1
|
Dhillon A, Persson BD, Volkov AN, Sülzen H, Kádek A, Pompach P, Kereïche S, Lepšík M, Danskog K, Uetrecht C, Arnberg N, Zoll S. Structural insights into the interaction between adenovirus C5 hexon and human lactoferrin. J Virol 2024; 98:e0157623. [PMID: 38323814 PMCID: PMC10949841 DOI: 10.1128/jvi.01576-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/13/2024] [Indexed: 02/08/2024] Open
Abstract
Adenovirus (AdV) infection of the respiratory epithelium is common but poorly understood. Human AdV species C types, such as HAdV-C5, utilize the Coxsackie-adenovirus receptor (CAR) for attachment and subsequently integrins for entry. CAR and integrins are however located deep within the tight junctions in the mucosa where they would not be easily accessible. Recently, a model for CAR-independent AdV entry was proposed. In this model, human lactoferrin (hLF), an innate immune protein, aids the viral uptake into epithelial cells by mediating interactions between the major capsid protein, hexon, and yet unknown host cellular receptor(s). However, a detailed understanding of the molecular interactions driving this mechanism is lacking. Here, we present a new cryo-EM structure of HAdV-5C hexon at high resolution alongside a hybrid structure of HAdV-5C hexon complexed with human lactoferrin (hLF). These structures reveal the molecular determinants of the interaction between hLF and HAdV-C5 hexon. hLF engages hexon primarily via its N-terminal lactoferricin (Lfcin) region, interacting with hexon's hypervariable region 1 (HVR-1). Mutational analyses pinpoint critical Lfcin contacts and also identify additional regions within hLF that critically contribute to hexon binding. Our study sheds more light on the intricate mechanism by which HAdV-C5 utilizes soluble hLF/Lfcin for cellular entry. These findings hold promise for advancing gene therapy applications and inform vaccine development. IMPORTANCE Our study delves into the structural aspects of adenovirus (AdV) infections, specifically HAdV-C5 in the respiratory epithelium. It uncovers the molecular details of a novel pathway where human lactoferrin (hLF) interacts with the major capsid protein, hexon, facilitating viral entry, and bypassing traditional receptors such as CAR and integrins. The study's cryo-EM structures reveal how hLF engages hexon, primarily through its N-terminal lactoferricin (Lfcin) region and hexon's hypervariable region 1 (HVR-1). Mutational analyses identify critical Lfcin contacts and other regions within hLF vital for hexon binding. This structural insight sheds light on HAdV-C5's mechanism of utilizing soluble hLF/Lfcin for cellular entry, holding promise for gene therapy and vaccine development advancements in adenovirus research.
Collapse
Affiliation(s)
- Arun Dhillon
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Alexander N. Volkov
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
- Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Hagen Sülzen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Alan Kádek
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Petr Pompach
- Biotechnology and Biomedical Center of the Academy of Sciences and Charles University in Vestec, Vestec, Czech Republic
| | - Sami Kereïche
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katarina Danskog
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Charlotte Uetrecht
- Department of Health Sciences and Biomedicine, Faculty V: School of Life Sciences, CSSB Centre for Structural Systems Biology, Deutsches Elektronen Synchrotron DESY and Leibniz Institute of Virology, Hamburg, University of Siegen, Siegen, Germany
| | - Niklas Arnberg
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Sebastian Zoll
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Marco J, Dávalos-Prado JZ, Hnyk D, Holub J, Oña OB, Alcoba DR, Ferrer M, Elguero J, Lain L, Torre A, Oliva-Enrich JM. Two Shared Icosahedral Metallacarboranes through Iron: A Joint Experimental and Theoretical Refinement of Mössbauer Spectrum in [Fe(1,2-C 2B 9H 11) 2]Cs. ACS OMEGA 2023; 8:13993-14004. [PMID: 37091389 PMCID: PMC10116535 DOI: 10.1021/acsomega.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Mössbauer and X-ray photoelectron spectroscopies (XPS) are complemented with high-level quantum-chemical computations in the study of the geometric and electronic structure of the paramagnetic salt of the metallacarborane sandwich complex [Fe(1,2-C2B9H11)2]Cs = FeSanCs. Experimental 57Fe isomer shifts and quadrupole splitting parameters are compared with the theoretical prediction, with good agreement. The appearance of two sets of Cs(3d) doublets in the XPS spectrum, separated by 2 eV, indicates that Cs has two different chemical environments due to ease of the Cs(+) cation moving around the sandwich complex with low-energy barriers, as confirmed by quantum-chemical computations. Several minimum-energy geometries of the FeSanCs structure with the corresponding energies and Mössbauer parameters are discussed, in particular the atomic charges and spin population and the surroundings of the Fe atom in the complex. The Mössbauer spectra were taken at different temperatures showing the presence of a low-spin Fe atom with S = 1/2 and thus confirming a paramagnetic FeIII species.
