1
|
Karmakar S, Mishra S. Flavin-Mediated Reductive Deiodination: Conformational Events and Reactivity Pattern in the Active Site of Human Iodotyrosine Deiodinase. Biochemistry 2024; 63:3310-3323. [PMID: 39601244 DOI: 10.1021/acs.biochem.4c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Human iodotyrosine deiodinase (hIYD) catalyzes the reductive deiodination of iodotyrosine using a flavin mononucleotide cofactor to maintain the iodine concentration in the body. Mutations in the hIYD gene are linked to human hypothyroidism, emphasizing its role in thyroid function regulation. The present work employs microsecond-scale molecular dynamics simulations and quantum chemical calculations to elucidate the conformational dynamics and reactivity in the active site at various stages of hIYD enzymatic cycle. The flavin is found to employ a unique butterfly motion of its isoalloxazine ring accompanied by a novel active-and-resting state of its ribose 2'-OH group at different stages of the enzymatic cycle. The flavin dynamics are found to control substrate binding affinity, the active site lid closure, and NADPH recognition. The predicted hIYD model shows enhanced stabilization of NADPH due to additional interactions with the N-terminal and intermediate domains. The enzyme uses a group of basic residues (R100, R101, R104, K182, and R279) to stabilize flavin in different stages of catalysis, suggesting potential mutations to control enzyme activity. The reactivity descriptors and stereoelectronic analysis predict the N5 nitrogen of flavin as a proton source during the reductive deiodination, while the anisotropic charge distribution on the halogen atom has negligible structural and electronic effects. The present findings provide key insights into the molecular basis of hIYD activity and lay the groundwork for future research aimed at therapeutic interventions and industrial applications.
Collapse
Affiliation(s)
- Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
2
|
Sarangi R, Maity S, Acharya A. Machine Learning Approach to Vertical Energy Gap in Redox Processes. J Chem Theory Comput 2024; 20:6747-6755. [PMID: 39044422 PMCID: PMC11325558 DOI: 10.1021/acs.jctc.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A straightforward approach to calculating the free energy change (ΔG) and reorganization energy of a redox process is linear response approximation (LRA). However, accurate prediction of redox properties is still challenging due to difficulties in conformational sampling and vertical energy-gap sampling. Expensive hybrid quantum mechanical/molecular mechanical (QM/MM) calculations are typically employed in sampling energy gaps using conformations from simulations. To alleviate the computational cost associated with the expensive QM method in the QM/MM calculation, we propose machine learning (ML) methods to predict the vertical energy gaps (VEGs). We tested several ML models to predict the VEGs and observed that simple models like linear regression show excellent performance (mean absolute error ∼0.1 eV) in predicting VEGs in all test systems, even when using features extracted from cheaper semiempirical methods. Our best ML model (extra trees regressor) shows a mean absolute error of around 0.1 eV while using features from the cheapest QM method. We anticipate our approach can be generalized to larger macromolecular systems with more complex redox centers.
Collapse
Affiliation(s)
- Ronit Sarangi
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Suman Maity
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Atanu Acharya
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
3
|
Kabir M, Ghosh P, Gozem S. Electronic Structure Methods for Simulating Flavin's Spectroscopy and Photophysics: Comparison of Multi-reference, TD-DFT, and Single-Reference Wave Function Methods. J Phys Chem B 2024; 128:7545-7557. [PMID: 39074870 PMCID: PMC11317985 DOI: 10.1021/acs.jpcb.4c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
The use of flavins and flavoproteins in photocatalytic, sensing, and biotechnological applications has led to a growing interest in computationally modeling the excited-state electronic structure and photophysics of flavin. However, there is limited consensus regarding which computational methods are appropriate for modeling flavin's photophysics. We compare the energies of low-lying excited states of flavin computed with time-dependent density functional theory (TD-DFT), equation-of-motion coupled cluster (EOM-EE-CCSD), scaled opposite-spin configuration interaction [SOS-CIS(D)], multiconfiguration pair-density functional theory (MC-PDFT), and several multireference perturbation theory (MR-PT2) methods. In the first part, we focus on excitation energies of the first singlet excited state (S1) of five different redox and protonation states of flavin, with the goal of finding a suitable active space for MR-PT2 calculations. In the second part, we construct two sets of one-dimensional potential energy surfaces connecting the S0 and S1 equilibrium geometries (S0-S1 path) and the S1 (π,π*) and S2 (n,π*) equilibrium geometries (S1-S2 path). The first path therefore follows a Franck-Condon active mode of flavin while the second path maps crossings points between low-lying singlet and triplet states in flavin. We discuss the similarities and differences in the TD-DFT, EOM-EE-CCSD, SOS-CIS(D), MC-PDFT and MR-PT2 energy profiles along these paths. We find that (TD-)DFT methods are suitable for applications such as simulating the spectra of flavins but are inconsistent with several other methods when used for some geometry optimizations and when describing the energetics of dark (n,π*) states. MR-PT2 methods show promise for the simulation of flavin's low-lying excited states, but the selection of orbitals for the active space and the number of roots used for state averaging must be done carefully to avoid artifacts. Some properties, such as the intersystem crossing geometry and energy between the S1 (π,π*) and T2 (n,π*) states, may require additional benchmarking before they can be determined quantitatively.
