1
|
Kong F, Chen W. Carbon Dioxide Capture and Conversion Using Metal-Organic Framework (MOF) Materials: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1340. [PMID: 39195378 DOI: 10.3390/nano14161340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
The escalating threat of anthropogenic climate change has spurred an urgent quest for innovative CO2 capture and utilization (CCU) technologies. Metal-organic frameworks (MOFs) have emerged as prominent candidates in CO2 capture and conversion due to their large specific surface area, well-defined porous structure, and tunable chemical properties. This review unveils the latest advancements in MOF-based materials specifically designed for superior CO2 adsorption, precise separation, advanced photocatalytic and electrocatalytic CO2 reduction, progressive CO2 hydrogenation, and dual functionalities. We explore the strategies that enhance MOF efficiency and examine the challenges of and opportunities afforded by transitioning from laboratory research to industrial application. Looking ahead, this review offers a visionary perspective on harnessing MOFs for the sustainable capture and conversion of CO2.
Collapse
Affiliation(s)
- Fanyi Kong
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wenqian Chen
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Zhang L, Lin S, Liu Y, Zeng X, You J, Xiao T, Feng Y, He Z, Chen S, Hua N, Ye X, Wei ZW, Chen CX. Optimized Pore Nanospace through the Construction of a Cagelike Metal-Organic Framework for CO 2/N 2 Separation. Inorg Chem 2023; 62:8058-8063. [PMID: 37172273 DOI: 10.1021/acs.inorgchem.3c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The development of metal-organic framework (MOF) adsorbents with a potential molecule sieving effect for CO2 capture and separation from flue gas is of critical importance for reducing the CO2 emissions to the atmosphere yet challenging. Herein, a cagelike MOF with a suitable cage window size falling between CO2 and N2 and the cavity has been constructed to evaluate its CO2/N2 separation performance. It is noteworthy that the introduction of coordinated dimethylamine (DMA) and N,N'-dimethylformamide (DMF) molecules not only significantly reduces the cage window size but also enhances the framework-CO2 interaction via C-H···O hydrogen bonds, as proven by molecular modeling, thus leading to an improved CO2 separation performance. Moreover, transient breakthrough experiments corroborate the efficient CO2/N2 separation, revealing that the introduction of DMA and DMF molecules plays a vital role in the separation of a CO2/N2 gas mixture.
Collapse
Affiliation(s)
- Lei Zhang
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Sihan Lin
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Yupeng Liu
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Xiayun Zeng
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Jianjun You
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Taotao Xiao
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Yongjie Feng
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Ziyu He
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Song Chen
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Nengbin Hua
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Xiaoyun Ye
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Li W, Li J, Duong TD, Sapchenko SA, Han X, Humby JD, Whitehead GFS, Victórica-Yrezábal IJ, da Silva I, Manuel P, Frogley MD, Cinque G, Schröder M, Yang S. Adsorption of Sulfur Dioxide in Cu(II)-Carboxylate Framework Materials: The Role of Ligand Functionalization and Open Metal Sites. J Am Chem Soc 2022; 144:13196-13204. [PMID: 35848823 PMCID: PMC9345647 DOI: 10.1021/jacs.2c03280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of efficient sorbent materials for sulfur dioxide (SO2) is of key industrial interest. However, due to the corrosive nature of SO2, conventional porous materials often exhibit poor reversibility and limited uptake toward SO2 sorption. Here, we report high adsorption of SO2 in a series of Cu(II)-carboxylate-based metal-organic framework materials. We describe the impact of ligand functionalization and open metal sites on the uptake and reversibility of SO2 adsorption. Specifically, MFM-101 and MFM-190(F) show fully reversible SO2 adsorption with remarkable capacities of 18.7 and 18.3 mmol g-1, respectively, at 298 K and 1 bar; the former represents the highest reversible uptake of SO2 under ambient conditions among all porous solids reported to date. In situ neutron powder diffraction and synchrotron infrared microspectroscopy enable the direct visualization of binding domains of adsorbed SO2 molecules as well as host-guest binding dynamics. We have found that the combination of open Cu(II) sites and ligand functionalization, together with the size and geometry of metal-ligand cages, plays an integral role in the enhancement of SO2 binding.
Collapse
Affiliation(s)
- Weiyao Li
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Jiangnan Li
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Thien D. Duong
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | | | - Xue Han
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Jack D. Humby
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | | | | | - Ivan da Silva
- ISIS
Facility, STFC Rutherford Appleton Laboratory,
Chilton, Oxfordshire OX11 0QX, U.K.
| | - Pascal Manuel
- ISIS
Facility, STFC Rutherford Appleton Laboratory,
Chilton, Oxfordshire OX11 0QX, U.K.
| | - Mark D. Frogley
- Diamond
Light Source, Harwell Science and Innovation
Campus, Oxfordshire OX11 0DE, U.K.
| | - Gianfelice Cinque
- Diamond
Light Source, Harwell Science and Innovation
Campus, Oxfordshire OX11 0DE, U.K.
| | - Martin Schröder
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Sihai Yang
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
4
|
Hao C, Ren H, Zhu H, Chi Y, Zhao W, Liu X, Guo W. CO2-favored metal–organic frameworks SU-101(M) (M = Bi, In, Ga, and Al) with inverse and high selectivity of CO2 from C2H2 and C2H4. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Chen X, Guo Z, Zhang C, Gao R, Zhang J, Ma H. Constructing a 3D-layered energetic metal–organic framework with the strong stacking interactions of hydrogen-bridged rings: the way to an insensitive high energy complex. CrystEngComm 2020. [DOI: 10.1039/d0ce00643b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Constructing 3D-layered EMOFs with strong stacking interactions of hydrogen-bridged rings to enhance their packing efficiency and energetic performances.
Collapse
Affiliation(s)
- Xiang Chen
- School of Chemical Engineering
- Northwest University
- Xi'an 710069
- P. R. China
| | - Zhaoqi Guo
- School of Chemical Engineering
- Northwest University
- Xi'an 710069
- P. R. China
| | - Cong Zhang
- School of Chemical Engineering
- Northwest University
- Xi'an 710069
- P. R. China
| | - Rong Gao
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Jianguo Zhang
- State Key Laboratory of Explosion Science and Technology
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Haixia Ma
- School of Chemical Engineering
- Northwest University
- Xi'an 710069
- P. R. China
| |
Collapse
|