Collapse
Affiliation(s)
- José
F. Marco
- Instituto
de Química-Física “Rocasolano”, CSIC, E-28006 Madrid, Spain
| | | | - Drahomír Hnyk
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, CZ-250 68 Řež
near Prague, Czech Republic
| | - Josef Holub
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, CZ-250 68 Řež
near Prague, Czech Republic
| | - Ofelia B. Oña
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas,
Universidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4,
CC 16, 1900 La Plata, Argentina
| | - Diego R. Alcoba
- Departamento
de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- Instituto
de Física de Buenos Aires, Consejo
Nacional de Investigaciones Científicas y Técnicas,
Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Maxime Ferrer
- Instituto
de Química Médica, CSIC, E-28006 Madrid, Spain
- Theoretical
Chemistry and Computational Modelling, Doctoral School, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Elguero
- Instituto
de Química Médica, CSIC, E-28006 Madrid, Spain
| | - Luis Lain
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado Postal 644, E-48080 Bilbao, Spain
| | - Alicia Torre
- Departamento
de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado Postal 644, E-48080 Bilbao, Spain
| | | |
Collapse
|
3
|
Parigi G, Ravera E, Piccioli M, Luchinat C. Paramagnetic NMR restraints for the characterization of protein structural rearrangements. Curr Opin Struct Biol 2023; 80:102595. [PMID: 37075534 DOI: 10.1016/j.sbi.2023.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/21/2023]
Abstract
Mobility is a common feature of biomacromolecules, often fundamental for their function. Thus, in many cases, biomacromolecules cannot be described by a single conformation, but rather by a conformational ensemble. NMR paramagnetic data demonstrated quite informative to monitor this conformational variability, especially when used in conjunction with data from different sources. Due to their long-range nature, paramagnetic data can, for instance, i) clearly demonstrate the occurrence of conformational rearrangements, ii) reveal the presence of minor conformational states, sampled only for a short time, iii) indicate the most representative conformations within the conformational ensemble sampled by the molecule, iv) provide an upper limit to the weight of each conformation.
