1
|
Pagaduan J, Hight-Huf N, Zhou L, Dix N, Premadasa UI, Doughty B, Russell TP, Ramasubramaniam A, Barnes M, Katsumata R, Emrick T. Spatial and Bidirectional Work Function Modulation of Monolayer Graphene with Patterned Polymer "Fluorozwitterists". ACS CENTRAL SCIENCE 2024; 10:1629-1639. [PMID: 39220689 PMCID: PMC11363338 DOI: 10.1021/acscentsci.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Understanding the electronic properties resulting from soft-hard material interfacial contact has elevated the utility of functional polymers in advanced materials and nanoscale structures, such as in work function engineering of two-dimensional (2D) materials to produce new types of high-performance devices. In this paper, we describe the electronic impact of functional polymers, containing both zwitterionic and fluorocarbon components in their side chains, on the work function of monolayer graphene through the preparation of negative-tone photoresists, which we term "fluorozwitterists." The zwitterionic and fluorinated groups each represent dipole-containing moieties capable of producing distinct surface energies as thin films. Kelvin probe force microscopy revealed these polymers to have a p-doping effect on graphene, which contrasts the work function decrease typically associated with polymer-to-graphene contact. Copolymerization of fluorinated zwitterionic monomers with methyl methacrylate and a benzophenone-substituted methacrylate produced copolymers that were amenable to photolithographic fabrication of fluorozwitterist structures. Consequently, spatial alteration of zwitterion coverage across graphene yielded stripes that resemble a lateral p-i-n diode configuration, with local increase or decrease of work function. Overall, this polymeric fluorozwitterist design is suitable for enabling simple, solution-based surface patterning and is anticipated to be useful for spatial work function modulation of 2D materials integrated into electronic devices.
Collapse
Affiliation(s)
- James
Nicolas Pagaduan
- Polymer
Science and Engineering Department, University
of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Nicholas Hight-Huf
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Le Zhou
- Polymer
Science and Engineering Department, University
of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Nicholas Dix
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Uvinduni I. Premadasa
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Thomas P. Russell
- Polymer
Science and Engineering Department, University
of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Ashwin Ramasubramaniam
- Department
of Mechanical and Industrial Engineering and Materials Science Graduate
Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Michael Barnes
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Reika Katsumata
- Polymer
Science and Engineering Department, University
of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer
Science and Engineering Department, University
of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Recent Advances in Poly(Ionic Liquid)-Based Membranes for CO 2 Separation. Polymers (Basel) 2023; 15:polym15030667. [PMID: 36771968 PMCID: PMC9920068 DOI: 10.3390/polym15030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Poly(ionic liquid)-based membranes have been the subject of intensive research in the last 15 years due to their potential for the separation of CO2 from other gases. In this short review, different types of PIL-based membranes for CO2 separation are described (neat PIL membranes; PIL-IL composite membranes; PIL-polymer blend membranes; PIL-based block copolymer membranes, and PIL-based mixed matrix membranes), and their state-of-the-art separation results for different gas pairs (CO2/N2, CO2/H2, and CO2/CH4) are presented and discussed. This review article is focused on the most relevant research works performed over the last 5 years, that is, since the year 2017 onwards, in the field of poly(ionic liquid)-based membranes for CO2 separation. The micro- and nano-morphological characterization of the membranes is highlighted as a research topic that requires deeper study and understanding. Nowadays there is an array of advanced structural characterization techniques, such as neutron scattering techniques with contrast variation (using selective deuteration), that can be used to probe the micro- and nanostructure of membranes, in length scales ranging from ~1 nm to ~15 μm. Although some of these techniques have been used to study the morphology of PIL-based membranes for electrochemical applications, their use in the study of PIL-based membranes for CO2 separation is still unknown.
