1
|
Liu KW, Yang B, Wang P, Yan ST, Xu XL, Xu HG, Zheng WJ. Dispersion leading potential energy surface of N2·NbN12-: Anion photoelectron spectroscopy and theoretical studies. J Chem Phys 2024; 161:164303. [PMID: 39435836 DOI: 10.1063/5.0232657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
In order to understand the dispersion interactions between molecules and to provide information about the potential energy surface of geometry evolutions, NbN12- and N2·NbN12- complexes were investigated by using photoelectron spectroscopy and ab initio calculations. The experimental adiabatic detachment energy (ADE) and vertical detachment energy (VDE) of NbN12- were both measured to be 2.129 ± 0.030 eV. The experimental ADE and VDE of N2·NbN12- were measured to be 2.17 ± 0.05 and 2.23 ± 0.05 eV, respectively, which are slightly higher than those of NbN12-. The structures of NbN12-/0 were confirmed to be hexacoordinated octahedrons. The investigation of N2·NbN12- structures shows that it is stable for N2 to bind to the face or vertex site of octahedron NbN12-; the face-side-on structure has the lowest energy. The calculations based on symmetry-adapted perturbation theory suggest that the dispersion term is predominant and leads to the stability of N2·NbN12- complexes.
Collapse
Affiliation(s)
- Kai-Wen Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Yang
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Peng Wang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Shuai-Ting Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Fleck M, Kopp WA, Viswanathan N, Hansen N, Gross J, Leonhard K. Efficient Generation of Torsional Energy Profiles by Multifidelity Gaussian Processes for Hindered Rotor Corrections. J Chem Theory Comput 2024; 20:7574-7585. [PMID: 39163246 DOI: 10.1021/acs.jctc.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Accurate thermochemistry computations often require proper treatment of torsional modes. The one-dimensional hindered rotor model has proven to be a computationally efficient solution, given a sufficiently accurate potential energy surface. Methods that provide potential energies at various compromises of uncertainty and computational time demand can be optimally combined within a multifidelity treatment. In this study, we demonstrate how multifidelity modeling leads to (1) smooth interpolation along low-fidelity scan points with uncertainty estimates, (2) inclusion of high-fidelity data that change the energetic order of conformations, and (3) predicting best next-point calculations to extend an initial coarse grid. Our diverse application set comprises molecules, clusters, and transition states of alcohols, ethers, and rings. We discuss limitations for cases in which the low-fidelity computation is highly unreliable. Different features of the potential energy curve affect different quantities. To obtain "optimal" fits, we apply strategies ranging from simple minimization of deviations to developing an acquisition function tailored for statistical thermodynamics. Bayesian prediction of best next calculations can save a substantial amount of computation time for one- and multidimensional hindered rotors.
Collapse
Affiliation(s)
- Maximilian Fleck
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Wassja A Kopp
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062 Aachen, Germany
| | - Narasimhan Viswanathan
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062 Aachen, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Kai Leonhard
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062 Aachen, Germany
| |
Collapse
|
3
|
Rowell CER, Kaur J, Zhang Y, Alzarieni KZ, Anyaeche RO, Ma HM, Little AM, Sharma T, Nussbaum MD, Hershberger DA, Lee YJ, Blagojevic V, Neill JL, Kenttämaa HI. Application of Laser-Induced Acoustic Desorption for Molecular Rotational Resonance Spectroscopy. Anal Chem 2024; 96:6255-6263. [PMID: 38588398 DOI: 10.1021/acs.analchem.3c05486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Molecular Rotational Resonance (MRR) spectroscopy is a uniquely precise tool for the determination of molecular structures of volatile compounds in mixtures, as the characteristic rotational transition frequencies of a molecule are extremely sensitive to its 3D structure through the moments of inertia in a three-dimensional coordinate system. This enables identification of the compounds based on just a few parameters that can be calculated, as opposed to, for example, mass spectrometric data, which often require expert analysis of 10-20 different signals and the use of many standards/model compounds. This paper introduces a new sampling technique for MRR, laser-induced acoustic desorption (LIAD), to allow the vaporization of nonvolatile and thermally labile analytes without the need for excessive heating or derivatization. In this proof-of-concept study, LIAD was successfully coupled to an MRR instrument to conduct measurements on seven compounds with differing polarities, molecular weights, and melting and boiling points. Identification of three isomers in a mixture was also successfully performed using LIAD/MRR. Based on these results, LIAD/MRR is demonstrated to provide a powerful approach for the identification of nonvolatile and/or thermally labile analytes with molecular weights up to 600 Da in simple mixtures, which does not require the use of reference compounds. In the future, applications to more complex mixtures, such as those relevant to pharmaceutical research, and quantitative aspects of LIAD/MRR will be reported.
