1
|
Zhao P, Lu D, Li L, Wu X, Yan L. Molecular Engineering to Achieve AIE-active Fluorophore with Near-infrared (NIR) Emission and Temperature-sensitive Property. J Fluoresc 2024; 34:1109-1117. [PMID: 37470966 DOI: 10.1007/s10895-023-03338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Near-infrared organic small molecule luminescent materials have the advantages of easy modification, high quantum efficiency, good biological affinity, and color adjustability; thus, have promising application prospects in the fields of photoelectric devices, sensitive detection, photodynamic therapy, and biomedical imaging. However, traditional organic luminescent molecules have the problems of short emission wavelength, aggregation-causing emission quenching, and low quantum yield. Herein, we successfully synthesized four D-π-A-D light-emitting molecules based on electron-withdrawing malonitrile group and different electron-donating arylamine groups. These compounds showed satisfactory solvatochromism, aggregation-induced emission, red and near-infrared fluorescence, high photoluminescence quantum efficiency and temperature response properties. This successful example of molecular engineering provides a valuable reference for the development of advanced NIR materials with AIE and temperature-sensitive properties.
Collapse
Affiliation(s)
- Peng Zhao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China
| | - Dongqing Lu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China
| | - Lin Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China
| | - Xiongzhi Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China.
| | - Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, Guangxi, P.R. China.
| |
Collapse
|
2
|
Wu GY, Zhu HM, Li H, Zhang K, Zhang X, Yan D, Zhang XD, Lin L, Lu Z. The impact of aggregation of AIE and ACQ moiety-integrating material on the excited state dynamics. RSC Adv 2023; 13:33911-33917. [PMID: 38020029 PMCID: PMC10658659 DOI: 10.1039/d3ra06359c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
The investigation of the properties of aggregate materials is highly interesting because the process of aggregation can result in the disappearance of original properties and the emergence of new ones. Here, a novel fluorescent material (TPEIP), which synergistically combines aggregation-induced emission (AIE) and aggregation caused quenching (ACQ) moieties, was first synthesized by the cyclization reaction of 2,3-diamino-phenazine with 4-tetraphenylenthenealdehyde. We controlled the degree of aggregation of TPEIP to shed light on the impact of the aggregation on the excited state dynamics. TPEIP aggregation realized control over the Intersystem Crossing (ISC) rates and, in turn, the suppression of triplet excited states in MeOH, EtOH or via the simple addition of water to TPEIP solutions in DMSO. From global target analysis, the time scale was 966.2 ps for ISC for TPEIP in DMSO, but it was 860 ps in the case of TPEIP solutions featuring 5% water. The dynamics of TPEIP excited states undergo significant changes as the degree of aggregation increases. Notably, the lifetime of singlet excited states decreases, and there was a gradual diminishment in triplet states.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| | - Hui-Min Zhu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| | - Hao Li
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University Jinan 250014 China
| | - Xianyi Zhang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| | - Dong Yan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Xiu-Du Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University Jinan 250014 China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| |
Collapse
|
3
|
Chen Z, Xin G, Gao P, Jin Y. Synthesis, structures and properties of two donor-acceptor acridone-based compounds. Acta Crystallogr C Struct Chem 2023; 79:424-434. [PMID: 37746934 DOI: 10.1107/s2053229623007994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023] Open
Abstract
Two donor-acceptor acridone-based compounds, namely, 2-{10-[4-(diphenylamino)phenyl]acridin-9-ylidene}malononitrile (TPA-AD-DCN), C34H22N4, and 2-{10-[4-(9H-carbazol-9-yl)phenyl]acridin-9-ylidene}malononitrile (CzPh-AD-DCN), C34H20N4, have been synthesized in high yield and their structures determined. TPA-AD-DCN and CzPh-AD-DCN crystallized in the centrosymmetric space groups P-1 and P21/c, respectively. Both molecules adopt a `butterfly-like' configuration of the common part of the structure and differences occur within the substituents on the acridine N atom. A Hirshfeld surface analysis showed that the H...H and C...H/H...C contacts constitute a high percentage of the intermolecular interactions. The optical and electrochemical properties, as well as theoretical calculations, of TPA-AD-DCN and CzPh-AD-DCN support the structural characterization of these materials. As crystallization-induced emission materials, TPA-AD-DCN and CzPh-AD-DCN are anticipated to be of potential use in the construction of promising optoelectronic materials.
