1
|
Basit A, Choudhury D, Bandyopadhyay P. Prediction of Ca 2+ Binding Site in Proteins With a Fast and Accurate Method Based on Statistical Mechanics and Analysis of Crystal Structures. Proteins 2025; 93:482-497. [PMID: 39258438 DOI: 10.1002/prot.26743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
Predicting the precise locations of metal binding sites within metalloproteins is a crucial challenge in biophysics. A fast, accurate, and interpretable computational prediction method can complement the experimental studies. In the current work, we have developed a method to predict the location of Ca2+ ions in calcium-binding proteins using a physics-based method with an all-atom description of the proteins, which is substantially faster than the molecular dynamics simulation-based methods with accuracy as good as data-driven approaches. Our methodology uses the three-dimensional reference interaction site model (3D-RISM), a statistical mechanical theory, to calculate Ca2+ ion density around protein structures, and the locations of the Ca2+ ions are obtained from the density. We have taken previously used datasets to assess the efficacy of our method as compared to previous works. Our accuracy is 88%, comparable with the FEATURE program, one of the well-known data-driven methods. Moreover, our method is physical, and the reasons for failures can be ascertained in most cases. We have thoroughly examined the failed cases using different structural and crystallographic measures, such as B-factor, R-factor, electron density map, and geometry at the binding site. It has been found that x-ray structures have issues in many of the failed cases, such as geometric irregularities and dubious assignment of ion positions. Our algorithm, along with the checks for structural accuracy, is a major step in predicting calcium ion positions in metalloproteins.
Collapse
Affiliation(s)
- Abdul Basit
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Meerbott KB, Monhemi H, Travaglini L, Sawicki A, Ramamurthy S, Slocik JM, Dennis PB, Glover DJ, Walsh TR, Knecht MR. Metamorphic Proteins to Achieve Conformationally Selective Material Surface Binding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408141. [PMID: 39791310 DOI: 10.1002/smll.202408141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/14/2024] [Indexed: 01/12/2025]
Abstract
The controlled binding of proteins on nanoparticle surfaces remains a grand challenge required for many applications ranging from biomedical to energy storage. The difficulty in achieving this ability arises from the different functional groups of the biomolecule that can adsorb on the nanoparticle surface. While most proteins can only adopt a single structure, metamorphic proteins can access at least two different conformations, which presents intriguing opportunities to exploit such structural variations for binding to nanoparticles. Such effects are examined using calmodulin, a sensing messenger protein, that can adopt two conformations based on Ca2+ binding. The affinity of the apo and holo forms of the protein for Au is examined using a highly integrated set of experimental and computation studies, which demonstrated significantly enhanced binding for the holo protein as compared to the apo. Such effects are proposed to arise from changes in the protein structure, which lead to substantially varied biomolecular surfaces that facilitate both Au adsorption and protein-protein assembly once adsorbed. Such studies provide critical information for protein structural design to control nanoparticle adsorption for wide-ranging applications.