Collapse
Affiliation(s)
- Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, Via Sacconi 6, Sesto Fiorentino, 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, Via Sacconi 6, Sesto Fiorentino, 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Sacconi 6, Sesto Fiorentino, 50019, Italy
| | - Mario Piccioli
- Magnetic Resonance Center (CERM), University of Florence, Via Sacconi 6, Sesto Fiorentino, 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via Sacconi 6, Sesto Fiorentino, 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Sacconi 6, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
4
|
Ravera E, Gigli L, Fiorucci L, Luchinat C, Parigi G. The evolution of paramagnetic NMR as a tool in structural biology. Phys Chem Chem Phys 2022; 24:17397-17416. [PMID: 35849063 DOI: 10.1039/d2cp01838a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paramagnetic NMR data contain extremely accurate long-range information on metalloprotein structures and, when used in the frame of integrative structural biology approaches, they allow for the retrieval of structural details to a resolution that is not achievable using other techniques. Paramagnetic data thus represent an extremely powerful tool to refine protein models in solution, especially when coupled to X-ray or cryoelectron microscopy data, to monitor the formation of complexes and determine the relative arrangements of their components, and to highlight the presence of conformational heterogeneity. More recently, theoretical and computational advancements in quantum chemical calculations of paramagnetic NMR observables are progressively opening new routes in structural biology, because they allow for the determination of the structure within the coordination sphere of the metal center, thus acting as a loupe on sites that are difficult to observe but very important for protein function.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Lucia Gigli
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Letizia Fiorucci
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
5
|
Dezhenkova LG, Druzina AA, Volodina YL, Dudarova NV, Nekrasova NA, Zhidkova OB, Grin MA, Bregadze VI. Synthesis of Cobalt Bis(Dicarbollide)—Curcumin Conjugates for Potential Use in Boron Neutron Capture Therapy. Molecules 2022; 27:molecules27144658. [PMID: 35889538 PMCID: PMC9324984 DOI: 10.3390/molecules27144658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
A series of novel cobalt bis(dicarbollide)—curcumin conjugates were synthesized. Two conjugates were obtained through the nucleophilic ring-opening reaction of the 1,4-dioxane and tetrahydropyran derivatives of cobalt bis(dicarbollide) with the OH group of curcumin, and using two equiv. of the oxonium derivatives, two other conjugates containing two cobalt bis(dicarbollide) units per molecule were obtained. In contrast to curcumin, the conjugates obtained were found to be non-cytotoxic against both tumor and normal cell lines. The analysis of the intracellular accumulation of the conjugates by flow cytometry showed that all cobalt bis(dicarbollide)—curcumin conjugates entered HCT116 colorectal carcinoma cells in a time-dependent manner. New non-cytotoxic conjugates contain a large amount of boron atoms in the biomolecule and can potentially be used for further biological research into boron neutron capture therapy (BNCT).
Collapse
Affiliation(s)
- Lyubov G. Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia;
| | - Anna A. Druzina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (N.V.D.); (N.A.N.); (O.B.Z.); (V.I.B.)
- Correspondence: ; Tel.: +7-926-404-5566
| | - Yulia L. Volodina
- Blokhin Cancer Center, 24 Kashirskoye Shosse, 115478 Moscow, Russia;
| | - Nadezhda V. Dudarova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (N.V.D.); (N.A.N.); (O.B.Z.); (V.I.B.)
| | - Natalia A. Nekrasova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (N.V.D.); (N.A.N.); (O.B.Z.); (V.I.B.)
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Russian Technological University, 86 Vernadsky Av., 119571 Moscow, Russia;
| | - Olga B. Zhidkova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (N.V.D.); (N.A.N.); (O.B.Z.); (V.I.B.)
| | - Mikhail A. Grin
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Russian Technological University, 86 Vernadsky Av., 119571 Moscow, Russia;
| | - Vladimir I. Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (N.V.D.); (N.A.N.); (O.B.Z.); (V.I.B.)
| |
Collapse
|
6
|
Lang L, Ravera E, Parigi G, Luchinat C, Neese F. Theoretical analysis of the long-distance limit of NMR chemical shieldings. J Chem Phys 2022; 156:154115. [PMID: 35459319 DOI: 10.1063/5.0088162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
After some years of controversy, it was recently demonstrated how to obtain the correct long-distance limit [point-dipole approximation (PDA)] of pseudo-contact nuclear magnetic resonance chemical shifts from rigorous first-principles quantum mechanics [Lang et al., J. Phys. Chem. Lett. 11, 8735 (2020)]. This result confirmed the classical Kurland-McGarvey theory. In the present contribution, we elaborate on these results. In particular, we provide a detailed derivation of the PDA both from the Van den Heuvel-Soncini equation for the chemical shielding tensor and from a spin Hamiltonian approximation. Furthermore, we discuss in detail the PDA within the approximate density functional theory and Hartree-Fock theories. In our previous work, we assumed a relatively crude effective nuclear charge approximation for the spin-orbit coupling operator. Here, we overcome this assumption by demonstrating that the derivation is also possible within the fully relativistic Dirac equation and even without the assumption of a specific form for the Hamiltonian. Crucial ingredients for the general derivation are a Hamiltonian that respects gauge invariance, the multipolar gauge, and functional derivatives of the Hamiltonian, where it is possible to identify the first functional derivative with the electron number current density operator. The present work forms an important foundation for future extensions of the Kurland-McGarvey theory beyond the PDA, including induced magnetic quadrupole and higher moments to describe the magnetic hyperfine field.
