and Ga2O3 clearly indicates the formation of nanocomposites. The surface morphology consists irregular shape and sized NPs. The Energy dispersive X-ray analysis confirms the purity of the sample. The band energy gap was tuned to 3.1 eV. The Photoluminescence excitation and emission spectra was discussed and compared it with emission spectra of individual oxides as well as with other reported blue emitted nanophosphors. Further, the chromaticity coordinates and Color correlated temperature coordinates clearly confirms their warm blue emission. Further, the powder dusting method was employed to collect the latent fingerprints on the pores and non-pores surfaces. The synthesized MgO-ZnO-Ga2O3 nanocomposites exhibits well-resolved ridge patterns that can be used to identify latent finger prints with clarity. From all these results, the present synthesized MgO-ZnO-Ga2O3 nanocomposite might find an application in display technology as a blue nanophosphor material and for latent finger print detection in crime investigation.
Collapse
Affiliation(s)
- N Sasidhar
- Department of Physics, Government science college, Chithradurga 577501, Karnataka, India
| | - Y S Vidya
- Department of Physics, Lal Bahadur Shastri Government First Grade College, RT Nagar, Bangalore 560032, Karnataka, India.
| | - H C Manjunatha
- Department of Physics, Government First Grade College, Devanahalli 562110, Karnataka, India.
| | - R Soundar
- Department of Physics, Government First Grade College, Devanahalli 562110, Karnataka, India
| | - R Munirathnam
- Department of Physics, Government First Grade College, Devanahalli 562110, Karnataka, India
| | - L Seenappa
- Department of Physics, Government First Grade College, Mulbagal 563131, Karnataka, India
| | - K N Sridhar
- Department of Physics, Government First Grade College, Malur 563130, Karnataka, India
| | - S Manjunatha
- Department of Chemistry, B.M.S College of Engineering, Bengaluru 560019, Karnataka, India
| | - E Krishnakanth
- Department of Physics, Government First Grade College, Devanahalli 562110, Karnataka, India
| |
Collapse
|
8
|
Li Y, Xue Y, Wang J, Zhang D, Zhao Y, Liu JJ. Antibacterial Hydrophilic ZnO Microstructure Film with Underwater Oleophobic and Self-Cleaning Antifouling Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:150. [PMID: 38251115 PMCID: PMC10820557 DOI: 10.3390/nano14020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Super-hydrophilic and oleophobic functional materials can prevent pollution or adsorption by repelling oil, and have good circulation. However, traditional strategies for preparing these functional materials either use expensive fabrication machines or contain possibly toxic organic polymers, which may prohibit the practical application. The research of multifunctional ZnO microstructures or nanoarrays thin films with super-hydrophilic, antifouling, and antibacterial properties has not been reported yet. Moreover, the exploration of underwater oleophobic and self-cleaning antifouling properties in ZnO micro/nanostructures is still in its infancy. Here, we prepared ZnO microstructured films on fluorine-doped tin oxide substrates (F-ZMF) for the development of advanced self-cleaning type super-hydrophilic and oleophobic materials. With the increase of the accelerators, the average size of the F-ZMF microstructures decreased. The F-ZMF shows excellent self-cleaning performance and hydrophilic (water contact angle ≤ 10°) and oleophobic characteristics in the underwater antifouling experiment. Under a dark condition, F-ZMF-4 showed good antibacterial effects against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with inhibition rates of 99.1% and 99.9%, respectively. This study broadens the application scope of ZnO-based material and provides a novel prospect for the development of self-cleaning super-hydrophilic and oleophobic materials.
Collapse
Affiliation(s)
| | | | | | | | - Yan Zhao
- School of Physical Science and Technology, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China; (Y.L.); (Y.X.); (J.W.); (D.Z.)
| | - Jun-Jie Liu
- School of Physical Science and Technology, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China; (Y.L.); (Y.X.); (J.W.); (D.Z.)
| |
Collapse
|
9
|
Matei E, Șăulean AA, Râpă M, Constandache A, Predescu AM, Coman G, Berbecaru AC, Predescu C. ZnO nanostructured matrix as nexus catalysts for the removal of emerging pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114779-114821. [PMID: 37919505 PMCID: PMC10682326 DOI: 10.1007/s11356-023-30713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Water pollution stands as a pressing global environmental concern, elevating the significance of innovative, dependable, and sustainable solutions. This study represents an extensive review of the use of photocatalytic zinc oxide nanoparticles (ZnO NPs) for the removal of emerging pollutants from water and wastewater. The study examines ZnO NPs' different preparation methods, including physical, chemical, and green synthesis, and emphasizes on advantages, disadvantages, preparation factors, and investigation methods for the structural and morphological properties. ZnO NPs demonstrate remarkable properties as photocatalysts; however, their small dimensions pose an issue, leading to potential post-use environmental losses. A strategy to overcome this challenge is scaling up ZnO NP matrices for enhanced stability and efficiency. The paper introduces novel ZnO NP composites, by incorporating supports like carbon and clay that serve as photocatalysts in the removal of emerging pollutants from water and wastewater. In essence, this research underscores the urgency of finding innovative, efficient, and eco-friendly solutions for the removal of emerging pollutants from wastewater and highlights the high removal efficiencies obtained when using ZnO NPs obtained from green synthesis as a photocatalyst. Future research should be developed on the cost-benefit analysis regarding the preparation methods, treatment processes, and value-added product regeneration efficiency.
Collapse
Affiliation(s)
- Ecaterina Matei
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Anca Andreea Șăulean
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania.
| | - Maria Râpă
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Alexandra Constandache
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andra Mihaela Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - George Coman
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andrei Constantin Berbecaru
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Cristian Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| |
Collapse
|
10
|
Clarke B, Ghandi K. The Interplay of Growth Mechanism and Properties of ZnO Nanostructures for Different Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302864. [PMID: 37403280 DOI: 10.1002/smll.202302864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Indexed: 07/06/2023]
Abstract
This review provides a background on the structure and properties of ZnO nanostructures. ZnO nanostructures are advantageous for many applications in sensing, photocatalysis, functional textiles, and cosmetic industries, which are described in this review. Previous work using UV Visible (UV-vis) spectroscopy and scanning electron microscopy (SEM) for ZnO nanorod growth analysis in-solution and on a substrate for determination of optical properties and morphology is discussed, as well as their results in determining the kinetics and growth mechanisms. From this literature review, it is understood that the synthesis process greatly affects nanostructures and properties; and hence, their applications. In addition, in this review, the mechanism of ZnO nanostructure growth is unveiled, and it is shown that by having greater control over their morphology and size through such mechanistic understanding, the above-mentioned applications can be affected. The contradictions and gaps in knowledge are summarized in order to highlight the variations in results, followed by suggestions for how to answer these gaps and future outlooks for ZnO nanostructure research.