Collapse
Affiliation(s)
- Kyle B Meerbott
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Hassan Monhemi
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Lorenzo Travaglini
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Artur Sawicki
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sakthirupini Ramamurthy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joseph M Slocik
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, OH, 45433, USA
| | - Patrick B Dennis
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, OH, 45433, USA
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Marc R Knecht
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
| |
Collapse
|
3
|
Sun B, Kekenes-Huskey PM. Calmodulin's Interdomain Linker Is Optimized for Dynamics Signal Transmission and Calcium Binding. J Chem Inf Model 2022; 62:4210-4221. [PMID: 35994621 DOI: 10.1021/acs.jcim.2c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linkers are ubiquitous in multidomain proteins. These linkers are integral to protein functions, and accumulating evidence suggests that the linkers' versatile roles are encoded in their sequences. However, a molecular picture of how amino acid differences in the linker influence protein function is still lacking. By using extensive Gaussian-accelerated MD coupled with dynamic network analysis, we reveal the molecular bases underlying the linker's role in Calmodulin (CaM), a highly conserved Ca2+-signaling hub in eukaryotes. Three CaM constructs comprising a wild-type linker, a flexible linker (four glycines at position D78-S81), and a rigid linker (four prolines at position D78-S81) were simulated. We show that the flexible linker resembles the wild type in allowing CaM to sample a large ensemble of conformations while the rigid linker confines the sampling. Our simulations recapture experimental observations that target binding enhances the Ca2+ affinity to CaM's EF-hand sites at the N-domain. However, only the wild-type linker can both correctly capture the Ca2+ binding order and maintain the α-helical structure of the domain. The other two constructs either bind Ca2+ in an incorrect order or exhibit unfolding of an N-domain helix. We demonstrate that the wild-type linker achieves these outcomes by transmitting interdomain dynamics efficiently. This was evidenced by stronger (anti)correlations among the linker residues, decoupling of the hydrogen bonds between A1-A15 and V35-E45, and structuring of the N-domain for Ca2+ binding. This decoupling was not evident for the other two constructs. Lastly, we show that the wild-type linker's optimal transmission stems from its thermodynamically favorable strain and solvation relative to the other two constructs. Our results show how the linker sequence tunes CaM function, suggesting possible mechanisms for changes in linker properties such as mutations or post-translational modifications to modulate protein/substrate binding.
Collapse
Affiliation(s)
- Bin Sun
- Department of Pharmacology, Harbin Medical University, Harbin 150081, China
| | - Peter M Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois 60153, United States
| |
Collapse
|
4
|
Wu Y, Zhang Y, Xu X, Wang W. Effect of Ca 2+ binding states of calmodulin on the conformational dynamics and force responses of myosin lever arm. J Chem Phys 2022; 157:035101. [DOI: 10.1063/5.0095842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanochemical coupling and biological function of myosin motors are regulated by Ca2+ concentrations. As one of the regulation pathways, Ca2+ binding induces conformational change of the light chain calmodulin and its binding modes with myosin lever arm, which can affect the stiffness of the lever arm and force transmission. However, the underlying molecular mechanism of the Ca2+ regulated stiffness change is not fully understood. Here we study the effect of Ca2+ binding on the conformational dynamics and stiffness of the myosin VIIa lever arm bound with calmodulin by performing molecular dynamics simulations and dynamic correlation network analysis. The results showed that the calmodulin bound lever arm at apo state can sample three different conformations. In addition to the conformation observed in crystal structure, calmodulin bound lever arm at apo condition can also adopt another two conformations featured by different extents of small-angle bending of the lever arm. However, large-angle bending is strongly prohibited. Such results suggest that the calmodulin bound lever arm without Ca2+ binding is plastic for small-angle deformation but shows high stiffness for large-angle deformation. In comparison, after the binding of Ca2+, although the calmodulin bound lever arm is locally more rigid, it can adopt largely deformed or even unfolded conformations, which may render the lever arm incompetent for force transmission. The conformational plasticity of the lever arm for small-angle deformation at apo condition may be utilized as force buffer to prevent the lever arm from unfolding during the power stroke action of the motor domain.