Collapse
Affiliation(s)
- Mohammad
Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Paulami Ghosh
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
4
|
Frederiksen A, Gerhards L, Reinholdt P, Kongsted J, Solov’yov IA. Importance of Polarizable Embedding for Absorption Spectrum Calculations of Arabidopsis thaliana Cryptochrome 1. J Phys Chem B 2024; 128:6283-6290. [PMID: 38913544 PMCID: PMC11228989 DOI: 10.1021/acs.jpcb.4c02168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024]
Abstract
Cryptochromes are essential flavoproteins for circadian rhythms and avian magnetoreception. Flavin adenine dinucleotide (FAD), a chromophore within cryptochromes, absorbs blue light, initiating electron transfer processes that lead to a biological signaling cascade. A key step in this cascade is the formation of the FAD semiquinone radical (FADH•), characterized through a specific red-light absorption. The absorption spectra of FADH• in cryptochromes are, however, significantly different from those recorded for the cofactor in solution, primarily due to protein-induced shifts in the absorption peaks. This study employs a multiscale approach, combining molecular dynamics (MD) simulations with quantum mechanical/molecular mechanical (QM/MM) methodologies, to investigate the influence of protein dynamics on embedded FADH• absorption. We emphasize the role of the protein's polarizable environment in the shaping of the absorption spectrum, crucial for accurate spectral predictions in cryptochromes. Our findings provide valuable insights into the absorption process, advancing our understanding of cryptochrome functioning.
Collapse
Affiliation(s)
- Anders Frederiksen
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Luca Gerhards
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Peter Reinholdt
- Department
of Physics, Chemistry, and Pharmacy, University
of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jacob Kongsted
- Department
of Physics, Chemistry, and Pharmacy, University
of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
- Research
Centre for Neurosensory Sciences, Carl von
Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, 26111 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky University of Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
5
|
Xu Y, Peschel MT, Jänchen M, Foja R, Storch G, Thyrhaug E, de Vivie-Riedle R, Hauer J. Determining Excited-State Absorption Properties of a Quinoid Flavin by Polarization-Resolved Transient Spectroscopy. J Phys Chem A 2024; 128:3830-3839. [PMID: 38709806 PMCID: PMC11103687 DOI: 10.1021/acs.jpca.4c01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
As important naturally occurring chromophores, photophysical/chemical properties of quinoid flavins have been extensively studied both experimentally and theoretically. However, little is known about the transition dipole moment (TDM) orientation of excited-state absorption transitions of these important compounds. This aspect is of high interest in the fields of photocatalysis and quantum control studies. In this work, we employ polarization-associated spectra (PAS) to study the excited-state absorption transitions and the underlying TDM directions of a standard quinoid flavin compound. As compared to transient absorption anisotropy (TAA), an analysis based on PAS not only avoids diverging signals but also retrieves the relative angle for ESA transitions with respect to known TDM directions. Quantum chemical calculations of excited-state properties lead to good agreement with TA signals measured in magic angle configuration. Only when comparing experiment and theory for TAA spectra and PAS, do we find deviations when and only when the S0 → S1 of flavin is used as a reference. We attribute this to the vibronic coupling of this transition to a dark state. This effect is only observed in the employed polarization-controlled spectroscopy and would have gone unnoticed in conventional TA.
Collapse
Affiliation(s)
- Yi Xu
- TUM
School of Natural Sciences, Department of Chemistry and Catalysis
Research Center, Technical University of
Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Martin T. Peschel
- Department
of Chemistry, Ludwig-Maximilians-Universität
München, 81377 München, Germany
| | - Miriam Jänchen
- TUM
School of Natural Sciences, Department of Chemistry and Catalysis
Research Center, Technical University of
Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Richard Foja
- TUM
School of Natural Sciences, Department of Chemistry and Catalysis
Research Center, Technical University of
Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Golo Storch
- TUM
School of Natural Sciences, Department of Chemistry and Catalysis
Research Center, Technical University of
Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Erling Thyrhaug
- TUM
School of Natural Sciences, Department of Chemistry and Catalysis
Research Center, Technical University of
Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | | | - Jürgen Hauer
- TUM
School of Natural Sciences, Department of Chemistry and Catalysis
Research Center, Technical University of
Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
6
|
Le DPN, Hastings G, Gozem S. How Aqueous Solvation Impacts the Frequencies and Intensities of Infrared Absorption Bands in Flavin: The Quest for a Suitable Solvent Model. Molecules 2024; 29:520. [PMID: 38276598 PMCID: PMC10818357 DOI: 10.3390/molecules29020520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
FTIR spectroscopy accompanied by quantum chemical simulations can reveal important information about molecular structure and intermolecular interactions in the condensed phase. Simulations typically account for the solvent either through cluster quantum mechanical (QM) models, polarizable continuum models (PCM), or hybrid quantum mechanical/molecular mechanical (QM/MM) models. Recently, we studied the effect of aqueous solvent interactions on the vibrational frequencies of lumiflavin, a minimal flavin model, using cluster QM and PCM models. Those models successfully reproduced the relative frequencies of four prominent stretching modes of flavin's isoalloxazine ring in the diagnostic 1450-1750 cm-1 range but poorly reproduced the relative band intensities. Here, we extend our studies on this system and account for solvation through a series of increasingly sophisticated models. Only by combining elements of QM clusters, QM/MM, and PCM approaches do we obtain an improved agreement with the experiment. The study sheds light more generally on factors that can impact the computed frequencies and intensities of IR bands in solution.
Collapse
Affiliation(s)
- D. P. Ngan Le
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (D.P.N.L.); (G.H.)
| | - Gary Hastings
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (D.P.N.L.); (G.H.)
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (D.P.N.L.); (G.H.)
| |
Collapse
|
7
|
Wang J, Liu Y. Systematic Theoretical Study on the pH-Dependent Absorption and Fluorescence Spectra of Flavins. Molecules 2023; 28:molecules28083315. [PMID: 37110549 PMCID: PMC10146991 DOI: 10.3390/molecules28083315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Flavins are a class of organic compounds with the basic structure of 7,8-dimethy-10-alkyl isoalloxazine. They are ubiquitous in nature and participate in many biochemical reactions. Due to various existing forms, there is a lack of systematic research on the absorption and fluorescence spectra of flavins. In this study, employing the density functional theory (DFT) and time-dependent (TD) DFT, we calculated the pH-dependent absorption and fluorescence spectra of flavin of three redox states (quinone, semiquinone, and hydroquinone) in solvents. The chemical equilibrium of three redox states of flavins and the pH effect on the absorption spectra and fluorescence spectra of flavins were carefully discussed. The conclusion helps with identifying the existing forms of flavins in solvent with different pH values.
