1
|
An GC. Enhancement of atmospheric nucleation precursors on formic sulfuric anhydride induced nucleation: Theoretical mechanism. CHEMOSPHERE 2024; 368:143684. [PMID: 39505075 DOI: 10.1016/j.chemosphere.2024.143684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
As an intermediate formed by H2SO4 (SA), formic sulfate anhydride (FSA) has been hypothesized to play a role in the nucleation of atmospheric aerosols. It is the first time that the clusters (SA)x(A)y(W)n and (FSA)x(A)y(W)n (x = 1-2; y = 1-2; n = 0-4) were systematically studied in theory on the structures, thermodynamics, intermolecular interactions, humidity dependence, atmospheric dependence and optical properties. FSA is predicted to be more stronger to promote the clustering with ammonia (A) than SA, suggesting that substituent group enhances nucleation capability of FSA. Whereas, the substituent group does not influence the humidity sensitivity of hydrated clusters. The clusters trend to form small hydrated clusters (nwater≦3). The study on atmospheric dependence indicates that the stability of the clusters depends more on temperature other than pressure. Moreover, FSA shows a stronger ability on reducing atmospheric visibility than A, SA and water molecules. This finding aims to draw attention to FSA about atmospheric nucleation.
Collapse
Affiliation(s)
- Guo-Ce An
- School of Forensic Science and Technology, Criminal Investigation Police University of China, Shenyang, Liaoning, 110854, People's Republic of China.
| |
Collapse
|
2
|
Xia Y, Long B, Liu A, Truhlar DG. Reactions with Criegee intermediates are the dominant gas-phase sink for formyl fluoride in the atmosphere. FUNDAMENTAL RESEARCH 2024; 4:1216-1224. [PMID: 39431129 PMCID: PMC11489503 DOI: 10.1016/j.fmre.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/09/2023] Open
Abstract
Atmospheric oxidation processes are of central importance in atmospheric climate models. It is often considered that volatile organic molecules are mainly removed by hydroxyl radical; however, the kinetics of some reactions of hydroxyl radical with volatile organic molecules are slow. Here we report rate constants for rapid reactions of formyl fluoride with Criegee intermediates. These rate constants are calculated by dual-level multistructural canonical variational transition state theory with small-curvature tunneling (DL-MS-CVT/SCT). The treatment contains beyond-CCSD(T) electronic structure calculations for transition state theory, and it employs validated density functional input for multistructural canonical variational transition state theory with small-curvature tunneling and for variable-reaction-coordinate variational transition state theory. We find that the M11-L density functional has higher accuracy than CCSD(T)/CBS for the HC(O)F + CH2OO and HC(O)F + anti-CH3CHOO reactions. We find significant negative temperature dependence in the ratios of the rate constants for HC(O)F + CH2OO/anti-CH3CHOO to the rate constant for HC(O)F + OH. We also find that different Criegee intermediates have different rate-determining-steps in their reactions with formyl fluoride, and we find that the dominant gas-phase removal mechanism for HC(O)F in the atmosphere is the reaction with CH2OO and/or anti-CH3CHOO Criegee intermediates.
Collapse
Affiliation(s)
- Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Ai Liu
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431, United States
| |
Collapse
|
3
|
Gao Q, Shen C, Zhang H, Long B, Truhlar DG. Quantitative kinetics reveal that reactions of HO 2 are a significant sink for aldehydes in the atmosphere and may initiate the formation of highly oxygenated molecules via autoxidation. Phys Chem Chem Phys 2024; 26:16160-16174. [PMID: 38787752 DOI: 10.1039/d4cp00693c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Large aldehydes are widespread in the atmosphere and their oxidation leads to secondary organic aerosols. The current understanding of their chemical transformation processes is limited to hydroxyl radical (OH) oxidation during daytime and nitrate radical (NO3) oxidation during nighttime. Here, we report quantitative kinetics calculations of the reactions of hexanal (C5H11CHO), pentanal (C4H9CHO), and butanal (C3H7CHO) with hydroperoxyl radical (HO2) at atmospheric temperatures and pressures. We find that neither tunneling nor multistructural torsion anharmonicity should be neglected in computing these rate constants; strong anharmonicity at the transition states is also important. We find rate constants for the three reactions in the range 3.2-7.7 × 10-14 cm3 molecule-1 s-1 at 298 K and 1 atm, showing that the HO2 reactions can be competitive with OH and NO3 oxidation under some conditions relevant to the atmosphere. Our findings reveal that HO2-initiated oxidation of large aldehydes may be responsible for the formation of highly oxygenated molecules via autoxidation. We augment the theoretic studies with laboratory flow-tube experiments using an iodide-adduct time-of-flight chemical ionization mass spectrometer to confirm the theoretical predictions of peroxy radicals and the autoxidation pathway. We find that the adduct from HO2 + C5H11CHO undergoes a fast unimolecular 1,7-hydrogen shift with a rate constant of 0.45 s-1. We suggest that the HO2 reactions make significant contributions to the sink of aldehydes.
