1
|
Patrick SC, Hein R, Beer PD, Davis JJ. Non-faradaic capacitive cation sensing under flow. Chem Sci 2024:d4sc05271d. [PMID: 39263657 PMCID: PMC11382808 DOI: 10.1039/d4sc05271d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
The ability to continually monitor target ion species in real-time is a highly sought-after endeavour in the field of host-guest chemistry, given its direct pertinence to medical and environmental applications. Developing methodologies which support sensitive and continuous ion sensing in aqueous media, however, remains a challenge. Herein, we present a versatile and facile, proof-of-concept electrochemical sensing methodology based on non-faradaic capacitance, which can be operated continuously with high temporal resolution (≈1.4 s), in conjunction with custom-designed integrated microfluidics. The potential of this method is demonstrated for cation sensing at a chemically simple benzo-15-crown-5-based molecular film (B15C5SAM) as a representative redox-inactive, receptive interface. Detection limits as low as 4 μM are obtained for Na+ by these entirely reagentless analyses, and are additionally characterised by exceptional baseline stabilities that are able to support continuous sensing over multiple days. The platform performs well in artificial sweat across physiologically relevant spans of sodium concentration, and provides meaningful dose-dependent responses in freshwater samples. Finally, the high assay temporal resolution affords an ability to resolve both the kinetics of binding (association/dissociation) and notably characteristic fingerprints for different alkali metals which may be diagnostic of different interfacial ion binding modes.
Collapse
Affiliation(s)
- Sophie C Patrick
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Robert Hein
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Paul D Beer
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
2
|
Algethami FK, Rabti A, Mastouri M, Abdulkhair BY, Ben Aoun S, Raouafi N. Highly sensitive capacitance-based nitrite sensing using polydopamine/AuNPs-modified screen-printed carbon electrode. RSC Adv 2023; 13:21336-21344. [PMID: 37465569 PMCID: PMC10350640 DOI: 10.1039/d3ra03898j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Regulatory bodies play a crucial role in establishing limits for food additives to ensure food quality and safety of food products, as excessive usage poses risks to consumers. In the context of processed animal-based foodstuffs, nitrite is commonly utilized as a means to slow down bacterial degradation. In this study, we have successfully leveraged the redox activity of an electrochemically deposited polydopamine (pDA) film onto gold nanoparticle (AuNP)-modified screen-printed electrodes (SPCE) to develop a sensitive and versatile methodology for the detection of nitrite using redox capacitance spectroscopy. By exploiting the interaction of the AuNPs/pDA electroactive interface with the target nitrite ions, we observed distinct changes in the redox distribution, subsequently leading to modifications in the associated redox capacitance. This alteration enables the successful detection of nitrite, exhibiting a linear response within the concentration range of 10 to 500 μM, with a limit of detection of 1.98 μM (S/N = 3). Furthermore, we applied the developed sensor to analyze nitrite levels in processed meats, yielding good recoveries. These results demonstrate the potential of our approach as a promising method for routine detection of ions.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) P.O. Box 90950 Riyadh 11623 Saudi Arabia @imamu.edu.sa
| | - Amal Rabti
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Department of Chemistry, Faculty of Science, University of Tunis El Manar Tunis El Manar 2092 Tunis Tunisia
- National Institute of Research and Physicochemical Analysis (INRAP), Laboratory of Materials, Treatment, and Analysis (LMTA), Biotechpole Sidi Thabet 2020 Sidi Thabet Tunisia
| | - Mohamed Mastouri
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Department of Chemistry, Faculty of Science, University of Tunis El Manar Tunis El Manar 2092 Tunis Tunisia
| | - Babiker Y Abdulkhair
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) P.O. Box 90950 Riyadh 11623 Saudi Arabia @imamu.edu.sa
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science, Taibah University P.O. Box 30002 Al-Madinah Al-Munawwarah Saudi Arabia
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Department of Chemistry, Faculty of Science, University of Tunis El Manar Tunis El Manar 2092 Tunis Tunisia
| |
Collapse
|
3
|
Hein R, Beer PD. Halogen bonding and chalcogen bonding mediated sensing. Chem Sci 2022; 13:7098-7125. [PMID: 35799814 PMCID: PMC9214886 DOI: 10.1039/d2sc01800d] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Sigma-hole interactions, in particular halogen bonding (XB) and chalcogen bonding (ChB), have become indispensable tools in supramolecular chemistry, with wide-ranging applications in crystal engineering, catalysis and materials chemistry as well as anion recognition, transport and sensing. The latter has very rapidly developed in recent years and is becoming a mature research area in its own right. This can be attributed to the numerous advantages sigma-hole interactions imbue in sensor design, in particular high degrees of selectivity, sensitivity and the capability for sensing in aqueous media. Herein, we provide the first detailed overview of all developments in the field of XB and ChB mediated sensing, in particular the detection of anions but also neutral (gaseous) Lewis bases. This includes a wide range of optical colorimetric and luminescent sensors as well as an array of electrochemical sensors, most notably redox-active host systems. In addition, we discuss a range of other sensor designs, including capacitive sensors and chemiresistors, and provide a detailed overview and outlook for future fundamental developments in the field. Importantly the sensing concepts and methodologies described herein for the XB and ChB mediated sensing of anions, are generically applicable for the development of supramolecular receptors and sensors in general, including those for cations and neutral molecules employing a wide array of non-covalent interactions. As such we believe this review to be a useful guide to both the supramolecular and general chemistry community with interests in the fields of host-guest recognition and small molecule sensing. Moreover, we also highlight the need for a broader integration of supramolecular chemistry, analytical chemistry, synthetic chemistry and materials science in the development of the next generation of potent sensors.