Collapse
Affiliation(s)
- Lucas Lang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
8
|
Druzina AA, Shmalko AV, Sivaev IB, Bregadze VI. Cyclic oxonium derivatives of cobalt and iron bis(dicarbollides) and their use in organic synthesis. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Bu C, Jin L. NMR Characterization of the Interactions Between Glycosaminoglycans and Proteins. Front Mol Biosci 2021; 8:646808. [PMID: 33796549 PMCID: PMC8007983 DOI: 10.3389/fmolb.2021.646808] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Glycosaminoglycans (GAGs) constitute a considerable fraction of the glycoconjugates found on cellular membranes and in the extracellular matrix of virtually all mammalian tissues. The essential role of GAG-protein interactions in the regulation of physiological processes has been recognized for decades. However, the underlying molecular basis of these interactions has only emerged since 1990s. The binding specificity of GAGs is encoded in their primary structures, but ultimately depends on how their functional groups are presented to a protein in the three-dimensional space. This review focuses on the application of NMR spectroscopy on the characterization of the GAG-protein interactions. Examples of interpretation of the complex mechanism and characterization of structural motifs involved in the GAG-protein interactions are given. Selected families of GAG-binding proteins investigated using NMR are also described.
Collapse
Affiliation(s)
- Changkai Bu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Ravera E, Gigli L, Czarniecki B, Lang L, Kümmerle R, Parigi G, Piccioli M, Neese F, Luchinat C. A Quantum Chemistry View on Two Archetypical Paramagnetic Pentacoordinate Nickel(II) Complexes Offers a Fresh Look on Their NMR Spectra. Inorg Chem 2021; 60:2068-2075. [PMID: 33478214 PMCID: PMC7877564 DOI: 10.1021/acs.inorgchem.0c03635] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Quantum chemical methods for calculating paramagnetic NMR observables are becoming
increasingly accessible and are being included in the inorganic chemistry practice.
Here, we test the performance of these methods in the prediction of proton hyperfine
shifts of two archetypical high-spin pentacoordinate nickel(II) complexes (NiSAL-MeDPT
and NiSAL-HDPT), which, for a variety of reasons, turned out to be perfectly suited to
challenge the predictions to the finest level of detail. For NiSAL-MeDPT, new NMR
experiments yield an assignment that perfectly matches the calculations. The slightly
different hyperfine shifts from the two “halves” of the molecules related
by a pseudo-C2 axis, which are experimentally divided into
two well-defined spin systems, are also straightforwardly distinguished by the
calculations. In the case of NiSAL-HDPT, for which no X-ray structure is available, the
quality of the calculations allowed us to refine its structure using as a starting
template the structure of NiSAL-MeDPT. State-of-the-art
quantum chemical methods and paramagnetism-tailored
NMR experiments provide a deep insight on the relation between the
spectra and the electronic structure for two paramagnetic pentacoordinate
nickel(II) complexes.
Collapse
Affiliation(s)
- Enrico Ravera
- Department of Chemistry "Ugo Schiff″, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.,Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Lucia Gigli
- Department of Chemistry "Ugo Schiff″, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.,Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Barbara Czarniecki
- Bruker Biospin Corporation, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Lucas Lang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Rainer Kümmerle
- Bruker Biospin Corporation, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Giacomo Parigi
- Department of Chemistry "Ugo Schiff″, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.,Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Mario Piccioli
- Department of Chemistry "Ugo Schiff″, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.,Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Claudio Luchinat
- Department of Chemistry "Ugo Schiff″, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.,Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Fanfrlík J, Pecina A, Řezáč J, Lepšík M, Sárosi MB, Hnyk D, Hobza P. Benchmark Data Sets of Boron Cluster Dihydrogen Bonding for the Validation of Approximate Computational Methods. Chemphyschem 2020; 21:2599-2604. [PMID: 33179424 DOI: 10.1002/cphc.202000729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Indexed: 12/31/2022]
Abstract
The success of approximate computational methods, such as molecular mechanics, or dispersion-corrected density functional theory, in the description of non-covalent interactions relies on accurate parameterizations. Benchmark data sets are thus required. This area is well developed for organic molecules and biomolecules but practically non-existent for boron clusters, which have been gaining in importance in modern drug as well as material design. To fill this gap, we have introduced two data sets featuring the most common non-covalent interaction of boron clusters, the dihydrogen bond, and calculated reference interaction energies at the "golden standard" CCSD(T)/CBS level. The boron clusters studied interact with formamide, methanol, water and methane at various distances and in two geometrical arrangements. The performance of the tested approximate methods is variable and recommendations for further use are given.