Collapse
|
11
|
Nagpal K, Rauwel E, Ducroquet F, Gélard I, Rauwel P. Relevance of alcoholic solvents in the growth of ZnO nanoparticles and ZnO hierarchical nanorod structures on their optical and opto-electrical properties. NANOTECHNOLOGY 2023; 34:485602. [PMID: 37651984 DOI: 10.1088/1361-6528/acf583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
We report on the synthesis of ZnO nanoparticles and ZnO hierarchical nanorod structures using four different alcohols i.e. methanol, isopropanol, ethanol, and aqueous ethanol (70% alcohol, 30% water). The syntheses of the nanoparticles were carried out by non-aqueous and hydrothermal routes. In general, absolute alcohol allows a better control of the synthesis reaction and nanoparticles as small as 5 nm were obtained, confirmed by TEM. XPS analysis elucidated the chemical states that were correlated to the synthesis reaction. For the nanorod growth, these four alcohols were used as seeding solvents, followed by hydrothermal ZnO nanorod growth. Here, the seed layer tailored the nanorod diameters and surface defects, which were studied by SEM and photoluminescence spectroscopy. Subsequently, the ZnO nanorods were electrically characterized and exhibited persistent photoconductivity under UV irradiation of 365 nm. The differences in conductivity in dark and under UV irradiation were attributed to the size of the nanorods, defect states, semiconductor band bending and oxygen adsorption-desorption mechanisms. Parameters such as photoresponse and photosensitivity are also calculated in order to evaluate their applicability in UV sensors. This work demonstrates optimization of the physical, chemical, electrical and optical properties of both ZnO nanostructures via the use of alcoholic solvents.
Collapse
Affiliation(s)
- Keshav Nagpal
- Institute of Forestry and Engineering, Estonian University of Life Science, Kreutzwaldi 56/1, Tartu, Estonia
| | - Erwan Rauwel
- Institute of Forestry and Engineering, Estonian University of Life Science, Kreutzwaldi 56/1, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Science, Estonian University of Life Science, Kreutzwaldi 62, Tartu, Estonia
| | | | - Isabelle Gélard
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France
| | - Protima Rauwel
- Institute of Forestry and Engineering, Estonian University of Life Science, Kreutzwaldi 56/1, Tartu, Estonia
| |
Collapse
|
12
|
Valtsifer VA, Sivtseva AV, Kondrashova NB, Shamsutdinov AS, Averkina AS, Valtsifer IV, Feklistova IN, Strelnikov VN. Influence of Synthesis Conditions on the Properties of Zinc Oxide Obtained in the Presence of Nonionic Structure-Forming Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2537. [PMID: 37764565 PMCID: PMC10536475 DOI: 10.3390/nano13182537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
This work investigated the influence of synthesis conditions, including the use of nonionic structure-forming compounds (surfactants) with different molecular weights (400-12,600 g/mol) and various hydrophilic/hydrophobic characteristics, as well as the use of a glass substrate and hydrothermal exposure on the texture and structural properties of ZnO samples. By X-ray analysis, it was determined that the synthesis intermediate in all cases is the compound Zn5(OH)8(NO3)2∙2H2O. It was shown that thermolysis of this compound at 600 °C, regardless of the physicochemical properties of the surfactants, leads to the formation of ZnO with a wurtzite structure and spherical or oval particles. The particle size increased slightly as the molecular weight and viscosity of the surfactants grew, from 30 nm using Pluronic F-127 (MM = 12,600) to 80 nm using Pluronic L-31 (MM = 1100), PE-block-PEG (MM = 500) and PEG (MM = 400). Holding the pre-washed synthetic intermediates (Zn5(OH)8(NO3)2∙2H2O) under hydrothermal conditions resulted in the formation of hexagonal ZnO rod crystal structures of various sizes. It was shown that the largest ZnO particles (10-15 μm) were observed in a sample obtained during hydrothermal exposure using Pluronic P-123 (MM = 5800). Atomic adsorption spectroscopy performed comparative quantitative analysis of residual Zn2+ ions in the supernatant of ZnO samples with different particle sizes and shapes. It was shown that the residual amount of Zn2+ ions was higher in the case of examining ZnO samples which have spherical particles of 30-80 nm. For example, in the supernatant of a ZnO sample that had a particle size of 30 nm, the quantitative content of Zn2+ ions was 10.22 mg/L.
Collapse
Affiliation(s)
- Viktor A. Valtsifer
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Anastasia V. Sivtseva
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Natalia B. Kondrashova
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Artem S. Shamsutdinov
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Anastasia S. Averkina
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Igor V. Valtsifer
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | | | - Vladimir N. Strelnikov
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| |
Collapse
|
13
|
Gao Y, Chen B, da Costa MVT, Dai H, Ram F, Li Y. ZnO microrods sandwiched between layered CNF matrix: Fabrication, stress transfer, and mechanical properties. Carbohydr Polym 2023; 305:120536. [PMID: 36737214 DOI: 10.1016/j.carbpol.2022.120536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023]
Abstract
Functional metal oxide particles are often added to the polymers to prepare flexible functional polymer composites with adequate mechanical properties. ZnO and cellulose nanofibrils (CNF) outstand among these metal oxides and the polymer matrices respectively due to their various advantages. Herein, we in situ prepare ZnO microrods in the presence of CNF, which resultes in a layered composite structure. The ZnO microrods are sandwiched between the CNF layers and strongly bind to highly charged CNF, which provides a better stress transfer during mechanical activity. Digital image correction (DIC) and finite element analysis-based computational homogenization methods are used to investigate the relationship between mechanical properties and composite structure, and the stress transfer to the ZnO microrods. Full-field strain measurements in DIC reveal that the in situ ZnO microrods preparation leads to their homogenous distribution in the CNF matrix unlike other methods, which require external means such as ultrasonication. The computational homogenization technique provides a fairly good insight into the stress transfer between constituents in microstructure as well as a good prediction of macroscopic mechanical properties, which otherwise, would be challenging to be assessed by any ordinary mechanical testing in the layered composites. Finally, we also demonstrate that these composites could be used as physiological motion sensors for human health monitoring.
Collapse
Affiliation(s)
- Ying Gao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Bin Chen
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Marcus Vinícius Tavares da Costa
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Hongqi Dai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Farsa Ram
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| | - Yuanyuan Li
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| |
Collapse
|
14
|
Dong ZL, Wang Z, Yiu YM, Fu J, Lin BH, Chang LY, Sham TK. Synthesis and optical properties of phosphorus doped ZnO: X-ray absorption, X-ray emission, and X-ray excited optical luminescence studies. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2022-1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Abstract
Over the past decades, zinc oxide semiconductor and its derivatives have been extensively developed because of its optoelectronic properties. Since ZnO is an intrinsic n-type semiconductor, how to synthesize high-quality p-type ZnO semiconductors and investigate their optoelectronic properties and local chemical structures are important and necessary. In this article, two studies of synthesizing both undoped and phosphorus-doped ZnO nanostructures by hydrothermal method and chemical vapor deposition (CVD) technique are presented. Scanning electron microscopy (SEM) and laboratory X-ray diffraction (XRD) are used to track the surface morphology and the crystalline structure of both undoped and phosphorus doped ZnO nanostructures, respectively. X-ray absorption near edge structures (XANES), X-ray emission spectroscopy (XES) and X-ray excited optical luminescence (XEOL) are also used to determine the local chemical information of both undoped and phosphorus-doped ZnO nano/microstructures such as local symmetry and optical properties. It is found that the phosphorus is successfully doped into the surface of ZnO and substituted the Zn. The phosphorus-doped ZnO products have better crystallinity and less oxygen vacancies on the surface. These two are correlated as one leads to the other. The XEOL results suggest that the average bandgap for undoped and phosphorus doped ZnO is the same, 3.24 eV. The second derivative of the absorption-emission spectra yields the fundamental bandgap for undoped ZnO and phosphorus-doped ZnO is 3.25 eV. The implication of this observation is discussed.