Collapse
Affiliation(s)
- Caroline E R Rowell
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47904, United States
| | - Jaskiran Kaur
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47904, United States
| | - Yuyang Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47904, United States
| | - Kawthar Z Alzarieni
- Jordan University of Science and Technology, Faculty of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, Irbid 22110, Jordan
| | - Ruth O Anyaeche
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47904, United States
| | - Hendrik M Ma
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47904, United States
| | - Annika M Little
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47904, United States
| | - Tanya Sharma
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47904, United States
| | - Matthan D Nussbaum
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47904, United States
| | - Drake A Hershberger
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47904, United States
| | - Ying-Jou Lee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47904, United States
| | | | - Justin L Neill
- BrightSpec Inc., Charlottesville, Virginia 22903, United States
| | - Hilkka I Kenttämaa
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47904, United States
| |
Collapse
|
4
|
Mata RA, Zhanabekova T, Obenchain DA, Suhm MA. Dispersion Control over Molecule Cohesion: Exploiting and Dissecting the Tipping Power of Aromatic Rings. Acc Chem Res 2024; 57:1077-1086. [PMID: 38537179 PMCID: PMC11025128 DOI: 10.1021/acs.accounts.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
ConspectusWe have learned over the past years how London dispersion forces can be effectively used to influence or even qualitatively tip the structure of aggregates and the conformation of single molecules. This happens despite the fact that single dispersion contacts are much weaker than competing polar forces. It is a classical case of strength by numbers, with the importance of London dispersion forces scaling with the system size. Knowledge about the tipping points, however difficult to attain, is necessary for a rational design of intermolecular forces. One requires a careful assessment of the competing interactions, either by sensitive spectroscopic techniques for the study of the isolated molecules and aggregates or by theoretical approaches. Of particular interest are the systems close to the tipping point, when dispersion interactions barely outweigh or approach the strength of the other interactions. Such subtle cases are important milestones for a scale-up to realistic multi-interaction situations encountered in the fields of life and materials science. In searching for examples that provide ideal competing interactions in complexes and small clusters, aromatic systems can offer a diverse set of molecules with a variation of dispersion and electrostatic forces that control the dominant and peripheral interactions. Our combined spectroscopic and theoretical investigations provide valuable insights into the balance of intermolecular forces because they typically allow us to switch the aromatic substituent on and off. High-resolution rotational spectroscopy serves as a benchmark for molecular structures, as correct calculations should be based on correct geometries. When discussing the competition with other noncovalent interactions, obvious competitors are directional hydrogen bonds. As a second counterweight to aryl interactions, we will discuss aurophilic/metallophilic interactions, which also have a strong stabilization with a small number of atoms involved. Vibrational spectroscopy is most sensitive to interactions of light atoms, and the competition of OH hydrogen bonds with dispersion forces in a molecular aggregate can be judged well by the OH stretching frequency. Experiments in the gas phase are ideal for gauging the accuracy of quantum chemical predictions free of solvent forces. A tight collaboration utilizing these three methods allows experiment vs experiment vs theory benchmarking of the overall influence of dispersion in molecular structures and energetics.