Collapse
Affiliation(s)
- Robert Hein
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Paul D Beer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
4
|
Alarcón EVG, Santos A, Bueno PR. Perspective on quantum electrochemistry. A simple method for measuring the electron transfer rate constant. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Patrick SC, Hein R, Beer PD, Davis JJ. Continuous and Polarization-Tuned Redox Capacitive Anion Sensing at Electroactive Interfaces. J Am Chem Soc 2021; 143:19199-19206. [PMID: 34730337 DOI: 10.1021/jacs.1c09743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous, real-time ion sensing is of great value across various environmental and medical scenarios but remains underdeveloped. Herein, we demonstrate the potential of redox capacitance spectroscopy as a sensitive and highly adaptable ion sensing methodology, exemplified by the continuous flow sensing of anions at redox-active halogen bonding ferrocenylisophthalamide self-assembled monolayers. Upon anion binding, the redox distribution of the electroactive interface, and its associated redox capacitance, are reversibly modulated, providing a simple and direct sensory readout. Importantly, the redox capacitance can be monitored at a freely chosen, constant electrode polarization, providing a facile means of tuning both the sensor analytical performance and the anion binding affinity, by up to 1 order of magnitude. In surpassing standard voltammetric methods in terms of analytical performance and adaptability, these findings pave the way for the development of highly sensitive and uniquely tunable ion sensors. More generally, this methodology also serves as a powerful and unprecedented means of simultaneously modulating and monitoring the thermodynamics and kinetics of host-guest interactions at redox-active interfaces.
Collapse
Affiliation(s)
- Sophie C Patrick
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Robert Hein
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Paul D Beer
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jason J Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
6
|
Patrick SC, Hein R, Sharafeldin M, Li X, Beer PD, Davis JJ. Real-time Voltammetric Anion Sensing Under Flow*. Chemistry 2021; 27:17700-17706. [PMID: 34705312 PMCID: PMC9297856 DOI: 10.1002/chem.202103249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/21/2022]
Abstract
The development of real‐life applicable ion sensors, in particular those capable of repeat use and long‐term monitoring, remains a formidable challenge. Herein, we demonstrate, in a proof‐of‐concept, the real‐time voltammetric sensing of anions under continuous flow in a 3D‐printed microfluidic system. Electro‐active anion receptive halogen bonding (XB) and hydrogen bonding (HB) ferrocene‐isophthalamide‐(iodo)triazole films were employed as exemplary sensory interfaces. Upon exposure to anions, the cathodic perturbations of the ferrocene redox‐transducer are monitored by repeat square‐wave voltammetry (SWV) cycling and peak fitting of the voltammograms by a custom‐written MATLAB script. This enables the facile and automated data processing of thousands of SW scans and is associated with an over one order‐of‐magnitude improvement in limits of detection. In addition, this improved analysis enables tuning of the measurement parameters such that high temporal resolution can be achieved. More generally, this new flow methodology is extendable to a variety of other analytes, including cations, and presents an important step towards translation of voltammetric ion sensors from laboratory to real‐world applications.