Collapse
Affiliation(s)
- Jinyu Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yajun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
8
|
Grigorenko B, Domratcheva T, Nemukhin A. QM/MM Modeling of the Flavin Functionalization in the RutA Monooxygenase. Molecules 2023; 28:molecules28052405. [PMID: 36903648 PMCID: PMC10005588 DOI: 10.3390/molecules28052405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Oxygenase activity of the flavin-dependent enzyme RutA is commonly associated with the formation of flavin-oxygen adducts in the enzyme active site. We report the results of quantum mechanics/molecular mechanics (QM/MM) modeling of possible reaction pathways initiated by various triplet state complexes of the molecular oxygen with the reduced flavin mononucleotide (FMN) formed in the protein cavities. According to the calculation results, these triplet-state flavin-oxygen complexes can be located at both re-side and si-side of the isoalloxazine ring of flavin. In both cases, the dioxygen moiety is activated by electron transfer from FMN, stimulating the attack of the arising reactive oxygen species at the C4a, N5, C6, and C8 positions in the isoalloxazine ring after the switch to the singlet state potential energy surface. The reaction pathways lead to the C(4a)-peroxide, N(5)-oxide, or C(6)-hydroperoxide covalent adducts or directly to the oxidized flavin, depending on the initial position of the oxygen molecule in the protein cavities.
Collapse
Affiliation(s)
- Bella Grigorenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Domratcheva
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Nemukhin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
- Correspondence:
| |
Collapse
|
9
|
Kabir MP, Ouedraogo D, Orozco-Gonzalez Y, Gadda G, Gozem S. Alternative Strategy for Spectral Tuning of Flavin-Binding Fluorescent Proteins. J Phys Chem B 2023; 127:1301-1311. [PMID: 36740810 PMCID: PMC9940217 DOI: 10.1021/acs.jpcb.2c06475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
iLOV is an engineered flavin-binding fluorescent protein (FbFP) with applications for in vivo cellular imaging. To expand the range of applications of FbFPs for multicolor imaging and FRET-based biosensing, it is desirable to understand how to modify their absorption and emission wavelengths (i.e., through spectral tuning). There is particular interest in developing FbFPs that absorb and emit light at longer wavelengths, which has proven challenging thus far. Existing spectral tuning strategies that do not involve chemical modification of the flavin cofactor have focused on placing positively charged amino acids near flavin's C4a and N5 atoms. Guided by previously reported electrostatic spectral tunning maps (ESTMs) of the flavin cofactor and by quantum mechanical/molecular mechanical (QM/MM) calculations reported in this work, we suggest an alternative strategy: placing a negatively charged amino acid near flavin's N1 atom. We predict that a single-point mutant, iLOV-Q430E, has a slightly red-shifted absorption and fluorescence maximum wavelength relative to iLOV. To validate our theoretical prediction, we experimentally expressed and purified iLOV-Q430E and measured its spectral properties. We found that the Q430E mutation results in a slight change in absorption and a 4-8 nm red shift in the fluorescence relative to iLOV, in good agreement with the computational predictions. Molecular dynamics simulations showed that the carboxylate side chain of the glutamate in iLOV-Q430E points away from the flavin cofactor, which leads to a future expectation that further red shifting may be achieved by bringing the side chain closer to the cofactor.
Collapse
|
10
|
Fine spectral tuning of a flavin-binding fluorescent protein for multicolor imaging. J Biol Chem 2023; 299:102977. [PMID: 36738792 PMCID: PMC10023982 DOI: 10.1016/j.jbc.2023.102977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Flavin-binding fluorescent proteins are promising genetically encoded tags for microscopy. However, spectral properties of their chromophores (riboflavin, flavin mononucleotide, and flavin adenine dinucleotide) are notoriously similar even between different protein families, which limits applications of flavoproteins in multicolor imaging. Here, we present a palette of 22 finely tuned fluorescent tags based on the thermostable LOV domain from Chloroflexus aggregans. We performed site saturation mutagenesis of three amino acid positions in the flavin-binding pocket, including the photoactive cysteine, to obtain variants with fluorescence emission maxima uniformly covering the wavelength range from 486 to 512 nm. We demonstrate three-color imaging based on spectral separation and two-color fluorescence lifetime imaging of bacteria, as well as two-color imaging of mammalian cells (HEK293T), using the proteins from the palette. These results highlight the possibility of fine spectral tuning of flavoproteins and pave the way for further applications of flavin-binding fluorescent proteins in fluorescence microscopy.
Collapse
|
11
|
Van Galen CJ, Pauszek RF, Koder RL, Stanley RJ. Flavin Charge Redistribution upon Optical Excitation Is Independent of Solvent Polarity. J Phys Chem B 2023; 127:661-672. [PMID: 36649202 DOI: 10.1021/acs.jpcb.2c07266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Flavin absorption spectra encode molecular details of the flavin's local environment through coupling of local electric fields with the chromophore's charge redistribution upon optical excitation. Translating experimentally measured field-tuned transition energies to local electric field magnitudes and directions across a wide range of field magnitudes requires that the charge redistribution be independent of the local field. We have measured the charge redistribution upon optical excitation of the derivatized flavin TPARF in the non-hydrogen-bonding, nonpolar solvent toluene, with and without a tridentate hydrogen-bonding ligand, DBAP, using electronic Stark spectroscopy. These measurements were interpreted using TD-DFT finite field and difference density calculations. In comparing our present results to previous Stark spectroscopic analyses of flavin in more polar solvents, we conclude that flavin charge redistribution upon optical excitation is independent of solvent polarity, indicating that dependence of flavin transition energies on local field magnitude is linear with local field magnitude.