Collapse
|
15
|
Bhapkar AR, Geetha M, Jaspal D, Gheisari K, Laad M, Cabibihan JJ, Sadasivuni KK, Bhame S. Aluminium doped ZnO nanostructures for efficient photodegradation of indigo carmine and azo carmine G in solar irradiation. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
AbstractAluminium doped zinc oxide (AZO) nanomaterials (AlxZn1-xO) with x fraction varying as 0.02 and 0.04 were synthesized using the auto-combustion method using glycine as a fuel. The synthesized catalysts were characterized with X-ray diffraction (XRD), UV–Visible Spectroscopy (UV–Vis), Raman spectroscopy, Photoluminescence (PL) spectroscopy, and High Resolution Transmission Electron Microscopy (HR-TEM). XRD results showed that synthesized materials possessed good crystallinity, while UV–VIS was employed to find the band gaps of synthesized materials. Raman was used to determine the vibrational modes in the synthesized nanoparticles, while TEM analysis was performed to study the morphology of the samples. Industrial effluents such as indigo carmine and azo carmine G were used to test the photodegradation ability of synthesised catalysts. Parameters such as the effect of catalyst loading, dye concentration and pH were studied. The reduction in crystallite size, band gap and increased lattice strain for the 4% AZO was the primary reason for the degradation in visible irradiation, degrading 97 and 99% equimolar concentrations of indigo carmine and azo carmine G in 140 min. The Al doped ZnO was found to be effective in faster degradation of dyes as compared to pure ZnO in presence of natural sunlight.
Collapse
|
16
|
Facile Fabrication of Oxygen-Defective ZnO Nanoplates for Enhanced Photocatalytic Degradation of Methylene Blue and In Vitro Antibacterial Activity. Catalysts 2023. [DOI: 10.3390/catal13030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
In this study, we examined whether catalysts with many defects have excellent photoactivity. We prepared ZnO nanoplates with varying degrees of defects in a short time of 4 h by varying the crystal growth temperature at 50, 100, 150, and 200 °C under a strong alkali NaOH atmosphere of 4.0 M. During high-temperature preparation of ZnO, crystal defects were reduced and crystallinity was further increased. In crystallized systems over 100 °C, rhombic nanoplates were used to control particle shape and induce growth in only two axes. The PL, Raman, and XPS analyses confirmed the presence of strong oxygen vacancies in all ZnO nanoplates, and the vacancies decreased with increasing crystallization temperatures. Methylene blue (MB) dye was initially fixed at 50 mg/L with a peak decrease in absorption at 600–700 nm, confirming its decomposition over time. For the 5 h reaction, the MB removal concentration follows the following order: ZnO-50 < ZnO-100 < ZnO-150 < ZnO-200. The study confirms that ZnO-200 nanoplates with fewer oxygen vacancies decompose MB more quickly. ZnO-200 nanoplates synthesized at 200 °C provided the best sterilization performance when tested against gram-positives and gram-negatives, Escherichia coli and Staphylococcus aureus, respectively. ZnO-200 nanoplates after 3 h showed a high sterilization performance of 96.95% (86.67% in a dark room) for staphylococcus aureus and 95.82% (74.66% in a dark room) for Escherichia coli when irradiated with light. Particularly noteworthy in this study is that ·OH and ·O2− radicals are generated more strongly in ZnO-200 than in ZnO-50 nanoplates. These results show that too-strong oxygen vacancies rather inhibit the antibacterial performance, and that the virtue of moderation also exists in the catalytic activity.
Collapse
|
17
|
Cheraghipour K, Azarhazine M, Zivdari M, Beiranvand M, Shakib P, Rashidipour M, Mardanshah O, Mohaghegh MA, Marzban A. Evaluation of scolicidal potential of salicylate coated zinc nanoparticles against Echinococcus granulosus protoscoleces. Exp Parasitol 2023; 246:108456. [PMID: 36610471 DOI: 10.1016/j.exppara.2022.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Echinococcosis is a zoonotic disease caused by larval stages of the Echinococcus genus (metastasis). In this study, salicylate-coated Zinc oxide nanoparticles (SA-ZnO-NPs) were fabricated and characterized by SEM, FTIR and XRD analytical techniques. After that, different doses of SA-ZnO-NPs, SA and ZnO-NPs were taken to assess scolicidal potency. Scanning electron microscopy (SEM) micrographs were also used to evaluate the morphological deformities of treated protoscoleces. Furthermore, Caspase-3&7 inductions were examined in protoscoleces cysts treated with all formulations. Based on SEM and DLS analyses, the size of SA-ZnO-NPs was between 30 and 40 nm, with a spherical shape. The FTIR spectrum verified the presence of SA functional groups on the ZnO coating. At 20 min, SA-ZnO-NPs at 2000 μg/ml exhibited the greatest activity on protoscolices with 100% mortality, followed by ZnO-NPs at 1500 μg/ml at 10 min and SA alone at 2000 μg/ml at 30 min. The activation of Caspase-3&7 apoptotic enzyme was determined for 2000 μg/ml of SA-ZnO-NPs, ZnO-NPs and SA to be 16.4, 31.4, and 35.7%, respectively. The SEM image revealed apoptogenic alterations and the induction of tegument surface wrinkles, as well as abnormalities in rostellum protoscolices. According to the current study, SA-ZnO-NPs have a high mortality rate against hydatid cyst protoscolices. As a result, further studies on the qualitative assessment of these nanoformulations in vivo and preclinical animal trials seem to be required. Furthermore, the adoption of nano-drugs potentially offers alternative therapeutic approaches to combat hydatid cysts.
Collapse
Affiliation(s)
- Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Lorestan Provincial Veterinary Service, Khorramabad, Iran
| | - Mohammad Azarhazine
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Masoomeh Zivdari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marjan Beiranvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marzieh Rashidipour
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Omid Mardanshah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Mohammad Ali Mohaghegh
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
18
|
Sharan S, Khare P, Shankar R, Tyagi A, Khare A. Development of 3D network of Zn-oxide nanorods assisted with PbO2/Pb electrode for electrochemical oxidation of methylene blue in aqueous phase. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
19
|
Bhapkar A, Prasad R, Jaspal D, Shirolkar M, Gheisari K, Bhame S. Visible light driven photocatalytic degradation of methylene blue by ZnO nanostructures synthesized by glycine nitrate auto combustion route. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Traditional vs. Microfluidic Synthesis of ZnO Nanoparticles. Int J Mol Sci 2023; 24:ijms24031875. [PMID: 36768199 PMCID: PMC9916368 DOI: 10.3390/ijms24031875] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Microfluidics provides a precise synthesis of micro-/nanostructures for various applications, including bioengineering and medicine. In this review article, traditional and microfluidic synthesis methods of zinc oxide (ZnO) are compared concerning particle size distribution, morphology, applications, reaction parameters, used reagents, and microfluidic device materials. Challenges of traditional synthesis methods are reviewed in a manner where microfluidic approaches may overcome difficulties related to synthesis precision, bulk materials, and reproducibility.