Collapse
|
3
|
Outerelo Corvo T, Jourdain A, O’Brien S, Restagno F, Drockenmuller E, Chennevière A. Multiscale Structure of Poly(ionic liquid)s in Bulk and Solutions by Small-Angle Neutron Scattering. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tiago Outerelo Corvo
- Université Paris Saclay, Laboratoire Léon Brillouin, UMR 12 CNRS-CEA, CEA-Saclay, Gif-sur-Yvette 91191, France
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Antoine Jourdain
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, Lyon F-69003, France
| | - Shona O’Brien
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, Lyon F-69003, France
| | - Frédéric Restagno
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Eric Drockenmuller
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, Lyon F-69003, France
| | - Alexis Chennevière
- Université Paris Saclay, Laboratoire Léon Brillouin, UMR 12 CNRS-CEA, CEA-Saclay, Gif-sur-Yvette 91191, France
| |
Collapse
|
4
|
Zhang J, Chen Z, Zhang Y, Dong S, Chen Y, Zhang S. Poly(ionic liquid)s Containing Alkoxy Chains and Bis(trifluoromethanesulfonyl)imide Anions as Highly Adhesive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100962. [PMID: 34117661 DOI: 10.1002/adma.202100962] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Adhesive materials have wide applications in diverse fields, but the development of a novel and multipurpose adhesive is a great challenge. This study demonstrates that conventional poly(ionic liquid)s (PILs) can be designed as highly efficient adhesives by simply introducing alkoxy moieties into the cationic backbone of PILs containing bis(trifluoromethanesulfonimide) (TFSI- ) anions. The incorporated flexible alkoxy chain not only reduces the glass transition temperature of PILs but also endows these materials with strong hydrogen bonding interactions, which, together with the unique electrostatic interaction of the PILs, simultaneously contributes to a high cohesive energy and interfacial adhesive energy. Consequently, these alkoxy PILs are highly adhesive on various substrates such as glass, ceramic, stainless steel, aluminum, and polymers, in contrast to the nonadhesive behavior of conventional PILs. Photosensitive or electronically conductive composite adhesives are fabricated by virtue of the compatibility between ionic liquids and carbon nanotubes or silver nanofibers. Interestingly, the PIL-2-TFSI adhesive possesses a unique and reversible response to electric fields and achieves up to 35% improvement in adhesive strength.
Collapse
Affiliation(s)
- Jun Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Zhanying Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Yan Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yufang Chen
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| |
Collapse
|
5
|
Banerjee P, Pal P, Ghosh A, Mandal TK. Ion transport and relaxation in phosphonium poly(ionic liquid) homo‐ and
co‐polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Palash Banerjee
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata India
| | - Pulak Pal
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata India
| | - Aswini Ghosh
- School of Physical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata India
| | - Tarun K. Mandal
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata India
| |
Collapse
|
6
|
Chowdhury AU, Chang D, Xu Y, Hong K, Sumpter BG, Carrillo JMY, Doughty B. Mapping the Interfacial Chemistry and Structure of Partially Fluorinated Bottlebrush Polymers and Their Linear Analogues. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:211-218. [PMID: 33372789 DOI: 10.1021/acs.langmuir.0c02786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer interfaces are key to a range of applications including membranes for chemical separations, hydrophobic coatings, and passivating layers for antifouling. While important, challenges remain in probing the interfacial monolayer where the molecular ordering and orientation can change depending on the chemical makeup or processing conditions. In this work, we leverage surface specific vibrational sum frequency generation (SFG) and the associated dependence on molecular symmetry to elucidate the ordering and orientations of key functional groups for poly(2,2,2-trifluoroethyl methacrylate) bottlebrush polymers and their linear polymer analogues. These measurements were framed by atomistic molecular dynamic simulations to provide a complementary physical picture of the gas-polymer interface. Simulations and SFG measurements show that methacrylate backbones are buried beneath a layer of trifluoroethyl containing side groups that result in structurally similar interfaces regardless of the polymer molecular weight or architecture. The average orientational angles of the trifluoroethyl containing side groups differ depending on polymer linear and bottlebrush architectures, suggesting that the surface groups can reorient via available rotational degrees of freedom. Results show that the surfaces of the bottlebrush and linear polymer samples do not strongly depend on molecular weight or architecture. As such, one cannot rely on increasing the molecular weight or altering the architecture to tune surface properties. This insight into the polymer interfacial structure is expected to advance the design of new material interfaces with tailored chemical/functional properties.