Collapse
Affiliation(s)
- Cornelius J Van Galen
- Department of Chemistry, Temple University, 1901 N. 13th St., 250B Beury Hall, Philadelphia, Pennsylvania19122, United States
| | - Raymond F Pauszek
- Department of Chemistry, Temple University, 1901 N. 13th St., 250B Beury Hall, Philadelphia, Pennsylvania19122, United States
| | - Ronald L Koder
- Department of Physics, The City College of New York, 1.308 CDI Bldg., 85 St. Nicholas Terrace, New York, New York10031, United States
| | - Robert J Stanley
- Department of Chemistry, Temple University, 1901 N. 13th St., 250B Beury Hall, Philadelphia, Pennsylvania19122, United States
| |
Collapse
|
12
|
Lim SY, Jang JI, Yoon H, Kim HM. Spectroscopic Study of Time-Varying Optical Redox Ratio in NADH/FAD Solution. J Phys Chem B 2022; 126:9840-9849. [PMID: 36399328 DOI: 10.1021/acs.jpcb.2c05292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autofluorescence imaging has been widely applied as advanced noninvasive diagnostics for in vivo and ex vivo tissues. The optical redox ratio (ORR), which is defined as the fluorescence intensity ratio between reduced nicotine adenine dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD), has been used as a diagnostic parameter strongly, because NADH and FAD play an important role in energetic and respiratory metabolism as coenzymes. The ORR method has provided successful assessment in cancer diagnosis including breast, cervical, and oral cancer; few studies have been reported about optical and chemical interference between two molecules resulting in a change in ORR values. In this study, we investigated the variations in ORR values of NADH/FAD mixtures dissolved in tris(hydroxymethyl)aminomethane, phosphate buffer, and deionized water environments. In vitro solutions were prepared in various concentration ratios and the experimental and theoretical ORR values were obtained from fluorescence and absorption spectra in time series. Based on the spectroscopic analysis, we concluded that the inner filter effect causes an instant decrease in FAD fluorescence just after dissolution and that the oxidation-reduction coupled with oxygenation reaction results in time-varying decreases in NADH fluorescence and FAD emission.
Collapse
Affiliation(s)
- Soo Yeong Lim
- Department of Chemistry, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul02707, Republic of Korea
| | - Jin Il Jang
- Department of Chemistry, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul02707, Republic of Korea
| | - Hongman Yoon
- Division of Convergence Technology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do10408, Republic of Korea
| | - Hyung Min Kim
- Department of Chemistry, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul02707, Republic of Korea
| |
Collapse
|
13
|
Wu R, Yang C, Wang L, Zhong D. Ultrafast Dynamics of Fatty Acid Photodecarboxylase in Anionic Semiquinone State. J Phys Chem Lett 2022; 13:11023-11028. [PMID: 36413431 PMCID: PMC9747331 DOI: 10.1021/acs.jpclett.2c02183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fatty acid photodecarboxylase is a newly identified blue-light driven photoenzyme that catalyzes decarboxylation of fatty acids. The catalytic reaction involves a transient anionic semiquinone of flavin cofactor (FAD•-) as an intermediate, but photochemical properties of this anionic radical are largely unknown. Here, we have anaerobically produced the wild-type FAP in the FAD•- state and conducted femtosecond-resolved fluorescence and absorption measurements. We have observed the multiphasic deactivation dynamics of excited states on multiple time scales from a few picoseconds even to a few nanoseconds through conical intersections between various electronic states. Interestingly, the nanosecond components can only be observed from higher electronic excited states. Our results show the complexity of the energy landscapes of various excited states and rule out the occurrence of electron or proton transfer with nearby residue(s) in the active site.
Collapse
Affiliation(s)
| | | | | | - Dongping Zhong
- Corresponding Author : Dongping Zhong − Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus Ohio, 43210, USA;
| |
Collapse
|
14
|
Wang J, Liu Y. Vibrationally resolved absorption and fluorescence spectra of flavins: A theoretical simulation in the gas phase. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinyu Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry Beijing Normal University Beijing China
| | - Ya‐Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry Beijing Normal University Beijing China
- Center for Advanced Materials Research Beijing Normal University Zhuhai China
| |
Collapse
|
15
|
Mamounis KJ, Caldas Nogueira ML, Marchi Salvador DP, Andreo-Vidal A, Sanchez-Amat A, Davidson VL. Structural Determinants of the Specific Activities of an L-Amino Acid Oxidase from Pseudoalteromonas luteoviolacea CPMOR-1 with Broad Substrate Specificity. Molecules 2022; 27:molecules27154726. [PMID: 35897902 PMCID: PMC9331233 DOI: 10.3390/molecules27154726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022] Open
Abstract
The Pseudoalteromonas luteoviolacea strain CPMOR-1 expresses a flavin adenine dinucleotide (FAD)-dependent L-amino acid oxidase (LAAO) with broad substrate specificity. Steady-state kinetic analysis of its reactivity towards the 20 proteinogenic amino acids showed some activity to all except proline. The relative specific activity for amino acid substrates was not correlated only with Km or kcat values, since the two parameters often varied independently of each other. Variation in Km was attributed to the differential binding affinity. Variation in kcat was attributed to differential positioning of the bound substrate relative to FAD that decreased the reaction rate. A structural model of this LAAO was compared with structures of other FAD-dependent LAAOs that have different substrate specificities: an LAAO from snake venom that prefers aromatic amino acid substrates and a fungal LAAO that is specific for lysine. While the amino acid sequences of these LAAOs are not very similar, their overall structures are comparable. The differential activity towards specific amino acids was correlated with specific residues in the active sites of these LAAOs. Residues in the active site that interact with the amino and carboxyl groups attached to the α-carbon of the substrate amino acid are conserved in all of the LAAOs. Residues that interact with the side chains of the amino acid substrates show variation. This provides insight into the structural determinants of the LAAOs that dictate their different substrate preferences. These results are of interest for harnessing these enzymes for possible applications in biotechnology, such as deracemization.