Collapse
Affiliation(s)
- Sophie C Patrick
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Robert Hein
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Mohamed Sharafeldin
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Xiaoxiong Li
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Paul D Beer
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
7
|
Wang Z, Liu R, Chen HY, Wang H. Plasmonic Imaging of Tuning Electron Tunneling Mediated by a Molecular Monolayer. JACS AU 2021; 1:1700-1707. [PMID: 34723273 PMCID: PMC8549056 DOI: 10.1021/jacsau.1c00292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Probing and tuning the electron tunneling in metal electrode-insulator-metal nanoparticle systems provide a unique vision for understanding the fundamental mechanism of electrochemistry and broadening the horizon in practical applications of molecular electronics in many electrochemical systems. Here we report a plasmonic imaging technique to monitor the local double-layer charging of individual Au nanoparticles deposited on gold electrode separated by monolayer of n-alkanethiol molecules. The thickness of molecular monolayer tunes the tunneling kinetics and conductivity, which predicts the heterogeneous behavior on the modified electrode surface for different electrochemical systems. We studied the distance dependence of the electron tunneling and double layer charging processes by a plasmonic-based electrical impedance microscopy. By performing fast Fourier transform analysis of the recorded plasmonic image sequences, we can quantify the interfacial impedance of single nanoparticles and the tunneling decay constant of molecular layer. We further observed the electron neutralization dynamics during single-nanoparticle collisions on different surfaces. This optical readout of electron tunneling demonstrates an imaging approach to determine the electrical properties of metal electrode-insulator-metal nanoparticle systems, which include the electron tunneling mechanism and local impedance.
Collapse
Affiliation(s)
- Zixiao Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Ruihong Liu
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Zhengzhou
Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Hui Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
8
|
Lalwani AV, Dong H, Mu L, Woo K, Johnson HA, Holliday MA, Guo J, Senesky DG, Tarpeh WA. Selective aqueous ammonia sensors using electrochemical stripping and capacitive detection. AIChE J 2021. [DOI: 10.1002/aic.17465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Anand V. Lalwani
- Department of Electrical Engineering Stanford University Stanford California USA
| | - Hang Dong
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Linchao Mu
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Kelly Woo
- Department of Electrical Engineering Stanford University Stanford California USA
| | - Hunter A. Johnson
- Department of Civil and Environmental Engineering Stanford University Stanford California USA
| | - Max A. Holliday
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Jinyu Guo
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Debbie G. Senesky
- Department of Electrical Engineering Stanford University Stanford California USA
- Department of Aeronautics and Astronautics Stanford University Stanford California USA
| | - William A. Tarpeh
- Department of Chemical Engineering Stanford University Stanford California USA
- Department of Civil and Environmental Engineering Stanford University Stanford California USA
| |
Collapse
|
9
|
Lopes LC, Bueno PR. Sensing the quantized reactivity of graphene. Anal Chim Acta 2021; 1177:338735. [PMID: 34482901 DOI: 10.1016/j.aca.2021.338735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022]
Abstract
We demonstrated that the variations measured in the quantum capacitance of single-layer graphene, envisioned here as a conceptual molecular model, depend on the chemical reactivity of the molecule and can be used as an analytical and sensing tool for environmental conditions. The variations are quantized as a function of the environmental changes and can be correlated with chemical reactivity indexes such as chemical hardness and softness. This not only constitutes a proof-of-principle that the chemical reactivity of graphene, as a single molecule, can be determined in situ by measuring the quantum capacitance, but also that these measurements can be used as an analytical tool.
Collapse
Affiliation(s)
- Laís C Lopes
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Paulo R Bueno
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
| |
Collapse
|
10
|
Bossa GV, May S. Debye-Hückel Free Energy of an Electric Double Layer with Discrete Charges Located at a Dielectric Interface. MEMBRANES 2021; 11:129. [PMID: 33672797 PMCID: PMC7918844 DOI: 10.3390/membranes11020129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
Poisson-Boltzmann theory provides an established framework to calculate properties and free energies of an electric double layer, especially for simple geometries and interfaces that carry continuous charge densities. At sufficiently small length scales, however, the discreteness of the surface charges cannot be neglected. We consider a planar dielectric interface that separates a salt-containing aqueous phase from a medium of low dielectric constant and carries discrete surface charges of fixed density. Within the linear Debye-Hückel limit of Poisson-Boltzmann theory, we calculate the surface potential inside a Wigner-Seitz cell that is produced by all surface charges outside the cell using a Fourier-Bessel series and a Hankel transformation. From the surface potential, we obtain the Debye-Hückel free energy of the electric double layer, which we compare with the corresponding expression in the continuum limit. Differences arise for sufficiently small charge densities, where we show that the dominating interaction is dipolar, arising from the dipoles formed by the surface charges and associated counterions. This interaction propagates through the medium of a low dielectric constant and alters the continuum power of two dependence of the free energy on the surface charge density to a power of 2.5 law.