Collapse
Affiliation(s)
- Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Adam Pecina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Current address: Istituto Italiano di Tecnologia, Molecular Modeling and Drug Discovery, Via Morego 30, 161 63, Genoa, Italy
| | - Jan Řezáč
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Menyhárt B Sárosi
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Drahomír Hnyk
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 25068, Husinec-Řež, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 77146, Olomouc, Czech Republic
| |
Collapse
|
12
|
Lang L, Ravera E, Parigi G, Luchinat C, Neese F. Solution of a Puzzle: High-Level Quantum-Chemical Treatment of Pseudocontact Chemical Shifts Confirms Classic Semiempirical Theory. J Phys Chem Lett 2020; 11:8735-8744. [PMID: 32930598 PMCID: PMC7584370 DOI: 10.1021/acs.jpclett.0c02462] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
A recently popularized approach for the calculation of pseudocontact shifts (PCSs) based on first-principles quantum chemistry (QC) leads to different results than the classic "semiempirical" equation involving the susceptibility tensor. Studies that attempted a comparison of theory and experiment led to conflicting conclusions with respect to the preferred theoretical approach. In this Letter, we show that after inclusion of previously neglected terms in the full Hamiltonian, one can deduce the semiempirical equations from a rigorous QC-based treatment. It also turns out that in the long-distance limit, one can approximate the complete A tensor in terms of the g tensor. By means of Kohn-Sham density functional theory calculations, we numerically confirm the long-distance expression for the A tensor and the theoretically predicted scaling behavior of the different terms. Our derivation suggests a computational strategy in which one calculates the susceptibility tensor and inserts it into the classic equation for the PCS.
Collapse
Affiliation(s)
- Lucas Lang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Enrico Ravera
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), via Sacconi
6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Giacomo Parigi
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), via Sacconi
6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), via Sacconi
6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Matějíček P. Erratic ions: self-assembly and coassembly of ions of nanometer size and of irregular structure. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Waudby CA, Ouvry M, Davis B, Christodoulou J. Two-dimensional NMR lineshape analysis of single, multiple, zero and double quantum correlation experiments. JOURNAL OF BIOMOLECULAR NMR 2020; 74:95-109. [PMID: 31915980 PMCID: PMC7015968 DOI: 10.1007/s10858-019-00297-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/31/2019] [Indexed: 05/05/2023]
Abstract
NMR spectroscopy provides a powerful approach for the characterisation of chemical exchange and molecular interactions by analysis of series of experiments acquired over the course of a titration measurement. The appearance of NMR resonances undergoing chemical exchange depends on the frequency difference relative to the rate of exchange, and in the case of one-dimensional experiments chemical exchange regimes are well established and well known. However, two-dimensional experiments present additional complexity, as at least one additional frequency difference must be considered. Here we provide a systematic classification of chemical exchange regimes in two-dimensional NMR spectra. We highlight important differences between exchange in HSQC and HMQC experiments, that on a practical level result in more severe exchange broadening in HMQC spectra, but show that complementary alternatives to the HMQC are available in the form of HZQC and HDQC experiments. We present the longitudinal relaxation optimised SOFAST-H(Z/D)QC experiment for the simultaneous acquisition of sensitivity-enhanced HZQC and HDQC spectra, and the longitudinal and transverse relaxation optimised BEST-ZQ-TROSY for analysis of large molecular weight systems. We describe the application of these experiments to the characterisation of the interaction between the Hsp90 N-terminal domain and a small molecule ligand, and show that the independent analysis of HSQC, HMQC, HZQC and HDQC experiments provides improved confidence in the fitted dissociation constant and dissociation rate. Joint analysis of such data may provide improved sensitivity to detect and analyse more complex multi-state interaction mechanisms such as induced fit or conformational selection.