Collapse
|
21
|
Jin Y, Rupa EJ, Nahar J, Ling L, Puja AM, Akter R, Yang DC, Kang SC, Zhang H. Hydroponic Ginseng ROOT Mediated with CMC Polymer-Coated Zinc Oxide Nanoparticles for Cellular Apoptosis via Downregulation of BCL-2 Gene Expression in A549 Lung Cancer Cell Line. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020906. [PMID: 36677964 PMCID: PMC9861826 DOI: 10.3390/molecules28020906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The unique and tailorable physicochemical features of zinc oxide nanoparticles (ZnO-NPs) synthesized from green sources make them attractive for use in cancer treatment. Hydroponic-cultured ginseng-root-synthesized ZnO-NPs (HGRCm-ZnO NPs) were coated with O-carboxymethyl chitosan (CMC) polymer, which stabilized and enhanced the biological efficacy of the nanoparticles. Nanoparticles were characterized by X-ray diffraction (XRD), UV-Vis spectroscopy, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and energy-dispersive X-ray spectroscopy (EDS). The flower-shaped nanoparticles were crystalline in nature with a particle size of 28 nm. To evaluate if these NPs had anti-lung cancer activity, analysis was performed on a human lung carcinoma cell line (A549). HGRCm-ZnO nanoparticles showed less toxicity to normal keratinocytes (HaCaTs), at concentrations up to 20 µg/mL, than A549 cancer cells. Additionally, these NPs showed dose-dependent colony formation and cell migration inhibition ability, which makes them more promising for lung cancer treatment. Additionally, Hoechst and propidium iodide dye staining also confirmed that the NP formulation had apoptotic activity in cancer cells. Further, to evaluate the mechanism of cancer cell death via checking the gene expression, HGRCm ZnO NPs upregulated the BAX and Caspase 3 and 9 expression levels but downregulated Bcl-2 expression, indicating that the nanoformulation induced mitochondrial-mediated apoptosis. Moreover, these preliminary results suggest that HGRCm ZnO NPs can be a potential candidate for future lung cancer treatment.
Collapse
Affiliation(s)
- Yinping Jin
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Esrat Jahan Rupa
- Department of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Jinnatun Nahar
- Department of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Li Ling
- Department of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Aditi Mitra Puja
- Department of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Reshmi Akter
- Department of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Deok Chun Yang
- Department of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Se Chan Kang
- Department of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
- Correspondence: (S.C.K.); (H.Z.)
| | - Hao Zhang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- Correspondence: (S.C.K.); (H.Z.)
| |
Collapse
|
22
|
Surya Kiran A, Ramulu B, Junied Arbaz S, Girija Shankar E, Nagaraju M, Yu JS. Rational construction of porous marigold flower-like nickel molybdenum phosphates via ion exchange for high-performance long-lasting hybrid supercapacitors. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02697j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The assembled hybrid supercapacitor device using the urea-based nickel molybdenum phosphate nanopetals embedded microspheres electrode exhibits outstanding long-term cycling stability, demonstrating its practical applications.
Collapse
Affiliation(s)
- Ampasala Surya Kiran
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, 1732 Deogyeong-aero, Gihung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Bhimanaboina Ramulu
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, 1732 Deogyeong-aero, Gihung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Shaik Junied Arbaz
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, 1732 Deogyeong-aero, Gihung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Edugulla Girija Shankar
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, 1732 Deogyeong-aero, Gihung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Manchi Nagaraju
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, 1732 Deogyeong-aero, Gihung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jae Su Yu
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, 1732 Deogyeong-aero, Gihung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
23
|
Kadinskaya SA, Kondratev VM, Kindyushov IK, Koval OY, Yakubovsky DI, Kusnetsov A, Lihachev AI, Nashchekin AV, Akopyan IK, Serov AY, Labzovskaya ME, Mikushev SV, Novikov BV, Shtrom IV, Bolshakov AD. Deep-Level Emission Tailoring in ZnO Nanostructures Grown via Hydrothermal Synthesis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:58. [PMID: 36615968 PMCID: PMC9823538 DOI: 10.3390/nano13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide (ZnO) nanostructures are widely used in various fields of science and technology due to their properties and ease of fabrication. To achieve the desired characteristics for subsequent device application, it is necessary to develop growth methods allowing for control over the nanostructures' morphology and crystallinity governing their optical and electronic properties. In this work, we grow ZnO nanostructures via hydrothermal synthesis using surfactants that significantly affect the growth kinetics. Nanostructures with geometry from nanowires to hexapods are obtained and studied with photoluminescence (PL) spectroscopy. Analysis of the photoluminescence spectra demonstrates pronounced exciton on a neutral donor UV emission in all of the samples. Changing the growth medium chemical composition affects the emission characteristics sufficiently. Apart the UV emission, nanostructures synthesized without the surfactants demonstrate deep-level emission in the visible range with a peak near 620 nm. Structures synthesized with the use of sodium citrate exhibit emission peak near 520 nm, and those with polyethylenimine do not exhibit the deep-level emission. Thus, we demonstrate the correlation between the hydrothermal growth conditions and the obtained ZnO nanostructures' optical properties, opening up new possibilities for their precise control and application in nanophotonics, UV-Vis and white light sources.
Collapse
Affiliation(s)
- Svetlana A. Kadinskaya
- Center for Nanotechnologies, Alferov University, 194021 St. Petersburg, Russia
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutskiy Lane, 141701 Dolgoprudny, Russia
| | - Valeriy M. Kondratev
- Center for Nanotechnologies, Alferov University, 194021 St. Petersburg, Russia
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutskiy Lane, 141701 Dolgoprudny, Russia
| | - Ivan K. Kindyushov
- Center for Nanotechnologies, Alferov University, 194021 St. Petersburg, Russia
| | - Olga Yu. Koval
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutskiy Lane, 141701 Dolgoprudny, Russia
| | - Dmitry I. Yakubovsky
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutskiy Lane, 141701 Dolgoprudny, Russia
| | - Alexey Kusnetsov
- Center for Nanotechnologies, Alferov University, 194021 St. Petersburg, Russia
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutskiy Lane, 141701 Dolgoprudny, Russia
| | - Alexey I. Lihachev
- Lab. "Characterization of Materials and Structures of Solid State Electronics", Loffe Institute, 194021 St. Petersburg, Russia
| | - Alexey V. Nashchekin
- Lab. "Characterization of Materials and Structures of Solid State Electronics", Loffe Institute, 194021 St. Petersburg, Russia
| | - Irina Kh. Akopyan
- Department of Solid State Physics, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexey Yu. Serov
- Department of Solid State Physics, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Mariana E. Labzovskaya
- Department of Solid State Physics, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Sergey V. Mikushev
- Department of Solid State Physics, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Boris V. Novikov
- Department of Solid State Physics, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Igor V. Shtrom
- Department of Solid State Physics, Saint Petersburg State University, 199034 St. Petersburg, Russia
- Department of Nanotechnology Methods and Instruments, IAI RAS, 198095 St. Petersburg, Russia
| | - Alexey D. Bolshakov
- Center for Nanotechnologies, Alferov University, 194021 St. Petersburg, Russia
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutskiy Lane, 141701 Dolgoprudny, Russia
| |
Collapse
|
24
|
Effect of Ti-doping on photocatalytic activity of ZnO nanocatalyst under sunlight irradiation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Strachowski T, Baran M, Małek M, Kosturek R, Grzanka E, Mizeracki J, Romanowska A, Marynowicz S. Hydrothermal Synthesis of Zinc Oxide Nanoparticles Using Different Chemical Reaction Stimulation Methods and Their Influence on Process Kinetics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217661. [PMID: 36363254 PMCID: PMC9654224 DOI: 10.3390/ma15217661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 06/01/2023]
Abstract
The aim of this work was to study the effect of the applied chemical reaction stimulation method on the morphology and structural properties of zinc oxide nanoparticles (ZnONPs). Various methods of chemical reaction induction were applied, including microwave, high potential, conventional resistance heater and autoclave-based methods. A novel, high potential-based ZnONPs synthesis method is herein proposed. Structural properties-phase purity, grain size-were examined with XRD methods, the specific surface area was determined using BET techniques and the morphology was examined using SEM. Based on the results, the microwave and autoclave syntheses allowed us to obtain the desired phase within a short period of time. The impulse-induced method is a promising alternative since it offers a non-equilibrium course of the synthesis process in an highly energy-efficient manner.