Collapse
Affiliation(s)
- Qiao Gao
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China.
| | - Chuanyang Shen
- Department of Chemistry, University of California, Riverside, California, 92507, USA.
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California, 92507, USA.
| | - Bo Long
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China.
- College of Materials Science and Engineering, Guizhou Minzu university, Guiyang 550025, China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA.
| |
Collapse
|
4
|
Sun Y, Long B, Truhlar DG. Unimolecular Reactions of E-Glycolaldehyde Oxide and Its Reactions with One and Two Water Molecules. RESEARCH (WASHINGTON, D.C.) 2023; 6:0143. [PMID: 37435010 PMCID: PMC10332847 DOI: 10.34133/research.0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/20/2023] [Indexed: 07/13/2023]
Abstract
The kinetics of Criegee intermediates are important for atmospheric modeling. However, the quantitative kinetics of Criegee intermediates are still very limited, especially for those with hydroxy groups. Here, we calculate rate constants for the unimolecular reaction of E-glycolaldehyde oxide [E-hydroxyethanal oxide, E-(CH2OH)CHOO], for its reactions with H2O and (H2O)2, and for the reaction of the E-(CH2OH)CHOO…H2O complex with H2O. For the highest level of electronic structure, we use W3X-L//CCSD(T)-F12a/cc-pVDZ-F12 for the unimolecular reaction and the reaction with water and W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ for the reaction with 2 water molecules. For the dynamics, we use a dual-level strategy that combines conventional transition state theory with the highest level of electronic structure and multistructural canonical variational transition state theory with small-curvature tunneling with a validated density functional for the electronic structure. This dynamical treatment includes high-frequency anharmonicity, torsional anharmonicity, recrossing effects, and tunneling. We find that the unimolecular reaction of E-(CH2OH)CHOO depends on both temperature and pressure. The calculated results show that E-(CH2OH)CHOO…H2O + H2O is the dominant entrance channel, while previous investigations only considered Criegee intermediates + (H2O)2. In addition, we find that the atmospheric lifetime of E-(CH2OH)CHOO with respect to 2 water molecules is particularly short with a value of 1.71 × 10-6 s at 0 km, which is about 2 orders of magnitude shorter than those usually assumed for Criegee intermediate reactions with water dimer. We also find that the OH group in E-(CH2OH)CHOO enhances its reactivity.
Collapse
Affiliation(s)
- Yan Sun
- Department of Physics, Guizhou University, Guiyang 550025, China
| | - Bo Long
- Department of Physics, Guizhou University, Guiyang 550025, China
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431, USA
| |
Collapse
|
5
|
Chen T, Zhang P, Chu B, Ma Q, Ge Y, He H. Synergistic Effects of SO 2 and NH 3 Coexistence on SOA Formation from Gasoline Evaporative Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6616-6625. [PMID: 37055378 DOI: 10.1021/acs.est.3c01921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Vehicular evaporative emissions make an increasing contribution to anthropogenic sources of volatile organic compounds (VOCs), thus contributing to secondary organic aerosol (SOA) formation. However, few studies have been conducted on SOA formation from vehicle evaporative VOCs under complex pollution conditions with the coexistence of NOx, SO2, and NH3. In this study, the synergistic effects of SO2 and NH3 on SOA formation from gasoline evaporative VOCs with NOx were examined using a 30 m3 smog chamber with the aid of a series of mass spectrometers. Compared with the systems involving SO2 or NH3 alone, SO2 and NH3 coexistence had a greater promotion effect on SOA formation, which was larger than the cumulative effect of the two promotions alone. Meanwhile, contrasting effects of SO2 on the oxidation state (OSc) of SOA in the presence or absence of NH3 were observed, and SO2 could further increase the OSc with the coexistence of NH3. The latter was attributed to the synergistic effects of SO2 and NH3 coexistence on SOA formation, wherein N-S-O adducts can be formed from the reaction of SO2 with N-heterocycles generated in the presence of NH3. Our study contributes to the understanding of SOA formation from vehicle evaporative VOCs under highly complex pollution conditions and its atmospheric implications.