Collapse
Affiliation(s)
- Ricardo A. Mata
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Tlektes Zhanabekova
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Daniel A. Obenchain
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Martin A. Suhm
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Rummel L, Schreiner PR. Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angew Chem Int Ed Engl 2024; 63:e202316364. [PMID: 38051426 DOI: 10.1002/anie.202316364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
London dispersion (LD) interactions are the main contribution of the attractive part of the van der Waals potential. Even though LD effects are the driving force for molecular aggregation and recognition, the role of these omnipresent interactions in structure and reactivity had been largely underappreciated over decades. However, in the recent years considerable efforts have been made to thoroughly study LD interactions and their potential as a chemical design element for structures and catalysis. This was made possible through a fruitful interplay of theory and experiment. This review highlights recent results and advances in utilizing LD interactions as a structural motif to understand and utilize intra- and intermolecularly LD-stabilized systems. Additionally, we focus on the quantification of LD interactions and their fundamental role in chemical reactions.
Collapse
Affiliation(s)
- Lars Rummel
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
6
|
Brás EM, Zimmermann C, Fausto R, Suhm MA. Benchmarking the anisotropy of nitroxyl radical solvation with IR spectroscopy. Phys Chem Chem Phys 2024; 26:5822-5829. [PMID: 38314587 DOI: 10.1039/d3cp05668f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Two simple nitroxyl radicals, di-tert-butyl nitroxyl (DTBN) and 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) are solvated by one or two water, methanol, tert-butyl alcohol or phenol molecules. The resulting low temperature IR spectra of the vacuum-isolated microsolvates in the OH stretching range are assigned based on harmonic DFT predictions for closed shell solvent dimers and trimers and their offset from experiment, to minimise theory-guided assignment bias. Systematic conformational preferences for the first and second solvent molecule are observed, depending on the conformational rigidity of the radical. These assignments are collected into an experimental benchmark data set and used to assess the spectral predicting power of different DFT approaches. The goal is to find inexpensive computational methods which provide reliable spectral predictions for this poorly explored class of microsolvates.
Collapse
Affiliation(s)
- Elisa M Brás
- University of Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077 Göttingen, Germany.
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Charlotte Zimmermann
- University of Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077 Göttingen, Germany.
| | - Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Sciences and Letters, Department of Physics, Istanbul Kultur University, Ataköy Campus, Bakirköy 34156, Istanbul, Turkey
| | - Martin A Suhm
- University of Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077 Göttingen, Germany.
| |
Collapse
|
7
|
Claus JA, Bermúdez C, Vallet V, Margulès L, Goubet M. The hydration of an oxy-polycyclic aromatic compound: the case of naphthaldehyde. Phys Chem Chem Phys 2023; 25:23667-23677. [PMID: 37610078 DOI: 10.1039/d3cp02649c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The study of the intermolecular interactions of polycyclic aromatic compounds, considered as important pollutants of the Earth's atmosphere since they are emitted by the partial combustion of fuels, is essential to understand the formation and aging of their aerosols. In this study, the hydration of α-naphthaldehyde and β-naphthaldehyde isomers was investigated through a combination of Fourier transform microwave spectroscopy and quantum chemical calculations. Monohydrate structures were observed experimentally for both isomers, with two hydrate structures observed for β-naphthaldehyde and only one for α-naphthaldehyde, consistent with computational predictions. Analysis of the monohydrate structures indicated that the β-isomer exhibits higher hydrophilicity compared to the α-isomer, supported by electronic densities, hydration energies, and structural considerations. Further computational calculations were conducted to explore the planarity of the naphthaldehyde hydrates. Different levels of theory were employed, some of these revealing slight deviations from planarity in the hydrate structures. Low-frequency out-of-plane vibrational modes were examined, and the inertial defect was used to assess the planarity of the hydrates. The results suggested that the hydrates possess a predominantly planar structure, in agreement with the highest level of computational calculations and the absence of c-type transitions in the experimental spectra. Additionally, calculations were extended to dihydrate structures by attaching two water molecules to the naphthaldehyde isomers. The most stable dihydrate structures were predicted to be combinations of the observed monohydrate positions. However, experimental observation of the most stable dihydrate structures was challenging due to their very low vapour pressure, calling for complementary experiments using laser ablation nozzles.