Collapse
Affiliation(s)
- Tomasz Strachowski
- Lukasiewicz Research Network–Institute of Microelectronics and Photonics IMIF, Research Group of Graphene and Composites, al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Magdalena Baran
- Lukasiewicz Research Network–Institute of Microelectronics and Photonics IMIF, Research Group of Graphene and Composites, al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Marcin Małek
- Faculty of Civil and Engineering and Geology, Research Laboratory of WIG, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Robert Kosturek
- Faculty of Mechanical Engineering, Institute of Robots & Machine Design, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Ewa Grzanka
- Institute of High Pressure Physics PAS, ul. Sokołowska 29/37, 01-141 Warsaw, Poland
| | - Jan Mizeracki
- Institute of High Pressure Physics PAS, ul. Sokołowska 29/37, 01-141 Warsaw, Poland
| | - Agata Romanowska
- Lukasiewicz Research Network–Institute of Microelectronics and Photonics IMIF, Research Group of Graphene and Composites, al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Stefan Marynowicz
- Lukasiewicz Research Network–Institute of Microelectronics and Photonics IMIF, Research Group of Graphene and Composites, al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
26
|
Wahab R, Khan F, Kaushik N, Kaushik NK, Nguyen LN, Choi EH, Siddiqui MA, Farshori NN, Saquib Q, Ahmad J, Al-Khedhairy AA. L-cysteine embedded core-shell ZnO microspheres composed of nanoclusters enhances anticancer activity against liver and breast cancer cells. Toxicol In Vitro 2022; 85:105460. [PMID: 35998759 DOI: 10.1016/j.tiv.2022.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Nano-based products have become an apparent and effective option to treat liver cancer, which is a deadly disease, and minimize or eradicate these problems. The Core-shell ZnO microspheres composed of nanoclusters (ZnOMS-NCs) have shown that it is very worthwhile to administer the proliferation rate in HepG2 and MCF-7 cancer cells even at a very low concentration (5 μg/mL). ZnOMS-NCs were prepared through hydrothermal solution process and well characterized. The MTT assay revealed that the cytotoxic effects were dose-dependent (2.5 μg/mL-100 μg/mL) on ZnOMS-NCs. The diminished activity in cell viability induces the cytotoxicity response to the ZnOMS-NCs treatment of human cultured cells. The qPCR data showed that the cells (HepG2 and MCF-7) were exposed to ZnOMS-NCs and exhibited up-and downregulated mRNA expression of apoptotic and anti-apoptotic genes, respectively. In conclusion, flow cytometric data exhibited significant apoptosis induction in both cancer cell lines at low concentrations. The possible mechanism also describes the role of ZnOMS-NCs against cancer cells and their responses.
Collapse
Affiliation(s)
- Rizwan Wahab
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Farheen Khan
- Chemistry Department, Faculty of Science, Taibah University, Medina (Yanbu), Saudi Arabia
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Maqsood A Siddiqui
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nida Nayyar Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Quaiser Saquib
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Ahmad
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Adeola AO, Abiodun BA, Adenuga DO, Nomngongo PN. Adsorptive and photocatalytic remediation of hazardous organic chemical pollutants in aqueous medium: A review. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104019. [PMID: 35533435 DOI: 10.1016/j.jconhyd.2022.104019] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The provision of clean water is still a major challenge in developing parts of the world, as emphasized by the United Nation Sustainable Development Goals (SDG 6), and has remained a subject of extensive research globally. Advancements in science and industry have resulted in a massive surge in the amount of industrial chemicals produced within the last few decades. Persistent and emerging organic pollutants are detected in aquatic environments, and conventional wastewater treatment plants have ineffectively handled these trace, bioaccumulative and toxic compounds. Therefore, we have conducted an extensive bibliometric analysis of different materials utilized to combat organic pollutants via adsorption and photocatalysis. The classes of pollutants, material synthesis, mechanisms of interaction, merits, and challenges were comprehensively discussed. The paper highlights the advantages of various materials used in the removal of hazardous pollutants from wastewater with activated carbon having the highest adsorption capacity. Dyes, pharmaceuticals, endocrine-disrupting chemicals, pesticides and other recalcitrant organic pollutants have been successfully removed at high degradation efficiencies through the photocatalytic process. The photocatalytic degradation and adsorption processes were compared by considering factors such as cost, efficiency, ease of application and reusability. This review will be good resource material for water treatment professionals/scientists, who may be interested in adsorptive and photocatalytic remediation of organic chemicals pollutants.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemical Sciences, Adekunle Ajasin University, Ondo State, 001, Nigeria; Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Bayode A Abiodun
- Department of Chemical Science, Faculty of Natural Sciences, Redeemer's University, PMB 230, Osun State, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Osun State, Nigeria
| | - Dorcas O Adenuga
- Water Utilization Division, Department of Chemical Engineering, University of Pretoria, Pretoria, Private Bag X20, Hatfield, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
28
|
Mihailova I, Gerbreders V, Krasovska M, Sledevskis E, Mizers V, Bulanovs A, Ogurcovs A. A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:424-436. [PMID: 35601536 PMCID: PMC9086496 DOI: 10.3762/bjnano.13.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 06/02/2023]
Abstract
This article describes the synthesis of nanostructured copper oxide on copper wires and its application for the detection of hydrogen peroxide. Copper oxide petal nanostructures were obtained by a one-step hydrothermal oxidation method. The resulting coating is uniform and dense and shows good adhesion to the wire surface. Structure, surface, and composition of the obtained samples were studied using field-emission scanning electron microscopy along with energy-dispersive spectroscopy and X-ray diffractometry. The resulting nanostructured samples were used for electrochemical determination of the H2O2 content in a 0.1 M NaOH buffer solution using cyclic voltammetry, differential pulse voltammetry, and i-t measurements. A good linear relationship between the peak current and the concentration of H2O2 in the range from 10 to 1800 μM was obtained. The sensitivity of the obtained CuO electrode is 439.19 μA·mM-1. The calculated limit of detection is 1.34 μM, assuming a signal-to-noise ratio of 3. The investigation of the system for sensitivity to interference showed that the most common interfering substances, that is, ascorbic acid, uric acid, dopamine, NaCl, glucose, and acetaminophen, do not affect the electrochemical response. The real milk sample test showed a high recovery rate (more than 95%). According to the obtained results, this sensor is suitable for practical use for the qualitative detection of H2O2 in real samples, as well as for the quantitative determination of its concentration.