Collapse
Affiliation(s)
- Guilherme Volpe Bossa
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil;
| | - Sylvio May
- Department of Physics, North Dakota State University, Fargo North Dakota, ND 58108-6050, USA
| |
Collapse
|
11
|
Nicholson MIG, Bueno PR, Feliciano GT. Ab Initio QM/MM Simulation of Ferrocene Homogeneous Electron-Transfer Reaction. J Phys Chem A 2021; 125:25-33. [PMID: 33382268 DOI: 10.1021/acs.jpca.0c07540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we demonstrate the feasibility of hybrid computational methods to predict the homogeneous electron exchange between the ferrocene and its oxidized (ferrocenium) state. The free energy for ferrocene oxidation was determined from thermodynamic cycles and implicit solvation strategies within density functional theory (DFT) methods leading to no more than 15% of deviation (in the range of 0.1-0.2 eV) when compared to absolute redox free energies obtained experimentally. Reorganization energy, as defined according to the Marcus theory of electron-transfer rate, was obtained by sampling the vertical ionization/electron affinity energies using hybrid quantum/classical (QM/MM) Born-Oppenheimer molecular dynamics trajectories. Calculated reorganization energies show a subtle but noteworthy dependence with the nature and the localization of the compensating countercharge. We concluded that the adopted hybrid computational strategy, to simulate homogeneous redox reactions, was successfully demonstrated and it further permits applications in more complex systems (required in daily life applications), where the electron transfer occurs heterogeneously.
Collapse
Affiliation(s)
- Melany Isabel Garcia Nicholson
- Departmento of Engineering, Physics and Mathematics, São Paulo State University (UNESP), Araraquara, São Paulo 14800-060, Brazil
| | - Paulo Roberto Bueno
- Departmento of Engineering, Physics and Mathematics, São Paulo State University (UNESP), Araraquara, São Paulo 14800-060, Brazil
| | - Gustavo Troiano Feliciano
- Departmento of Engineering, Physics and Mathematics, São Paulo State University (UNESP), Araraquara, São Paulo 14800-060, Brazil
| |
Collapse
|
12
|
Hein R, Li X, Beer PD, Davis JJ. Enhanced voltammetric anion sensing at halogen and hydrogen bonding ferrocenyl SAMs. Chem Sci 2020; 12:2433-2440. [PMID: 34164009 PMCID: PMC8179314 DOI: 10.1039/d0sc06210c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Halogen bonding mediated electrochemical anion sensing has very recently been established as a potent platform for the selective and sensitive detection of anions, although the principles that govern binding and subsequent signal transduction remain poorly understood. Herein we address this challenge by providing a comprehensive study of novel redox-active halogen bonding (XB) and hydrogen bonding (HB) ferrocene-isophthalamide-(iodo)triazole receptors in solution and at self-assembled monolayers (SAMs). Under diffusive conditions the sensory performance of the XB sensor was significantly superior. In molecular films the XB and HB binding motifs both display a notably enhanced, but similar, response to specific anions. Importantly, the enhanced response of these films is rationalised by a consideration of the (interfacial) dielectric microenvironment. These effects, and the resolved relationship between anion binding and signal transduction, underpin an improved fundamental understanding of anion sensing at redox-active interfaces which will benefit not just the development of more potent, real-life relevant, sensors but also new tools to study host–guest interactions at interfaces. Surface enhancement effects in the sensing of anions at redox-active molecular films are investigated in detail and rationalised based on a consideration of the dielectric binding microenvironment.![]()
Collapse
Affiliation(s)
- Robert Hein
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Xiaoxiong Li
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Paul D Beer
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
13
|
Bueno PR, Davis JJ. Charge transport and energy storage at the molecular scale: from nanoelectronics to electrochemical sensing. Chem Soc Rev 2020; 49:7505-7515. [DOI: 10.1039/c9cs00213h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This tutorial review considers how the fundamental quantized properties associated with charge transport and storage, particularly in molecular films, are linked in a manner that spans nanoscale electronics, electrochemistry, redox switching, and derived nanoscale sensing.
Collapse
Affiliation(s)
- Paulo R. Bueno
- Institute of Chemistry
- Univ. Estadual Paulista (São Paulo State University)
- UNESP
- CP 355
- Araraquara
| | - Jason J. Davis
- Department of Chemistry
- University of Oxford
- Oxford OX1 3QZ
- UK
| |
Collapse
|