Collapse
Affiliation(s)
- Jordan A Claus
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, F-59000 Lille, France.
| | - Celina Bermúdez
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, F-59000 Lille, France.
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias - I.U. CINQUIMA, Universidad de Valladolid, Valladolid 47011, Spain.
| | - Valérie Vallet
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, F-59000 Lille, France.
| | - Laurent Margulès
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, F-59000 Lille, France.
| | - Manuel Goubet
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, F-59000 Lille, France.
| |
Collapse
|
8
|
Baweja S, Panchagnula S, Sanz ME, Evangelisti L, Pérez C, West C, Pate BH. Competition between In-Plane vs Above-Plane Configurations of Water with Aromatic Molecules: Non-Covalent Interactions in 1,4-Naphthoquinone-(H 2O) 1-3 Complexes. J Phys Chem Lett 2022; 13:9510-9516. [PMID: 36200782 PMCID: PMC9575146 DOI: 10.1021/acs.jpclett.2c02618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Non-covalent interactions between aromatic molecules and water are fundamental in many chemical and biological processes, and their accurate description is essential to understand molecular relative configurations. Here we present the rotational spectroscopy study of the water complexes of the polycyclic aromatic hydrocarbon 1,4-naphthoquinone (1,4-NQ). In 1,4-NQ-(H2O)1,2, water molecules bind through O-H···O and C-H···O hydrogen bonds and are located on the plane of 1,4-NQ. For 1,4-NQ-(H2O)3, in-plane and above-plane water configurations are observed exhibiting O-H···O, C-H···O, and lone pair···π-hole interactions. The observation of different water arrangements for 1,4-NQ-(H2O)3 allows benchmarking theoretical methods and shows that they have great difficulty in predicting energy orderings due to the strong competition of C-H···O binding with π and π-hole interactions. This study provides important insight into water interactions with aromatic systems and the challenges in their modeling.
Collapse
Affiliation(s)
- Shefali Baweja
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Sanjana Panchagnula
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - M. Eugenia Sanz
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Luca Evangelisti
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Cristóbal Pérez
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Channing West
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Brooks H. Pate
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
9
|
Boden P, Strebert PH, Meta M, Dietrich F, Riehn C, Gerhards M. Chromone-methanol clusters in the electronic ground and lowest triplet state: a delicate interplay of non-covalent interactions. Phys Chem Chem Phys 2022; 24:15208-15216. [PMID: 35579075 DOI: 10.1039/d2cp01341j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chromone offers two energetically almost equivalent docking sites for alcohol molecules, in which the hydroxyl group is hydrogen bonded to one of the free electron pairs of the carbonyl O atom. Here, the delicate balance between these two competing arrangements is studied by combining IR/R2PI and UV/IR/UV spectroscopy in a molecular beam supported by quantum-chemical calculations. Most interestingly, chromone undergoes an efficient intersystem crossing into the triplet manifold upon electronic excitation, so that the studies on aromatic molecule-solvent complexes are for the first time extended to such a cluster in a triplet state. As the lowest triplet state (T1) is of ground state character, powerful energy decomposition approaches such as symmetry-adapted perturbation theory (SAPT) and local energy decomposition using the domain-based local pair natural orbital coupled-cluster method (DLPNO-CCSD(T)/LED) are applied. From the theoretical analysis we infer for the T1 state a loss of planarity (puckering) of the 4-pyrone ring of the chromone unit, which considerably affects the interplay between different types of non-covalent interactions at the two possible binding sites.