Collapse
Affiliation(s)
- Kyle J. Mamounis
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (K.J.M.); (M.L.C.N.)
| | - Maria Luiza Caldas Nogueira
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (K.J.M.); (M.L.C.N.)
| | - Daniela Priscila Marchi Salvador
- Department of Molecular Biology, Center of Exact and Natural Sciences, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil;
| | - Andres Andreo-Vidal
- Department of Genetics and Microbiology, University of Murcia, 30100 Murcia, Spain; (A.A.-V.); (A.S.-A.)
| | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, University of Murcia, 30100 Murcia, Spain; (A.A.-V.); (A.S.-A.)
| | - Victor L. Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (K.J.M.); (M.L.C.N.)
- Correspondence: ; Tel.: +1-407-266-7111; Fax: +1-407-266-7002
| |
Collapse
|
16
|
Foja R, Walter A, Jandl C, Thyrhaug E, Hauer J, Storch G. Reduced Molecular Flavins as Single-Electron Reductants after Photoexcitation. J Am Chem Soc 2022; 144:4721-4726. [PMID: 35259294 DOI: 10.1021/jacs.1c13285] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Flavoenzymes mediate a multitude of chemical reactions and are catalytically active both in different oxidation states and in covalent adducts with reagents. The transfer of such reactivity to the organic laboratory using simplified molecular flavins is highly desirable, and such applications in (photo)oxidation reactions are already established. However, molecular flavins have not been used for the reduction of organic substrates yet, although this activity is known and well-studied for DNA photolyase enzymes. We report a catalytic method using reduced molecular flavins as photoreductants and γ-terpinene as a sacrificial reductant. Additionally, we present our design for air-stable, reduced flavin catalysts, which is based on a conformational bias strategy and circumvents the otherwise rapid reduction of O2 from air. Using our catalytic strategy, we were able to replace superstoichiometric amounts of the rare-earth reductant SmI2 in a 5-exo-trig cyclization of substituted barbituric acid derivatives. Such flavin-catalyzed reductions are anticipated to be beneficial for other transformations as well and their straightforward synthesis indicates future use in stereo- as well as site-selective transformations.
Collapse
Affiliation(s)
- Richard Foja
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Alexandra Walter
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Christian Jandl
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Erling Thyrhaug
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Golo Storch
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
17
|
Understanding flavin electronic structure and spectra. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Comparing ultrafast excited state quenching of flavin 1,N 6-ethenoadenine dinucleotide and flavin adenine dinucleotide by optical spectroscopy and DFT calculations. Photochem Photobiol Sci 2022; 21:959-982. [PMID: 35218554 DOI: 10.1007/s43630-022-00187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
Abstract
Flavins are photoenzymatic cofactors often exploiting the absorption of light to energize photoinduced redox chemistry in a variety of contexts. Both flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are used for this function. The study of these photoenzymes has been facilitated using flavin analogs. Most of these analogs involve modification of the flavin ring, and there is recent evidence that adenine (Ade)-modified FAD can affect enzyme turnover, but so far this has only been shown for enzymes where the adenine and flavin rings are close to each other in a stacked conformation. FAD is also stacked in aqueous solution, and its photodynamics are quite different from unstacked FAD or FMN. Oxidized photoexcited FAD decays rapidly, presumably through PET with Ade as donor and Fl* as acceptor. Definitive identification of the spectral signatures of Ade∙+ and Fl∙- radicals is elusive. Here we use the FAD analog Flavin 1,N6-Ethenoadenine Dinucleotide (εFAD) to study how different photochemical outcomes depend on the identity of the Ade moiety in stacked FAD and its analog εFAD. We have used UV-Vis transient absorption spectroscopy complemented by TD-DFT calculations to investigate the excited state evolution of the flavins. In FAD*, no radicals were observed, suggesting that FAD* does not undergo PET. εFAD* kinetics showed a broad absorption band that suggests a charge transfer state exists upon photoexcitation with evidence for radical pair formation. Surprisingly, significant triplet flavin was produced from εFAD* We hypothesize that the dipolar (ε)Ade moieties differentially modulate the singlet-triplet energy gap, resulting in different intersystem crossing rates. The additional electron density on the etheno group of εFAD supplies better orbital overlap with the flavin S1 state, accelerating charge transfer in that molecule.
Collapse
|
19
|
Tarleton AS, Garcia-Alvarez JC, Wynn A, Awbrey CM, Roberts TP, Gozem S. OS100: A Benchmark Set of 100 Digitized UV-Visible Spectra and Derived Experimental Oscillator Strengths. J Phys Chem A 2022; 126:435-443. [PMID: 35015532 DOI: 10.1021/acs.jpca.1c08988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excited-state quantum chemical calculations usually report excitation energies and oscillator strengths, f, for each electronic transition. On the other hand, UV-visible spectrophotometric experiments measure energy-dependent molar extinction/attenuation coefficients, ε(v), that give absorption band line shapes when plotted. ε(v) and f are related, but this relation is complicated by broadening and solvation effects. We fitted and integrated 100 experimental UV-visible spectra to obtain 164 fexp values for absorption bands appearing in these spectra. The 100 UV-visible spectra belong to solvated organic molecules ranging in size from 6-34 atoms. We estimated uncertainties in the fitting to indicate confidence level in the reported fexp values. The corresponding computed oscillator strengths (fcomp) were obtained with time-dependent density functional theory and a polarizable continuum solvent model. By expressing experimental and computed absorption strengths using a common quantity, we directly compared fcomp and fexp. Although fcomp and fexp are well correlated (linear regression R2 = 0.921), fcomp in most cases overestimated fexp (regression slope = 1.34). The agreement between absolute fcomp and fexp values was substantially improved by accounting for a solvent refractive index factor, as suggested in some derivations in the literature. The 100 digitized UV-visible spectra are included as plain text files in the Supporting Information to aid in benchmarking computational or machine learning methods that aim to simulate realistic UV-visible absorption spectra.