Collapse
Affiliation(s)
- Irena Mihailova
- G. Liberts' Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1, Daugavpils, LV-5401, Latvia
| | - Vjaceslavs Gerbreders
- G. Liberts' Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1, Daugavpils, LV-5401, Latvia
| | - Marina Krasovska
- G. Liberts' Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1, Daugavpils, LV-5401, Latvia
| | - Eriks Sledevskis
- G. Liberts' Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1, Daugavpils, LV-5401, Latvia
| | - Valdis Mizers
- G. Liberts' Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1, Daugavpils, LV-5401, Latvia
| | - Andrejs Bulanovs
- G. Liberts' Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1, Daugavpils, LV-5401, Latvia
| | - Andrejs Ogurcovs
- G. Liberts' Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1, Daugavpils, LV-5401, Latvia
- Institute of Solid State Physics, University of Latvia, Kengaraga street 8, Riga, LV-1063, Latvia
| |
Collapse
|
29
|
Paisrisarn P, Yasui T, Zhu Z, Klamchuen A, Kasamechonchung P, Wutikhun T, Yordsri V, Baba Y. Tailoring ZnO nanowire crystallinity and morphology for label-free capturing of extracellular vesicles. NANOSCALE 2022; 14:4484-4494. [PMID: 35234770 DOI: 10.1039/d1nr07237d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Zinc oxide (ZnO) nanowires have shown their potential in isolation of cancer-related biomolecules such as extracellular vesicles (EVs), RNAs, and DNAs for early diagnosis and therapeutic development of diseases. Since the function of inorganic nanowires changes depending on their morphology, previous studies have established strategies to control the morphology and have demonstrated attainment of improved properties for gas and organic compound detection, and for dye-sensitized solar cells and photoelectric conversion performance. Nevertheless, crystallinity and morphology of ZnO nanowires for capturing EVs, an important biomarker of cancer, have not yet been discussed. Here, we fabricated ZnO nanowires with different crystallinities and morphologies using an ammonia-assisted hydrothermal method, and we comprehensively analyzed the crystalline nature and oriented growth of the synthesized nanowires by X-ray diffraction and selected area electron diffraction using high resolution transmission electron microscopy. In evaluating the performance of label-free EV capture in a microfluidic device platform, we found both the crystallinity and morphology of ZnO nanowires affected EV capture efficiency. In particular, the zinc blende phase was identified as important for crystallinity, while increasing the nanowire density in the array was important for morphology to improve EV capture performance. These results highlighted that the key physicochemical properties of the ZnO nanowires were related to the EV capture performance.
Collapse
Affiliation(s)
- Piyawan Paisrisarn
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Zetao Zhu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Annop Klamchuen
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Panita Kasamechonchung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Tuksadon Wutikhun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Visittapong Yordsri
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
30
|
Facile fabrication of multiscale ZnO/cellulose composite membrane towards enhancing photocatalytic and mechanical properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Mousavi SM, Behbudi G, Gholami A, Hashemi SA, Nejad ZM, Bahrani S, Chiang WH, Wei LC, Omidifar N. Shape-controlled synthesis of zinc nanostructures mediating macromolecules for biomedical applications. Biomater Res 2022; 26:4. [PMID: 35109931 PMCID: PMC8812270 DOI: 10.1186/s40824-022-00252-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
Zinc nanostructures (ZnONSs) have attracted much attention due to their morphological, physicochemical, and electrical properties, which were entailed for various biomedical applications such as cancer and diabetes treatment, anti-inflammatory activity, drug delivery. ZnONS play an important role in inducing cellular apoptosis, triggering excess reactive oxygen species (ROS) production, and releasing zinc ions due to their inherent nature and specific shape. Therefore, several new synthetic organometallic method has been developed to prepare ZnO crystalline nanostructures with controlled size and shape. Zinc oxide nanostructures' crystal size and shape can be controlled by simply changing the physical synthesis condition such as microwave irradiation time, reaction temperature, and TEA concentration at reflux. Physicochemical properties which are determined by the shape and size of ZnO nanostructures, directly affect their biological applications. These nanostructures can decompose the cell membrane and accumulate in the cytoplasm, which leads to apoptosis or cell death. In this study, we reviewed the various synthesis methods which affect the nano shapes of zinc particles, and physicochemical properties of zinc nanostructures that determined the shape of zinc nanomaterials. Also, we mentioned some macromolecules that controlled their physicochemical properties in a green and biological approaches. In addition, we present the recent progress of ZnONSs in the biomedical fields, which will help centralize biomedical fields and assist their future research development.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - Gity Behbudi
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Zohre Mousavi Nejad
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sonia Bahrani
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan.
| | - Lai Chin Wei
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
Suarez OJ, León‐Molina HB. Theoretical and Experimental Approach to the Production of ZnO Nanoparticles by Controlled Precipitation Method in Methanol. ChemistrySelect 2022. [DOI: 10.1002/slct.202103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Oscar J. Suarez
- Departamento de Ingeniería de Sistemas e Industrial. Universidad Nacional de Colombia Cra 30#45 Bogotá Colombia
| | - Helia B. León‐Molina
- Dirección de Ingeniería de Plásticos Universidad ECCI Carrera 19#49-20 -Bogotá Colombia
| |
Collapse
|
33
|
Xing M, Wang L, Wang R. A Review on the Effects of ZnO Nanowire Morphology on the Performance of Interpenetrating Bulk Heterojunction Quantum Dot Solar Cells. NANOMATERIALS 2021; 12:nano12010114. [PMID: 35010064 PMCID: PMC8746555 DOI: 10.3390/nano12010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022]
Abstract
Interpenetrating bulk heterojunction (IBHJ) quantum dot solar cells (QDSCs) offer a direct pathway for electrical contacts to overcome the trade-off between light absorption and carrier extraction. However, their complex three-dimensional structure creates higher requirements for the optimization of their design due to their more difficult interface defect states control, more complex light capture mechanism, and more advanced QD deposition technology. ZnO nanowire (NW) has been widely used as the electron transport layer (ETL) for this structure. Hence, the optimization of the ZnO NW morphology (such as density, length, and surface defects) is the key to improving the photoelectric performance of these SCs. In this study, the morphology control principles of ZnO NW for different synthetic methods are discussed. Furthermore, the effects of the density and length of the NW on the collection of photocarriers and their light capture effects are investigated. It is indicated that the NW spacing determines the transverse collection of electrons, while the length of the NW and the thickness of the SC often affect the longitudinal collection of holes. Finally, the optimization strategies for the geometrical morphology of and defect passivation in ZnO NWs are proposed to improve the efficiency of IBHJ QDSCs.