Collapse
Affiliation(s)
- Pol Boden
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Patrick H Strebert
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Marcel Meta
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Fabian Dietrich
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany.,Núcleo Milenio MultiMat & Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile.
| | - Christoph Riehn
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Markus Gerhards
- Fachbereich Chemie & State Research Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
10
|
Fischer TLL, Bödecker MADI, Zehnacker A, Mata RA, Suhm MA. Setting up the HyDRA blind challenge for the microhydration of organic molecules. Phys Chem Chem Phys 2022; 24:11442-11454. [DOI: 10.1039/d2cp01119k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The procedure leading to the first HyDRA blind challenge for the prediction of water donor stretching vibrations in monohydrates of organic molecules is described. A training set of 10 monohydrates...
Collapse
|
11
|
Shachar A, Kallos I, de Vries MS, Bar I. Revealing the Structure and Noncovalent Interactions of Isolated Molecules by Laser-Desorption/Ionization-Loss Stimulated Raman Spectroscopy and Quantum Calculations. J Phys Chem Lett 2021; 12:11273-11279. [PMID: 34767362 DOI: 10.1021/acs.jpclett.1c03336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The structural and dynamical characteristics of isolated molecules are essential, yet obtaining this information is difficult. We demonstrate laser-desorption jet-cooling/ionization-loss stimulated Raman spectroscopy to obtain Raman spectral signatures of nonvolatile molecules in the gas phase. The vibrational features of a test substance, the most abundant conformer of tryptamine, are compared and found to match those resulting from the scaled harmonic Raman spectrum obtained by density functional theory calculations. The vibrational signatures serve to identify the most prominent gauche conformer and evaluate its predicted electronic structure. These findings, together with noncovalent interaction (NCI) analysis, provide new insights into electron densities and reduced density gradients, assessing the hydrogen bonds (N-H···π and C-H···H-C) and interplay between attractive and repulsive NCIs affecting the structure. This approach accesses vibrational signatures of isolated nonvolatile molecules by tabletop lasers at uniform resolution and in a broad frequency range, promising great benefit to future studies.
Collapse
Affiliation(s)
- Afik Shachar
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Itai Kallos
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Mattanjah S de Vries
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Ilana Bar
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
12
|
Xie F, Seifert NA, Hazrah AS, Jäger W, Xu Y. Conformational Landscape, Chirality Recognition and Chiral Analyses: Rotational Spectroscopy of Tetrahydro-2-Furoic Acid⋅⋅⋅Propylene Oxide Conformers. Chemphyschem 2021; 22:455-460. [PMID: 33453085 DOI: 10.1002/cphc.202000995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Indexed: 11/05/2022]
Abstract
A chiral adduct formed between a chiral carboxylic acid, tetrahydro-2-furoic acid (THFA), and a chiral ester, propylene oxide (PO), was investigated using rotational spectroscopy and DFT calculations. Isolated THFA exists dominantly as three different conformers: I, II, and III in a jet, with I and II taking on the trans-COOH configuration and III having the cis-COOH configuration. We utilized CREST, a conformational ensemble space exploration tool, to identify the possible conformations of the binary adduct, THFA⋅⋅⋅PO. Subsequent DFT geometry optimizations predicted about two hundred homochiral and heterochiral binary structures with 28 low energy structures within an energy window of 15 kJ mol-1 . A rich broadband rotational spectrum was obtained with a mixture of trace amounts of THFA+PO in neon in a supersonic jet expansion. Six THFA⋅⋅⋅PO conformers were identified experimentally. Kinetically favored binary products which contain trans-COOH I dominate among the observed conformers, while thermodynamically more stable adducts were also detected. Detailed analyses of the structures of the observed conformers show interesting chirality-controlled structural preferences. Such non-covalently bound chiral contact pairs are the foundation of chiral-tag rotational spectroscopy, an exciting new analytical application of rotational spectroscopy for determination of enantiomeric excess. Enantiomeric excess analyses were performed and the results are discussed.