Collapse
Affiliation(s)
- Astrid S Tarleton
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Jorge C Garcia-Alvarez
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Anah Wynn
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Cade M Awbrey
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Tomas P Roberts
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
20
|
Acharya A, Yi D, Pavlova A, Agarwal V, Gumbart JC. Resolving the Hydride Transfer Pathway in Oxidative Conversion of Proline to Pyrrole. Biochemistry 2022; 61:206-215. [DOI: 10.1021/acs.biochem.1c00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dongqi Yi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
21
|
Kabir MP, Orozco-Gonzalez Y, Hastings G, Gozem S. The effect of hydrogen-bonding on flavin's infrared absorption spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120110. [PMID: 34224983 DOI: 10.1016/j.saa.2021.120110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Cluster and continuum solvation computational models are employed to model the effect of hydrogen bonding interactions on the vibrational modes of lumiflavin. Calculated spectra were compared to experimental Fourier-transform infrared (FTIR) spectra in the diagnostic 1450-1800 cm-1 range, where intense νC=C, νC=N, [Formula: see text] , and [Formula: see text] stretching modes of flavin's isoalloxazine ring are found. Local mode analysis is used to describe the strength of hydrogen-bonding in cluster models. The computations indicate that νC=C and νC=N mode frequencies are relatively insensitive to intermolecular interactions while the [Formula: see text] and [Formula: see text] modes are sensitive to direct (and also indirect for [Formula: see text] ) hydrogen-bonding interactions. Although flavin is neutral, basis sets without the diffuse functions provide incorrect relative frequencies and intensities. The 6-31+G* basis set is found to be adequate for this system, and there is limited benefit to considering larger basis sets. Calculated vibrational mode frequencies agree with experimentally determined frequencies in solution when cluster models with multiple water molecules are used. Accurate simulation of relative FTIR band intensities, on the other hand, requires a continuum (or possibly quantum mechanical/molecular mechanical) model that accounts for long-range electrostatic effects. Finally, an experimental peak at ca. 1624 cm-1 that is typically assigned to the [Formula: see text] vibrational stretching mode has a complicated shape that suggests multiple underlying contributions. Our calculations show that this band has contributions from both the C6-C7 and C2 = O stretching vibrations.
Collapse
Affiliation(s)
- Mohammad Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States
| | | | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302, United States; Center for Nano-Optics, Georgia State University, Atlanta, GA 30302, United States.
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States.
| |
Collapse
|
22
|
Dozova N, Lacombat F, Lombard M, Hamdane D, Plaza P. Ultrafast dynamics of fully reduced flavin in catalytic structures of thymidylate synthase ThyX. Phys Chem Chem Phys 2021; 23:22692-22702. [PMID: 34605505 DOI: 10.1039/d1cp03379d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thymidylate is a vital DNA precursor synthesized by thymidylate synthases. ThyX is a flavin-dependent thymidylate synthase found in several human pathogens and absent in humans, which makes it a potential target for antimicrobial drugs. This enzyme methylates the 2'-deoxyuridine 5'-monophosphate (dUMP) to 2'-deoxythymidine 5'-monophosphate (dTMP) using a reduced flavin adenine dinucleotide (FADH-) as prosthetic group and (6R)-N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2THF) as a methylene donor. Recently, it was shown that ThyX-catalyzed reaction is a complex process wherein FADH- promotes both methylene transfer and reduction of the transferred methylene into a methyl group. Here, we studied the dynamic and photophysics of FADH- bound to ThyX, in several substrate-binding states (no substrate, in the presence of dUMP or folate or both) by femtosecond transient absorption spectroscopy. This methodology provides valuable information about the ground-state configuration of the isoalloxazine moiety of FADH- and the rigidity of its local environment, through spectra shape and excited-state lifetime parameters. In the absence of substrate, the environment of FADH- in ThyX is only mildly more constrained than that of free FADH- in solution. The addition of dUMP however narrows the distribution of ground-state configurations and increases the constraints on the butterfly bending motion in the excited state. Folate binding results in the selection of new ground-state configurations, presumably located at a greater distance from the conical intersection where excited-state decay occurs. When both substrates are present, the ground-state configuration appears on the contrary rather limited to a geometry close to the conical intersection, which explains the relatively fast excited-state decay (100 ps on the average), even if the environment of the isoalloxazine is densely packed. Hence, although the environment of the flavin is dramatically constrained, FADH- retains a dynamic necessary to shuttle carbon from folate to dUMP. Our study demonstrates the high sensitivity of FADH- photophysics to the constraints exerted by its immediate surroundings.
Collapse
Affiliation(s)
- Nadia Dozova
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Fabien Lacombat
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Sorbonne Université, 75005 Paris, France.
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Sorbonne Université, 75005 Paris, France.
| | - Pascal Plaza
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
23
|
Dratch BD, Orozco-Gonzalez Y, Gadda G, Gozem S. Ionic Atmosphere Effect on the Absorption Spectrum of a Flavoprotein: A Reminder to Consider Solution Ions. J Phys Chem Lett 2021; 12:8384-8396. [PMID: 34435784 DOI: 10.1021/acs.jpclett.1c02173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study utilizes the FMN-dependent NADH:quinone oxidoreductase from Pseudomonas aeruginosa PAO1 to investigate the effect of introducing an active site negative charge on the flavin absorption spectrum both in the absence and presence of a long-range electrostatic potential coming from solution ions. There were no observed changes in the flavin UV-visible spectrum when an active site tyrosine (Y277) becomes deprotonated in vitro. These results could only be reproduced computationally using average solvent electrostatic configuration (ASEC) QM/MM simulations that include both positive and negative solution ions. The same calculations performed with minimal ions to neutralize the total protein charge predicted that deprotonating Y277 would significantly alter the flavin absorption spectrum. Analyzing the distribution of solution ions indicated that the ions reorganize around the protein surface upon Y277 deprotonation to cancel the effect of the tyrosinate on the flavin absorption spectrum. Additional biochemical experiments were performed to test this hypothesis.