Collapse
Affiliation(s)
- Ziqiang Chen
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, People's Republic of China
| | - Gaojie Xin
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, People's Republic of China
| | - Penglian Gao
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, People's Republic of China
| | - Yingying Jin
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, People's Republic of China
| |
Collapse
|
4
|
3-Aryl-5-aminobiphenyl Substituted [1,2,4]triazolo[4,3- c]quinazolines: Synthesis and Photophysical Properties. Molecules 2023; 28:molecules28041937. [PMID: 36838924 PMCID: PMC9963873 DOI: 10.3390/molecules28041937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Amino-[1,1']-biphenyl-containing 3-aryl-[1,2,4]triazolo[4,3-c]quinazoline derivatives with fluorescent properties have been designed and synthesized. The type of annelation of the triazole ring to the pyrimidine one has been unambiguously confirmed by means of an X-ray diffraction (XRD) method; the molecules are non-planar, and the aryl substituents form the pincer-like conformation. The UV/Vis and photoluminescent properties of target compounds were investigated in two solvents of different polarities and in a solid state. The samples emit a broad range of wavelengths and display fluorescent quantum yields of up to 94% in toluene solutions. 5-(4'-Diphenylamino-[1,1']-biphenyl-4-yl)-3-(4-(trifluoromethyl)phenyl)-[1,2,4]triazolo[4,3-c]quinazoline exhibits the strongest emission in toluene and a solid state. Additionally, the solvatochromic properties were studied for the substituted [1,2,4]triazolo[4,3-c]quinazolines. Moreover, the changes in absorption and emission spectra have been demonstrated upon the addition of water to MeCN solutions, which confirms aggregate formation, and some samples were found to exhibit aggregation-induced emission enhancement. Further, the ability of triazoloquinazolines to detect trifluoroacetic acid has been analyzed; the presence of TFA induces changes in both absorption and emission spectra, and acidochromic behavvior was observed for some triazoloquinazoline compounds. Finally, electronic-structure calculations with the use of quantum-chemistry methods were performed for synthesized compounds.
Collapse
|
5
|
Jia J, Zhu Z, Gong C, Li M, Zhang J, Song Y, She Y. Synthesis and third-order nonlinear properties of D-A-D structure acridone derivatives. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Muthamma K, Sunil D. Cellulose as an Eco-Friendly and Sustainable Material for Optical Anticounterfeiting Applications: An Up-to-Date Appraisal. ACS OMEGA 2022; 7:42681-42699. [PMID: 36467930 PMCID: PMC9713864 DOI: 10.1021/acsomega.2c05547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The falsification of documents, currency, pharmaceuticals, branded goods, clothing, food products, and packaging leads to severe consequences. Counterfeited products can not only pose health risks to consumers but also cause substantial economic losses that can negatively impact the global markets. Unfortunately, most anticounterfeiting strategies are easily duplicated due to rapid technological advancements. Therefore, innovative and cost-effective antiforgery techniques that can offer superior multilevel security features are continuously sought after. Due to the ever-growing global awareness of environmental pollution, renewable and eco-friendly native biopolymers are garnering wide attention in anticounterfeiting applications. This review highlights the potential use of cellulose-based eco-friendly materials to combat the counterfeiting of goods. The initial section of the review focuses on the structure, properties, and chemical modifications of cellulose as a sustainable biomaterial. Further, the topical developments reported on cellulose and nanocellulose-based materials used as fluorescent security inks, films, and papers for achieving protection against counterfeiting are presented. The studies suggest the convenient use of celluose and modified cellulose materials for promising optical antiforgery applications. Furthermore, the scope for future research developments is also discussed based on the current critical challenges in the fabrication of cellulose-based materials and their anticounterfeit applications.
Collapse
|
7
|
Hamzehpoor E, Ruchlin C, Tao Y, Ramos-Sanchez JE, Titi HM, Cosa G, Perepichka DF. Room Temperature Phosphorescence vs Triplet-Triplet Annihilation in N-Substituted Acridone Solids. J Phys Chem Lett 2021; 12:6431-6438. [PMID: 34236197 DOI: 10.1021/acs.jpclett.1c01552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic room temperature phosphorescent (ORTP) compounds have recently emerged as a promising class of emissive materials with a multitude of potential applications. However, the number of building blocks that give rise to efficient ORTP materials is still limited, and the rules for engineering phosphorescent properties in organic solids are not well understood. Here, we report ORTP in a series of N-substituted acridone derivatives with electron-donating, electron-withdrawing, and sterically bulky substituents. X-ray crystallography shows that the solid-state packing varies progressively between coparallel and antiparallel π-stacking and separated π-dimers, depending on the size of the substituent. The detailed photophysical studies supported by DFT calculations reveal complex dynamics of singlet and triplet excited states, depending on the electronic effects of substituents and solid-state packing. The programmable molecular packing provides a lever to control the triplet-triplet annihilation that is manifested as delayed fluorescence in acridone derivatives with continuous (both parallel and antiparallel) π-stacking.
Collapse
Affiliation(s)
- Ehsan Hamzehpoor
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Cory Ruchlin
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Yuze Tao
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | | | - Hatem M Titi
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Dmitrii F Perepichka
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|