Collapse
Affiliation(s)
- Fan Xie
- Department of Chemistry, University of Alberta Edmonton, Alberta, T6G 2G2, Canada
| | - Nathan A Seifert
- Current address: Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Arsh S Hazrah
- Department of Chemistry, University of Alberta Edmonton, Alberta, T6G 2G2, Canada
| | - Wolfgang Jäger
- Department of Chemistry, University of Alberta Edmonton, Alberta, T6G 2G2, Canada
| | - Yunjie Xu
- Department of Chemistry, University of Alberta Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
13
|
Burevschi E, Alonso ER, Sanz ME. Binding Site Switch by Dispersion Interactions: Rotational Signatures of Fenchone-Phenol and Fenchone-Benzene Complexes. Chemistry 2020; 26:11327-11333. [PMID: 32428270 PMCID: PMC7497235 DOI: 10.1002/chem.202001713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/15/2022]
Abstract
Non-covalent interactions between molecules determine molecular recognition and the outcome of chemical and biological processes. Characterising how non-covalent interactions influence binding preferences is of crucial importance in advancing our understanding of these events. Here, we analyse the interactions involved in smell and specifically the effect of changing the balance between hydrogen-bonding and dispersion interactions by examining the complexes of the common odorant fenchone with phenol and benzene, mimics of tyrosine and phenylalanine residues, respectively. Using rotational spectroscopy and quantum chemistry, two isomers of each complex have been identified. Our results show that the increased weight of dispersion interactions in these complexes changes the preferred binding site in fenchone and sets the basis for a better understanding of the effect of different residues in molecular recognition and binding events.
Collapse
|
14
|
Quesada Moreno MM, Pinacho P, Pérez C, Šekutor M, Schreiner PR, Schnell M. London Dispersion and Hydrogen-Bonding Interactions in Bulky Molecules: The Case of Diadamantyl Ether Complexes. Chemistry 2020; 26:10817-10825. [PMID: 32428323 PMCID: PMC7497036 DOI: 10.1002/chem.202001444] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Indexed: 02/05/2023]
Abstract
Diadamantyl ether (DAE, C20 H30 O) represents a good model to study the interplay between London dispersion and hydrogen-bond interactions. By using broadband rotational spectroscopy, an accurate experimental structure of the diadamantyl ether monomer is obtained and its aggregates with water and a variety of aliphatic alcohols of increasing size are analyzed. In the monomer, C-H⋅⋅⋅H-C London dispersion attractions between the two adamantyl subunits further stabilize its structure. Water and the alcohol partners bind to diadamantyl ether through hydrogen bonding and non-covalent Owater/alcohol ⋅⋅⋅H-CDAE and C-Halcohol ⋅⋅⋅H-CDAE interactions. Electrostatic contributions drive the stabilization of all the complexes, whereas London dispersion interactions become more pronounced with increasing size of the alcohol. Complexes with dominant dispersion contributions are significantly higher in energy and were not observed in the experiment. The results presented herein shed light on the first steps of microsolvation and aggregation of molecular complexes with London dispersion energy donor (DED) groups and the kind of interactions that control them.