Collapse
Affiliation(s)
- Benjamin D Dratch
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | | | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
- Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
24
|
Gozem S, Krylov AI. The
ezSpectra
suite: An easy‐to‐use toolkit for spectroscopy modeling. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1546] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Samer Gozem
- Department of Chemistry Georgia State University Atlanta Georgia USA
| | - Anna I. Krylov
- Department of Chemistry University of Southern California Los Angeles California USA
| |
Collapse
|
25
|
Remeeva A, Nazarenko VV, Kovalev K, Goncharov IM, Yudenko A, Astashkin R, Gordeliy V, Gushchin I. Insights into the mechanisms of light-oxygen-voltage domain color tuning from a set of high-resolution X-ray structures. Proteins 2021; 89:1005-1016. [PMID: 33774867 DOI: 10.1002/prot.26078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 01/01/2023]
Abstract
Light-oxygen-voltage (LOV) domains are widespread photosensory modules that can be used in fluorescence microscopy, optogenetics and controlled production of reactive oxygen species. All of the currently known LOV domains have absorption maxima in the range of ~440 to ~450 nm, and it is not clear whether they can be shifted significantly using mutations. Here, we have generated a panel of LOV domain variants by mutating the key chromophore-proximal glutamine aminoacid of a thermostable flavin based fluorescent protein CagFbFP (Gln148) to asparagine, aspartate, glutamate, histidine, lysine and arginine. Absorption spectra of all of the mutants are blue-shifted, with the maximal shift of 8 nm observed for the Q148H variant. While CagFbFP and its Q148N/D/E variants are not sensitive to pH, Q148H/K/R reveal a moderate red shift induced byacidic pH. To gain further insight, we determined high resolution crystal structures of all of the mutants studied at the resolutions from 1.07 Å for Q148D to 1.63 Å for Q148R. Whereas in some of the variants, the aminoacid 148 remains in the vicinity of the flavin, in Q148K, Q148R and partially Q148D, the C-terminus of the protein unlatches and the side chain of the residue 148 is reoriented away from the chromophore. Our results explain the absence of color shifts from replacing Gln148 with charged aminoacids and pave the way for rational design of color-shifted flavin based fluorescent proteins.
Collapse
Affiliation(s)
- Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Ivan M Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Roman Astashkin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
26
|
Iyer A, Reis RAG, Gannavaram S, Momin M, Spring-Connell AM, Orozco-Gonzalez Y, Agniswamy J, Hamelberg D, Weber IT, Gozem S, Wang S, Germann MW, Gadda G. A Single-Point Mutation in d-Arginine Dehydrogenase Unlocks a Transient Conformational State Resulting in Altered Cofactor Reactivity. Biochemistry 2021; 60:711-724. [PMID: 33630571 DOI: 10.1021/acs.biochem.1c00054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Proteins are inherently dynamic, and proper enzyme function relies on conformational flexibility. In this study, we demonstrated how an active site residue changes an enzyme's reactivity by modulating fluctuations between conformational states. Replacement of tyrosine 249 (Y249) with phenylalanine in the active site of the flavin-dependent d-arginine dehydrogenase yielded an enzyme with both an active yellow FAD (Y249F-y) and an inactive chemically modified green FAD, identified as 6-OH-FAD (Y249F-g) through various spectroscopic techniques. Structural investigation of Y249F-g and Y249F-y variants by comparison to the wild-type enzyme showed no differences in the overall protein structure and fold. A closer observation of the active site of the Y249F-y enzyme revealed an alternative conformation for some active site residues and the flavin cofactor. Molecular dynamics simulations probed the alternate conformations observed in the Y249F-y enzyme structure and showed that the enzyme variant with FAD samples a metastable conformational state, not available to the wild-type enzyme. Hybrid quantum/molecular mechanical calculations identified differences in flavin electronics between the wild type and the alternate conformation of the Y249F-y enzyme. The computational studies further indicated that the alternate conformation in the Y249F-y enzyme is responsible for the higher spin density at the C6 atom of flavin, which is consistent with the formation of 6-OH-FAD in the variant enzyme. The observations in this study are consistent with an alternate conformational space that results in fine-tuning the microenvironment around a versatile cofactor playing a critical role in enzyme function.
Collapse
Affiliation(s)
- Archana Iyer
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Renata A G Reis
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Swathi Gannavaram
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Mohamed Momin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | | | | | - Johnson Agniswamy
- Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Irene T Weber
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Siming Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Markus W Germann
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
27
|
Giuliani G, Melaccio F, Gozem S, Cappelli A, Olivucci M. QM/MM Investigation of the Spectroscopic Properties of the Fluorophore of Bacterial Luciferase. J Chem Theory Comput 2021; 17:605-613. [PMID: 33449693 PMCID: PMC9220819 DOI: 10.1021/acs.jctc.0c01078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We employ replica-exchange molecular dynamics (REMD) and a hybrid ab initio multiconfigurational quantum mechanics/molecular mechanics (QM/MM) approach to model the absorption and fluorescence properties of bacterial luciferin-luciferase. Specifically, we employ complete active space perturbation theory (CASPT2) and study the effect of active space, basis set, and IPEA shift on the computed energies. We discuss the effect of the protein environment on the fluorophore's excited-state potential energy surface and the role that the protein plays in enhancing the fluorescence quantum yield in bacterial bioluminescence.
Collapse
Affiliation(s)
- Germano Giuliani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Federico Melaccio
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Andrea Cappelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
- Department of Chemistry, Bowling Green State University, Bowing Green, Ohio 43403, United States
| |
Collapse
|
28
|
Huix-Rotllant M, Schwinn K, Ferré N. Infrared spectroscopy from electrostatic embedding QM/MM: local normal mode analysis of infrared spectra of arabidopsis thaliana plant cryptochrome. Phys Chem Chem Phys 2021; 23:1666-1674. [PMID: 33415326 DOI: 10.1039/d0cp06070d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Infrared (IR) spectroscopy is an undoubtedly valuable tool for analyzing vibrations, conformational changes, and chemical reactions of biological macromolecules. Currently, there is a lack of theoretical methods to create a model successfully and efficiently simulate and interpret the origin of the spectral signatures, which are often complex to analyze. Here, we develop a new method for IR vibrational spectroscopy based on analytic second derivatives of electrostatic embedding QM/MM energy, the computation of electric dipole moments with respect to nuclear perturbations and the localization of normal modes. In addition to the IR spectrum, the method can provide the origin of each peak from clearly identified molecular motions of constituent fragments. As a proof of concept, we analyze the IR spectra of flavin adenine dinucleotides in water and in Arabidopsis thaliana cryptochrome proteins for four redox forms, in addition to the difference IR spectra before and after illumination with blue light. We show that the main peaks in the difference spectrum are due to N-H hydrogen out-of-plane motions and hydrogen bendings.