Collapse
Affiliation(s)
| | | | - Ruixiang Wang
- Correspondence: ; Tel.: +86-29-82668738; Fax: +86-29-82668725
| |
Collapse
|
34
|
Nulu V, Sohn KY. Single-Step Hydrothermal Synthesis of Zinc Oxide Micro/Nanostructures. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621100132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Kubiak A, Żółtowska S, Gabała E, Szybowicz M, Siwińska-Ciesielczyk K, Jesionowski T. Controlled microwave-assisted and pH-affected growth of ZnO structures and their photocatalytic performance. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.03.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Ghannam H, Silva JPB, Chahboun A. Effect of ZnO surface morphology on its electrochemical performance. RSC Adv 2021; 11:23346-23354. [PMID: 35479819 PMCID: PMC9036587 DOI: 10.1039/d1ra03653j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022] Open
Abstract
The purpose of this paper is to bridge the gap between ZnO surface morphology and its electrochemical performance. For this reason, ZnO nanowires (NWs) of different length were synthesized using an electrochemical method. Then, the electrochemical performance of the synthesized ZnO surfaces was studied using cyclic voltammetry and electrochemical impedance spectroscopy. The electrochemical analysis results revealed that the increase of ZnO NW length contributes to the retrogression of electrochemical performance. Indeed, the electrochemical performance is mainly related to the wettability behavior of the ZnO nanowire surfaces. When the ZnO NWs length increases, the surface become more hydrophobic, therefore, charge transfers between the electrode/electrolyte decrease. To improve the electrochemical performance of ZnO, we propose a new strategy combining NWs and microsheets (μSs) for further improving the morphology. Finally, the surfaces based on the double structure of ZnO provide good propagation of charge at the surface, good transfer in the electrode, good stability, and excellent scanning ability. In the present work we intend to pave the way for achieving high electrochemical performance ZnO-based layers. The purpose of this paper is to bridge the gap between ZnO surface morphology and its electrochemical performance.![]()
Collapse
Affiliation(s)
- Hajar Ghannam
- Université Abdelmalek Essaadi, FST Tanger, Laboratoire Couches Minces et Nanomatériaux (CMN) 90000 Tanger Morocco
| | - J P B Silva
- Centro de Fìsica das Universidades do Minho e do Porto (CF-UM-UP), Campus de Gualtar 4710-057 Braga Portugal
| | - Adil Chahboun
- Université Abdelmalek Essaadi, FST Tanger, Laboratoire Couches Minces et Nanomatériaux (CMN) 90000 Tanger Morocco
| |
Collapse
|
37
|
Peerakiatkhajohn P, Butburee T, Sul JH, Thaweesak S, Yun JH. Efficient and Rapid Photocatalytic Degradation of Methyl Orange Dye Using Al/ZnO Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1059. [PMID: 33924202 PMCID: PMC8074614 DOI: 10.3390/nano11041059] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
ZnO and Aluminum doped ZnO nanoparticles (Al/ZnO NPs) were successfully synthesized by the sol-gel method. Together with the effect of calcination temperatures (200, 300 and 400 °C) and Al dosage (1%, 3%, 5% and 10%) on structural, morphological and optical properties of Al/ZnO NPs, their photocatalytic degradation of methyl orange (MO) dye was investigated. The calcination temperatures at 200, 300 and 400 °C in forming structure of ZnO NPs led to spherical nanoparticle, nanorod and nanoflake structures with a well-crystalline hexagonal wurtzite, respectively. The ZnO NPs calcined at 200 °C exhibited the highest specific surface area and light absorption property, leading to the MO removal efficiency of 80% after 4 h under the Ultraviolet (UV) light irradiation. The MO removal efficiency was approximately two times higher than the nanoparticles calcined at 400 °C. Furthermore, the 5% Al/ZnO NPs exhibited superior MO removal efficiency of 99% in only 40 min which was approximately 20 times enhancement in photocatalytic activity compared to pristine ZnO under the visible light irradiation. This high degradation performance was attributed to the extended light absorption, narrowed band gap and effective suppression of electron-hole recombination through an addition of Al metal.
Collapse
Affiliation(s)
| | - Teera Butburee
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani 12120, Thailand;
| | - Jung-Hoon Sul
- School of Engineering and Technology, Central Queensland University, Mackay, QLD 4740, Australia;
| | - Supphasin Thaweesak
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chon Buri 20131, Thailand
| | - Jung-Ho Yun
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4123, Australia
| |
Collapse
|
38
|
Abstract
The interest in advanced photocatalytic technologies with metal oxide-based nanomaterials has been growing exponentially over the years due to their green and sustainable characteristics. Photocatalysis has been employed in several applications ranging from the degradation of pollutants to water splitting, CO2 and N2 reductions, and microorganism inactivation. However, to maintain its eco-friendly aspect, new solutions must be identified to ensure sustainability. One alternative is creating an enhanced photocatalytic paper by introducing cellulose-based materials to the process. Paper can participate as a substrate for the metal oxides, but it can also form composites or membranes, and it adds a valuable contribution as it is environmentally friendly, low-cost, flexible, recyclable, lightweight, and earth abundant. In term of photocatalysts, the use of metal oxides is widely spread, mostly since these materials display enhanced photocatalytic activities, allied to their chemical stability, non-toxicity, and earth abundance, despite being inexpensive and compatible with low-cost wet-chemical synthesis routes. This manuscript extensively reviews the recent developments of using photocatalytic papers with nanostructured metal oxides for environmental remediation. It focuses on titanium dioxide (TiO2) and zinc oxide (ZnO) in the form of nanostructures or thin films. It discusses the main characteristics of metal oxides and correlates them to their photocatalytic activity. The role of cellulose-based materials on the systems’ photocatalytic performance is extensively discussed, and the future perspective for photocatalytic papers is highlighted.
Collapse
|
39
|
Jose LM, Raj RSA, Sajan D, Aravind A. Adsorption and photocatalytic activity of biosynthesised ZnO nanoparticles using Aloe Vera leaf extract. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abeec6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
In this article, we demonstrates the growth of phase pure ZnO nanostructures from Aloe-Vera leaf extract and degradation of an organic dye-Malachite Green (MG)- from aqueous medium using the same as catalyst. Adsorption mechanisms were evaluated using Lagergren’s pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. X-Ray diffraction data showed that the synthesised ZnO is crystalline with hexagonal wurtzite phase. Average crystallite size and lattice strain was estimated from Scherrer equation and Williamson-Hall analysis with the help of Rietveld refinement data. Crystallite size obtained from Scherrer method is 12.62 nm while that from Williamson-Hall analysis is 19.27 nm. Uniform growth of ZnO nano-sheets were confirmed by FE-SEM analysis. Optical characterisation was carried by UV-Visible spectroscopy and the band gap ZnO nanoparticles was found to be 3.19 eV. Zn-O stretching vibrations were recorded at 550 cm−1 using FTIR spectrophotometer. Results showed that biosynthesised ZnO nanosheets are particularly effective for the degradation of MG dye.