Collapse
Affiliation(s)
- María Mar Quesada Moreno
- Deutsches Elektronen-SynchrotronNotkestr. 8522607HamburgGermany
- Institute of Physical ChemistryChristian-Albrechts-Universität zu KielMax-Eyth-Str. 124118KielGermany
| | - Pablo Pinacho
- Deutsches Elektronen-SynchrotronNotkestr. 8522607HamburgGermany
- Institute of Physical ChemistryChristian-Albrechts-Universität zu KielMax-Eyth-Str. 124118KielGermany
| | - Cristóbal Pérez
- Deutsches Elektronen-SynchrotronNotkestr. 8522607HamburgGermany
- Institute of Physical ChemistryChristian-Albrechts-Universität zu KielMax-Eyth-Str. 124118KielGermany
| | - Marina Šekutor
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Peter R. Schreiner
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Melanie Schnell
- Deutsches Elektronen-SynchrotronNotkestr. 8522607HamburgGermany
- Institute of Physical ChemistryChristian-Albrechts-Universität zu KielMax-Eyth-Str. 124118KielGermany
| |
Collapse
|
15
|
Xie F, Seifert NA, Jäger W, Xu Y. Conformational Panorama and Chirality Controlled Structure–Energy Relationship in a Chiral Carboxylic Acid Dimer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fan Xie
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Nathan A. Seifert
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
- Chemical Sciences and Engineering Division Argonne National Laboratory Argonne IL 60439 USA
| | - Wolfgang Jäger
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Yunjie Xu
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
16
|
Xie F, Seifert NA, Jäger W, Xu Y. Conformational Panorama and Chirality Controlled Structure–Energy Relationship in a Chiral Carboxylic Acid Dimer. Angew Chem Int Ed Engl 2020; 59:15703-15710. [DOI: 10.1002/anie.202005685] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/27/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Fan Xie
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Nathan A. Seifert
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
- Chemical Sciences and Engineering Division Argonne National Laboratory Argonne IL 60439 USA
| | - Wolfgang Jäger
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Yunjie Xu
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
17
|
Puzzarini C, Spada L, Alessandrini S, Barone V. The challenge of non-covalent interactions: theory meets experiment for reconciling accuracy and interpretation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:343002. [PMID: 32203942 DOI: 10.1088/1361-648x/ab8253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
In the past decade, many gas-phase spectroscopic investigations have focused on the understanding of the nature of weak interactions in model systems. Despite the fact that non-covalent interactions play a key role in several biological and technological processes, their characterization and interpretation are still far from being satisfactory. In this connection, integrated experimental and computational investigations can play an invaluable role. Indeed, a number of different issues relevant to unraveling the properties of bulk or solvated systems can be addressed from experimental investigations on molecular complexes. Focusing on the interaction of biological model systems with solvent molecules (e.g., water), since the hydration of the biomolecules controls their structure and mechanism of action, the study of the molecular properties of hydrated systems containing a limited number of water molecules (microsolvation) is the basis for understanding the solvation process and how structure and reactivity vary from gas phase to solution. Although hydrogen bonding is probably the most widespread interaction in nature, other emerging classes, such as halogen, chalcogen and pnicogen interactions, have attracted much attention because of the role they play in different fields. Their understanding requires, first of all, the characterization of the directionality, strength, and nature of such interactions as well as a comprehensive analysis of their competition with other non-covalent bonds. In this review, it is shown how state-of-the-art quantum-chemical computations combined with rotational spectroscopy allow for fully characterizing intermolecular interactions taking place in molecular complexes from both structural and energetic points of view. The transition from bi-molecular complex to microsolvation and then to condensed phase is shortly addressed.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
| | - Lorenzo Spada
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Silvia Alessandrini
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
18
|