Collapse
Affiliation(s)
- Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
| | - Margaux Ouvry
- Biotechnologie, Sanofi, Route d'Avignon, 30390, Aramon, France
| | - Ben Davis
- Vernalis (R&D) Limited, Granta Park, Great Abington, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK
| |
Collapse
|
15
|
Parigi G, Ravera E, Luchinat C. Magnetic susceptibility and paramagnetism-based NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:211-236. [PMID: 31779881 DOI: 10.1016/j.pnmrs.2019.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 05/18/2023]
Abstract
The magnetic interactions between the nuclear magnetic moment and the magnetic moment of unpaired electron(s) depend on the structure and dynamics of the molecules where the paramagnetic center is located and of their partners. The long-range nature of the magnetic interactions is thus a reporter of invaluable information for structural biology studies, when other techniques often do not provide enough data for the atomic-level characterization of the system. This precious information explains the flourishing of paramagnetism-assisted NMR studies in recent years. Many paramagnetic effects are related to the magnetic susceptibility of the paramagnetic metal. Although these effects have been known for more than half a century, different theoretical models and new approaches have been proposed in the last decade. In this review, we have summarized the consequences for NMR spectroscopy of magnetic interactions between nuclear and electron magnetic moments, and thus of the presence of a magnetic susceptibility due to metals, and we do so using a unified notation.
Collapse
Affiliation(s)
- Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
16
|
Ravera E, Parigi G, Luchinat C. What are the methodological and theoretical prospects for paramagnetic NMR in structural biology? A glimpse into the crystal ball. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:173-179. [PMID: 31331762 DOI: 10.1016/j.jmr.2019.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
NMR spectroscopy is very sensitive to the presence of unpaired electrons, which perturb the NMR chemical shifts, J splittings and nuclear relaxation rates. These paramagnetic effects have attracted increasing attention over the last decades, and their use is expected to increase further in the future because they can provide structural information not easily achievable with other techniques. In fact, paramagnetic data provide long range structural restraints that can be used to assess the accuracy of crystal structures in solution and to improve them by simultaneous refinements with the X-ray data. They are also precious for obtaining information on the conformational variability of biomolecular systems, possibly in conjunction with SAXS and/or DEER data. We foresee that new tools will be developed in the next years for the simultaneous analysis of the paramagnetic data with data obtained from different techniques, in order to take advantage synergistically of the information content of all of them. Of course, the use of the paramagnetic data for structural purposes requires the knowledge of the relationship between these data and the molecular coordinates. Recently, the equations commonly used, dating back to half a century ago, have been questioned by first principle quantum chemistry calculations. Our prediction is that further theoretical/computational improvements will essentially confirm the validity of the old semi-empirical equations for the analysis of the experimental paramagnetic data.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
17
|
Cerofolini L, Silva JM, Ravera E, Romanelli M, Geraldes CFGC, Macedo AL, Fragai M, Parigi G, Luchinat C. How Do Nuclei Couple to the Magnetic Moment of a Paramagnetic Center? A New Theory at the Gauntlet of the Experiments. J Phys Chem Lett 2019; 10:3610-3614. [PMID: 31181162 DOI: 10.1021/acs.jpclett.9b01128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The recent derivation, based on pure quantum chemistry (QC) first-principles, of the pseudocontact shifts (PCSs) caused by a paramagnetic metal center on far away nuclei has cast doubts on the validity of the semiempirical (SE) theory, predicting PCSs to arise from the metal magnetic susceptibility anisotropy. The SE theory has been used and applied countless times, especially in the last 2 decades, to obtain structural information on proteins containing paramagnetic metal ions. We show here that the QC and SE predictions can be directly tested against experiments, provided a suitable macromolecular system is used. The SE approach yields a good prediction of the experimental PCSs while the QC one does not. It appears that the classic theory is able to grasp satisfactorily the underlying physics.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM) , University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) , via Sacconi 6 , Sesto Fiorentino 50019 , Italy