Collapse
Affiliation(s)
- Yichao Wu
- Department of Physics, Nanjing University, China
| | | | | | - Wei Wang
- Department of Physics, Nanjing University, China
| |
Collapse
|
5
|
Guan X, Tan C, Li W, Wang W, Thirumalai D. Role of water-bridged interactions in metal ion coupled protein allostery. PLoS Comput Biol 2022; 18:e1010195. [PMID: 35653400 PMCID: PMC9197054 DOI: 10.1371/journal.pcbi.1010195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/14/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Allosteric communication between distant parts of proteins controls many cellular functions, in which metal ions are widely utilized as effectors to trigger the allosteric cascade. Due to the involvement of strong coordination interactions, the energy landscape dictating the metal ion binding is intrinsically rugged. How metal ions achieve fast binding by overcoming the landscape ruggedness and thereby efficiently mediate protein allostery is elusive. By performing molecular dynamics simulations for the Ca2+ binding mediated allostery of the calmodulin (CaM) domains, each containing two Ca2+ binding helix-loop-helix motifs (EF-hands), we revealed the key role of water-bridged interactions in Ca2+ binding and protein allostery. The bridging water molecules between Ca2+ and binding residue reduces the ruggedness of ligand exchange landscape by acting as a lubricant, facilitating the Ca2+ coupled protein allostery. Calcium-induced rotation of the helices in the EF-hands, with the hydrophobic core serving as the pivot, leads to exposure of hydrophobic sites for target binding. Intriguingly, despite being structurally similar, the response of the two symmetrically arranged EF-hands upon Ca2+ binding is asymmetric. Breakage of symmetry is needed for efficient allosteric communication between the EF-hands. The key roles that water molecules play in driving allosteric transitions are likely to be general in other metal ion mediated protein allostery. Natural proteins often utilize allostery in executing a variety of functions. Metal ions are typical cofactors to trigger the allosteric cascade. In this work, using the Ca2+ sensor protein calmodulin as the model system, we revealed crucial roles of water-bridged interactions in the metal ion coupled protein allostery. The coordination of the Ca2+ to the binding site involves an intermediate in which the water molecule bridges the Ca2+ and the liganding residue. The bridging water reduces the free energy barrier height of ligand exchange, therefore facilitating the ligand exchange and allosteric coupling by acting as a lubricant. We also showed that the response of the two symmetrically arranged EF-hand motifs of CaM domains upon Ca2+ binding is asymmetric, which is directly attributed to the differing dehydration process of the Ca2+ ions and is needed for efficient allosteric communication.
Collapse
Affiliation(s)
- Xingyue Guan
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Cheng Tan
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
| | - Wenfei Li
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- * E-mail: (WL); (WW); (DT)
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
- * E-mail: (WL); (WW); (DT)
| | - D. Thirumalai
- Department of Chemistry, University of Texas, Texas, United States of America
- * E-mail: (WL); (WW); (DT)
| |
Collapse
|
6
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
7
|
Zhang M, Li Z, Jang H, Hedman AC, Sacks DB, Nussinov R. Ca 2+-Dependent Switch of Calmodulin Interaction Mode with Tandem IQ Motifs in the Scaffolding Protein IQGAP1. Biochemistry 2019; 58:4903-4911. [PMID: 31724397 PMCID: PMC8195445 DOI: 10.1021/acs.biochem.9b00854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
IQ domain GTPase-activating scaffolding protein 1 (IQGAP1) mediates cytoskeleton, cell migration, proliferation, and apoptosis events. Calmodulin (CaM) modulates IQGAP1 functions by binding to its four tandem IQ motifs. Exactly how CaM binds the IQ motifs and which functions of IQGAP1 CaM regulates and how are fundamental mechanistic questions. We combine experimental pull-down assays, mutational data, and molecular dynamics simulations to understand the IQ-CaM complexes with and without Ca2+ at the atomic level. Apo-CaM favors the IQ3 and IQ4 motifs but not the IQ1 and IQ2 motifs that lack two hydrophobic residues for interactions with apo-CaM's hydrophobic pocket. Ca2+-CaM binds all four IQ motifs, with both N- and C-lobes tightly wrapped around each motif. Ca2+ promotes IQ-CaM interactions and increases the amount of IQGAP1-loaded CaM for IQGAP1-mediated signaling. Collectively, we describe IQ-CaM binding in atomistic detail and feature the emergence of Ca2+ as a key modulator of the CaM-IQGAP1 interactions.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 20892, United States
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hyunbum Jang
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Andrew C. Hedman
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ruth Nussinov
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 20892, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|