Gottschalk HC, Poblotzki A, Fatima M, Obenchain DA, Pérez C, Antony J, Auer AA, Baptista L, Benoit DM, Bistoni G, Bohle F, Dahmani R, Firaha D, Grimme S, Hansen A, Harding ME, Hochlaf M, Holzer C, Jansen G, Klopper W, Kopp WA, Krasowska M, Kröger LC, Leonhard K, Mogren Al-Mogren M, Mouhib H, Neese F, Pereira MN, Prakash M, Ulusoy IS, Mata RA, Suhm MA, Schnell M. The first microsolvation step for furans: New experiments and benchmarking strategies. J Chem Phys 2020; 152:164303. [DOI: 10.1063/5.0004465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hannes C. Gottschalk
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Anja Poblotzki
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Mariyam Fatima
- Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Cristóbal Pérez
- Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Jens Antony
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - Alexander A. Auer
- Department of Molecular Theory and Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Leonardo Baptista
- Departamento de Química e Ambiental, Universidade do Estado do Rio de Janeiro, Faculdade de Tecnologia, Resende, RJ, Brazil
| | - David M. Benoit
- Department of Physics and Mathematics, E. A. Milne Centre for Astrophysics and G. W. Gray Centre for Advanced Materials Chemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - Giovanni Bistoni
- Department of Molecular Theory and Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Fabian Bohle
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - Rahma Dahmani
- Université Gustave Eiffel, COSYS/LISIS, 5 Blvd. Descartes, 77454 Marne-La-Vallée, France
| | - Dzmitry Firaha
- Lehrstuhl für Technische Thermodynamik, RWTH Aachen University, 52062 Aachen, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - Michael E. Harding
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Blvd. Descartes, 77454 Marne-La-Vallée, France
| | - Christof Holzer
- Theoretical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Georg Jansen
- Fakultät für Chemie, Universität Duisburg-Essen, Universitätsstr. 5, 45117 Essen, Germany
| | - Wim Klopper
- Theoretical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Wassja A. Kopp
- Lehrstuhl für Technische Thermodynamik, RWTH Aachen University, 52062 Aachen, Germany
| | - Małgorzata Krasowska
- Department of Molecular Theory and Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Leif C. Kröger
- Lehrstuhl für Technische Thermodynamik, RWTH Aachen University, 52062 Aachen, Germany
| | - Kai Leonhard
- Lehrstuhl für Technische Thermodynamik, RWTH Aachen University, 52062 Aachen, Germany
| | - Muneerah Mogren Al-Mogren
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Halima Mouhib
- Université Gustave Eiffel, COSYS/LISIS, 5 Blvd. Descartes, 77454 Marne-La-Vallée, France
| | - Frank Neese
- Department of Molecular Theory and Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Max N. Pereira
- Departamento de Química e Ambiental, Universidade do Estado do Rio de Janeiro, Faculdade de Tecnologia, Resende, RJ, Brazil
| | - Muthuramalingam Prakash
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Inga S. Ulusoy
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Ricardo A. Mata
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Martin A. Suhm
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
19
|
Hartwig B, Lange M, Poblotzki A, Medel R, Zehnacker A, Suhm MA. The reduced cohesion of homoconfigurational 1,2-diols. Phys Chem Chem Phys 2020; 22:1122-1136. [DOI: 10.1039/c9cp04943f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homochiral encounters of vicinal diols are blocked from relaxing to the heterochiral global minimum dimer structure in supersonic jet expansions.
Collapse
Affiliation(s)
- Beppo Hartwig
- Institut für Physikalische Chemie
- Universität Göttingen
- 37077 Göttingen
- Germany
| | - Manuel Lange
- Institut für Physikalische Chemie
- Universität Göttingen
- 37077 Göttingen
- Germany
| | - Anja Poblotzki
- Institut für Physikalische Chemie
- Universität Göttingen
- 37077 Göttingen
- Germany
| | - Robert Medel
- Institut für Physikalische Chemie
- Universität Göttingen
- 37077 Göttingen
- Germany
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay
- CNRS
- Université Paris-Sud
- Université Paris-Saclay
- Orsay
| | - Martin A. Suhm
- Institut für Physikalische Chemie
- Universität Göttingen
- 37077 Göttingen
- Germany
| |
Collapse
|
20
|
|
21
|
Alessandrini S, Barone V, Puzzarini C. Extension of the “Cheap” Composite Approach to Noncovalent Interactions: The jun-ChS Scheme. J Chem Theory Comput 2019; 16:988-1006. [DOI: 10.1021/acs.jctc.9b01037] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Silvia Alessandrini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|