Collapse
Affiliation(s)
| | | | - Yuewen Xu
- Bostik, Inc., Wauwatosa, Wisconsin 53226, United States
| | | | | | | | | |
Collapse
|
7
|
Bocharova V, Genix AC, Kisliuk A, Sala G, Osti NC, Mamontov E, Sokolov AP. Role of Fast Dynamics in Conductivity of Polymerized Ionic Liquids. J Phys Chem B 2020; 124:10539-10545. [PMID: 33164513 DOI: 10.1021/acs.jpcb.0c07549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymerized ionic liquids (PolyILs) are promising candidates for a broad range of technologies. However, the relatively low conductivity of PolyILs at room temperature has strongly limited their applications. In this work, we provide new insights into the roles of various microscopic parameters controlling ion transport in these polymers, which are crucial for their rational design and practical applications. Using broadband dielectric spectroscopy and neutron and light scattering techniques, we found a clear connection between the activation energy for conductivity, fast dynamics, and high-frequency shear modulus in PolyILs at their glass transition temperature (Tg). In particular, our analysis reveals a correlation between conductivity and the amplitude of fast picosecond fluctuations at Tg, suggesting the possible involvement of fast dynamics in lowering the energy barrier for ion conductivity. We also demonstrate that both the activation energy for ion transport and the amplitude of the fast fluctuations depend on the high-frequency shear moduli of PolyILs, thus identifying a practically important parameter for tuning conductivity. The parameters recognized in this work and their connection to the ionic conductivity of PolyILs set the stage for a deeper understanding of the mechanism of ion transport in PolyILs in the glassy state.
Collapse
Affiliation(s)
- Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Anne-Caroline Genix
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, F-34095 Montpellier, France
| | - Alexander Kisliuk
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gabriele Sala
- Spallation Neutron Source, Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
8
|
Chowdhury AU, Lin L, Doughty B. Hydrogen-Bond-Driven Chemical Separations: Elucidating the Interfacial Steps of Self-Assembly in Solvent Extraction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32119-32130. [PMID: 32551500 DOI: 10.1021/acsami.0c06176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Chemical separations, particularly liquid extractions, are pervasive in academic and industrial laboratories, yet a mechanistic understanding of the events governing their function are obscured by interfacial phenomena that are notoriously difficult to measure. In this work, we investigate the fundamental steps of ligand self-assembly as driven by changes in the interfacial H-bonding network using vibrational sum frequency generation. Our results show how the bulk pH modulates the interfacial structure of extractants at the buried oil/aqueous interface via the formation of unique H-bonding networks that order and bridge ligands to produce self-assembled aggregates. These extended H-bonded structures are key to the subsequent extraction of Co2+ from the aqueous phase in promoting micelle formation and subsequent ejection of the said micelle into the oil phase. The combination of static and time-resolved measurements reveals the events underlying complexities of liquid extractions at high [Co2+]:[ligand] ratios by showing an evolution of interfacially assembled structures that are readily tuned on a chemical basis by altering the compositions of the aqueous phase. The results of this work point to new principles to design-applied separations through the manipulation of surface charge, electrostatic screening, and the associated H-bonding networks that arise at the interface to facilitate organization and subsequent extraction.
Collapse
Affiliation(s)
- Azhad U Chowdhury
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Lu Lin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
9
|
Kumar R, Mahalik JP, Silmore KS, Wojnarowska Z, Erwin A, Ankner JF, Sokolov AP, Sumpter BG, Bocharova V. Capacitance of thin films containing polymerized ionic liquids. SCIENCE ADVANCES 2020; 6:eaba7952. [PMID: 32637617 PMCID: PMC7319767 DOI: 10.1126/sciadv.aba7952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Electrode-polymer interfaces dictate many of the properties of thin films such as capacitance, the electric field experienced by polymers, and charge transport. However, structure and dynamics of charged polymers near electrodes remain poorly understood, especially in the high concentration limit representative of the melts. To develop an understanding of electric field-induced transformations of electrode-polymer interfaces, we have studied electrified interfaces of an imidazolium-based polymerized ionic liquid (PolyIL) using combinations of broadband dielectric spectroscopy, specular neutron reflectivity, and simulations based on the Rayleigh's dissipation function formalism. Overall, we obtained the camel-shaped dependence of the capacitance on applied voltage, which originated from the responses of an adsorbed polymer layer to applied voltages. This work provides additional insights related to the effects of molecular weight in affecting structure and properties of electrode-polymer interfaces, which are essential for designing next-generation energy storage and harvesting devices.
Collapse
Affiliation(s)
- Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| | - Jyoti P. Mahalik
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| | - Kevin S. Silmore
- Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zaneta Wojnarowska
- Institute of Physics,University of Silesia,SMCEBI, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Andrew Erwin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- School of Materials Science and Engineering, Georgia Tech, Atlanta, GA 30332, USA
| | - John F. Ankner
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Alexei P. Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|