Collapse
|
29
|
Schwinn K, Ferré N, Huix-Rotllant M. UV-visible absorption spectrum of FAD and its reduced forms embedded in a cryptochrome protein. Phys Chem Chem Phys 2020; 22:12447-12455. [PMID: 32458897 DOI: 10.1039/d0cp01714k] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptochromes are a class of flavoproteins proposed as candidates to explain magnetoreception of animals, plants and bacteria. The main hypothesis is that a biradical is formed upon blue-light absorption by flavin adenine dinucleotide (FAD). In a protein milieu, the oxidized form of FAD can be reduced, leading to four redox derivative forms: anionic and neutral semi-reduced radicals, and anionic and neutral fully reduced forms. All these forms have a characteristic electronic absorption spectrum, with a strong vibrational resolution. Here, we carried out a normal mode analysis at the electrostatic embedding QM/MM level of theory to compute the vibrationally resolved absorption spectra of the five redox forms of FAD embedded in a plant cryptochrome. We show that explicitly accounting for vibrational broadening contributions to electronic transitions is essential to reproduce the experimental spectra. In the case of the neutral radical form of FAD, the absorption spectrum is reproduced only if the presence of a tryptophan radical is considered.
Collapse
|
30
|
Deb A, Grewal RK, Roy S, Mitra D. Residue interaction dynamics in
Vaucheria
aureochrome1 light‐oxygen‐voltage: Bridging theory and experiments. Proteins 2020; 88:1660-1674. [DOI: 10.1002/prot.25984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/04/2020] [Accepted: 07/12/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Anwesha Deb
- Department of Life Sciences Presidency University Kolkata India
| | | | - Soumen Roy
- Department of Physics Bose Institute Kolkata India
| | - Devrani Mitra
- Department of Life Sciences Presidency University Kolkata India
| |
Collapse
|
31
|
Schwinn K, Ferré N, Huix-Rotllant M. Efficient Analytic Second Derivative of Electrostatic Embedding QM/MM Energy: Normal Mode Analysis of Plant Cryptochrome. J Chem Theory Comput 2020; 16:3816-3824. [PMID: 32320612 DOI: 10.1021/acs.jctc.9b01145] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Analytic second derivatives of electrostatic embedding (EE) quantum mechanics/molecular mechanics (QM/MM) energy are important for performing vibrational analysis and simulating vibrational spectra of quantum systems interacting with an environment represented as a classical electrostatic potential. The main bottleneck of EE-QM/MM second derivatives is the solution of coupled perturbed equations for each MM atom perturbation. Here, we exploit the Q-vector method [J. Chem. Phys., 2019, 151, 041102] to workaround this bottleneck. We derive the full analytic second derivative of the EE-QM/MM energy, which allows us to compute QM, MM, and QM-MM Hessian blocks in an efficient and easy to implement manner. To show the capabilities of our method, we compute the normal modes for the full Arabidopsis thaliana plant cryptochrome. We show that the flavin adenine dinucleotide vibrations (QM subsystem) strongly mix with protein modes. We compute approximate vibronic couplings for the lowest bright transition, from which we extract spectral densities and the homogeneous broadening of FAD absorption spectrum in protein using vibrationally resolved electronic spectrum simulations.
Collapse
|
32
|
Shoji M, Abe Y, Boero M, Shigeta Y, Nishiya Y. Reaction mechanism of N-cyclopropylglycine oxidation by monomeric sarcosine oxidase. Phys Chem Chem Phys 2020; 22:16552-16561. [DOI: 10.1039/d0cp01679a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction mechanism of monomeric sarcosine oxidase (MSOX) with N-cyclopropylglycine (CPG) is unravelled at the theoretical level of the hybrid quantum mechanics/molecular mechanical (QM/MM) method.
Collapse
Affiliation(s)
- Mitsuo Shoji
- Center for Computational Sciences
- University of Tsukuba
- Tsukuba
- Japan
- JST-PRESTO
| | | | - Mauro Boero
- University of Strasbourg
- Institut de Physique et Chimie des Matériaux de Strasbourg
- CNRS
- UMR 7504
- France
| | - Yasuteru Shigeta
- Center for Computational Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Yoshiaki Nishiya
- Department of Life Science
- Faculty of Science and Engineering
- Setsunan University
- Osaka 572-8508
- Japan
| |
Collapse
|
33
|
Benkyi I, Tapavicza E, Fliegl H, Sundholm D. Calculation of vibrationally resolved absorption spectra of acenes and pyrene. Phys Chem Chem Phys 2019; 21:21094-21103. [DOI: 10.1039/c9cp04178h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Absorption spectra of polycyclic aromatic hydrocarbons have been simulated by using a real-time generating function method that combines adiabatic electronic excitation energies with vibrational energies of the excited states.
Collapse
Affiliation(s)
- Isaac Benkyi
- University of Helsinki
- Department of Chemistry
- Faculty of Science
- Finland
| | - Enrico Tapavicza
- California State University
- Long Beach
- Department of Chemistry and Biochemistry
- Long Beach
- USA
| | - Heike Fliegl
- Karlsruhe Institute of Technology (KIT)
- Institute of Nanotechnology
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Dage Sundholm
- University of Helsinki
- Department of Chemistry
- Faculty of Science
- Finland
| |
Collapse
|