Collapse
|
40
|
van Rijt MMJ, Oosterlaken BM, Friedrich H, de With G. Controlled titration-based ZnO formation. CrystEngComm 2021; 23:3340-3348. [PMID: 34093087 PMCID: PMC8107948 DOI: 10.1039/d1ce00222h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022]
Abstract
Hexamethylenetetramine (HMTA) is commonly used as a base releasing agent for the synthesis of ZnO under mild aqueous conditions. HMTA hydrolysis leads to gradual formation of a base during the reaction. Use of HMTA, however, does have limitations: HMTA hydrolysis yields both formaldehyde and ammonia, it provides no direct control over the ammonia addition rate or the total amount of ammonia added during the reaction, it results in a limited applicable pH range and it dictates the accessible reaction temperatures. To overcome these restrictions, this work presents a direct base titration strategy for ZnO synthesis in which a continuous base addition rate is maintained. Using this highly flexible strategy, wurtzite ZnO can be synthesized at a pH >5.5 using either KOH or ammonia as a base source at various addition rates and reaction pH values. In situ pH measurements suggest a similar reaction mechanism to HMTA-based synthesis, independent of the varied conditions. The type and concentration of the base used for titration affect the reaction product, with ammonia showing evidence of capping behaviour. Optimizing this strategy, we are able to influence and direct the crystal shape and significantly increase the product yield to 74% compared to the ∼13% obtained by the reference HMTA reaction.
Collapse
Affiliation(s)
- Mark M J van Rijt
- Laboratory of Physical Chemistry, Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Bernette M Oosterlaken
- Laboratory of Physical Chemistry, Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Heiner Friedrich
- Laboratory of Physical Chemistry, Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Gijsbertus de With
- Laboratory of Physical Chemistry, Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P. O. Box 513 Eindhoven 5600 MB The Netherlands
| |
Collapse
|
41
|
Lim H, Yusuf M, Song S, Park S, Park KH. Efficient photocatalytic degradation of dyes using photo-deposited Ag nanoparticles on ZnO structures: simple morphological control of ZnO. RSC Adv 2021; 11:8709-8717. [PMID: 35423379 PMCID: PMC8695276 DOI: 10.1039/d0ra10945b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
In this work, morphology-controlled ZnO structures were prepared via a hydrothermal method by simple adjustments in the NaOH concentration. The NaOH concentration variation from 0.2 to 1.2 M resulted in the formation of ZnO structures in shapes such as walnut, spherical flower, flower, rod, and urchin-like. The extent of OH- ions is the main factor influencing the growth of ZnO structures. Well-defined morphologies, good crystallinity, and optical properties were obtained for all ZnO structures. Among these ZnO structures, ZnOsf (spherical flower-like) structure showed a greater percentage of photodegradation of methyl orange and rhodamine B dyes. Surface plasmon resonance was achieved by modifying the surface of ZnO with Ag nanoparticles. ZnOsf was loaded with Ag nanoparticles by a facile photo-deposition method. Ag-ZnOsf showed superior photoactivity and recyclability for the degradation of methyl orange and rhodamine B. Therefore, modification of different ZnO structures can help realize potential catalysts for future environmental applications.
Collapse
Affiliation(s)
- Hyeonhan Lim
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University Busan 46241 Republic of Korea
| | - Mohammad Yusuf
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University Busan 46241 Republic of Korea
| | - Sehwan Song
- Department of Physics, Pusan National University Busan 46241 Republic of Korea
| | - Sungkyun Park
- Department of Physics, Pusan National University Busan 46241 Republic of Korea
| | - Kang Hyun Park
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University Busan 46241 Republic of Korea
| |
Collapse
|
42
|
Hydrothermal synthesis of an efficient and visible light responsive pure and strontium doped zinc oxide nano-hexagonal photocatalysts for photodegradation of Rhodamine B dye. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01669-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Che Lah NA, Kamaruzaman A, Trigueros S. pH-Dependent Formation of Oriented Zinc Oxide Nanostructures in the Presence of Tannic Acid. NANOMATERIALS 2020; 11:nano11010034. [PMID: 33375524 PMCID: PMC7823811 DOI: 10.3390/nano11010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 12/03/2022]
Abstract
To crucially comprehend the relaying factors behind the growth mechanism of ZnO nanostructures, the needs to understand the cause of preferences in the enhancement of desired physicochemical properties are essential. The particular oriented attachment (OA) is believed to become the cause of the classical growth pattern of ZnO nanostructures which is mainly controlled by the Ostwald ripening (OR) process. In the present work, the concerns over the systematic changes in size and the morphological surface of ZnO nanostructures upon exposure to tannic acid (TA) prepared by drop-wise method turns the particles to different surface adjustment state. Here, we assessed the TA capping ability and its tendency to influence the OA process of the ZnO nanostructures. The detailed process of the growth-based TA system via transmission electron microscopy (TEM), scanning electron microscopy (SEM), and FFT autocorrelation revealed the pH effect on their physical properties which proved the transition surface properties state of the particles from rough to smooth states due to oriented attachment. For pure ZnO nanostructures, the surface is almost smooth owing to the strong bonding particles which are then changed to coarsened surface structures upon the introduction of TA. Strong surface adsorption of Zn cations and phenol ligands mediated the agglomerated nanocrystals, surprisingly with smaller nanostructures dimension.
Collapse
Affiliation(s)
- Nurul Akmal Che Lah
- Faculty of Manufacturing & Mechatronics Engineering Technology, Universiti Malaysia Pahang, Pekan, Pahang 26600, Malaysia;
- Correspondence: ; Tel.: +60-9424-5825
| | - Aqilah Kamaruzaman
- Faculty of Manufacturing & Mechatronics Engineering Technology, Universiti Malaysia Pahang, Pekan, Pahang 26600, Malaysia;
| | - Sonia Trigueros
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK;
| |
Collapse
|
44
|
Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics. Sci Rep 2020; 10:21080. [PMID: 33273610 PMCID: PMC7713305 DOI: 10.1038/s41598-020-78305-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/06/2020] [Indexed: 11/18/2022] Open
Abstract
This study investigates physicochemical impact of ultrasonic irradiations on surface topography of woven fabrics. In a simultaneous in-situ sonochemical method, the synthesis and coating of zinc oxide nanoparticles (ZnO NPs) on woven textiles were successfully achieved. Different instruments i.e. Alambeta, moisture management tester, air permeability tester and permetester were utilised during experimentation for thermal evaluation, moisture transportation and air permeation. The results regarding thermophysiological comfort of ZnO coated fabrics were evaluated on the basis of thickness and ZnO NPs coated amount on fabrics. In addition, the achieved results depict the impact of sonication (pressure gradient) on surface roughness of cotton and polyester. The coating of ZnO NPs on fabrics, crystal phase identification, surface topography and fluctuations in surface roughness were estimated by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray Diffractometry (XRD), ultrahigh-resolution scanning electron microscopy (UHR-SEM) and energy dispersive X-ray (EDX). Moreover, thermophysiological properties i.e. thermal conductivity, absolute evaporative resistance, thermal absorptivity, air permeability, overall moisture management capacity and relative water vapour permeability of untreated and ZnO treated samples were evaluated by standard test methods.
Collapse
|
45
|
Buasakun J, Srilaoong P, Chaloeipote G, Rattanakram R, Wongchoosuk C, Duangthongyou T. Synergistic effect of ZnO/ZIF8 heterostructure material in photodegradation of methylene blue and volatile organic compounds with sensor operating at room temperature. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|