| | - José Malanho Silva
- Magnetic Resonance Center (CERM) , University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) , via Sacconi 6 , Sesto Fiorentino 50019 , Italy
- Department of Life Sciences and Coimbra Chemistry Center , University of Coimbra , Coimbra 3004-531 , Portugal
- UCIBIO-Requimte, Faculty of Sciences and Technology , Universidade NOVA de Lisboa , Caparica 2829-516 , Portugal
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) , University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) , via Sacconi 6 , Sesto Fiorentino 50019 , Italy
- Department of Chemistry , University of Florence , Sesto Fiorentino 50019 , Italy
| | - Maurizio Romanelli
- Department of Earth Sciences , University of Florence , Sesto Fiorentino 50019 , Italy
| | - Carlos F G C Geraldes
- Department of Life Sciences and Coimbra Chemistry Center , University of Coimbra , Coimbra 3004-531 , Portugal
| | - Anjos L Macedo
- UCIBIO-Requimte, Faculty of Sciences and Technology , Universidade NOVA de Lisboa , Caparica 2829-516 , Portugal
| | - Marco Fragai
- Magnetic Resonance Center (CERM) , University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) , via Sacconi 6 , Sesto Fiorentino 50019 , Italy
- Department of Chemistry , University of Florence , Sesto Fiorentino 50019 , Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) , University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) , via Sacconi 6 , Sesto Fiorentino 50019 , Italy
- Department of Chemistry , University of Florence , Sesto Fiorentino 50019 , Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) , University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) , via Sacconi 6 , Sesto Fiorentino 50019 , Italy
- Department of Chemistry , University of Florence , Sesto Fiorentino 50019 , Italy
| |
Collapse
|
18
|
Lepsik M, Sommer R, Kuhaudomlarp S, Lelimousin M, Paci E, Varrot A, Titz A, Imberty A. Induction of rare conformation of oligosaccharide by binding to calcium-dependent bacterial lectin: X-ray crystallography and modelling study. Eur J Med Chem 2019; 177:212-220. [PMID: 31146126 DOI: 10.1016/j.ejmech.2019.05.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 11/29/2022]
Abstract
Pathogenic micro-organisms utilize protein receptors (lectins) in adhesion to host tissues, a process that in some cases relies on the interaction between lectins and human glycoconjugates. Oligosaccharide epitopes are recognized through their three-dimensional structure and their flexibility is a key issue in specificity. In this paper, we analysed by X-ray crystallography the structures of the LecB lectin from two strains of Pseudomonas aeruginosa in complex with Lewis x oligosaccharide present on cell surfaces of human tissues. An unusual conformation of the glycan was observed in all binding sites with a non-canonical syn orientation of the N-acetyl group of N-acetyl-glucosamine. A PDB-wide search revealed that such an orientation occurs only in 4% of protein/carbohydrate complexes. Theoretical chemistry calculations showed that the observed conformation is unstable in solution but stabilised by the lectin. A reliable description of LecB/Lewis x complex by force field-based methods had proven especially challenging due to the special feature of the binding site, two closely apposed Ca2+ ions which induce strong charge delocalisation. By comparing various force-field parametrisations, we propose a general strategy which will be useful in near future for designing carbohydrate-based ligands (glycodrugs) against other calcium-dependent protein receptors.
Collapse
Affiliation(s)
- Martin Lepsik
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.
| | - Roman Sommer
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123, Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany; Department of Pharmacy, Saarland University, D-66123, Saarbrücken, Germany
| | | | | | - Emanuele Paci
- Astbury Centre & School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Annabelle Varrot
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123, Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany; Department of Pharmacy, Saarland University, D-66123, Saarbrücken, Germany
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.
| |
Collapse
|