Collapse
Affiliation(s)
- Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Ge
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Innovation Center for Engineering Science and Advanced Technology, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Zhang H, Gao R, Li H, Li Y, Xu Y, Chai F. Formation mechanism of typical aromatic sulfuric anhydrides and their potential role in atmospheric nucleation process. J Environ Sci (China) 2023; 123:54-64. [PMID: 36522013 DOI: 10.1016/j.jes.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 06/17/2023]
Abstract
Sulfuric anhydrides, generated from the cycloaddition reaction of SO3 with carboxylic acids, have been revealed to be potential participants in the nucleation process of new particle formation (NPF). Hence the reaction mechanisms of typical aromatic acids (benzoic acid (BA), phenylacetic acid (PAA), phthalic acid (PA), isophthalic acid (mPA), and terephthalic acid (PTA)) with SO3 to generate the corresponding aromatic sulfuric anhydrides were investigated by density functional theory calculations at the level of M06-2X/6-311++G(3df,3pd). As a result, these reactions were found to be feasible in the gas phase with barriers of 0.34, 0.30, 0.18, 0.08 and 0.12 kcal/mol to generate corresponding aromatic sulfuric anhydrides, respectively. The thermodynamic stabilities of clusters containing aromatic sulfuric anhydrides and atmospheric nucleation precursors (sulfuric acid, ammonia and dimethylamine) were further analyzed to identify the potential role of aromatic sulfuric anhydrides in NPF. As the thermodynamic stability of a cluster depends on both the number and strength of hydrogen bonds, the greater stability of the interactions between atmospheric nucleation precursors and aromatic sulfuric anhydrides than with aromatic acids make aromatic sulfuric anhydrides potential participators in the nucleation process of NPF. Moreover, compared with BA, the addition of a -CH2- functional group in PAA has little influence on the reaction barrier with SO3 but an inhibitive effect on the thermodynamic stability of clusters. The position of the two -COOH functional groups in PA, mPA and PTA does not have a consistent impact on the reaction barrier with SO3 or the thermodynamic stability.
Collapse
Affiliation(s)
- Haijie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yunfeng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yisheng Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fahe Chai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
7
|
Li GB, Cai SH, Long B. New Reactions for the Formation of Organic Nitrate in the Atmosphere. ACS OMEGA 2022; 7:39671-39679. [PMID: 36385897 PMCID: PMC9647854 DOI: 10.1021/acsomega.2c03321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/30/2022] [Indexed: 05/24/2023]
Abstract
Organic nitrates make an important contribution to the formation of secondary organic aerosols, but the formation mechanisms of organic nitrates are not fully understood at the molecular level. In the present work, we explore a new route for the formation of organic nitrates in the reaction of formaldehyde (HCHO) with nitric acid (HNO3) catalyzed by water (H2O), ammonia (NH3), and dimethylamine ((CH3)2NH) using theoretical methods. The present results using CCSD(T)-F12a/cc-pVTZ-F12//M06-2X/MG3S unravel that dimethylamine has a stronger catalytic ability in the reaction of HCHO with HNO3, reducing the barrier by 21.97 kcal/mol, while water and ammonia only decrease the energy barrier by 7.35 and 13.56 kcal/mol, respectively. In addition, the calculated kinetics combined with the corresponding concentrations of these species show that the HCHO + HNO3 + (CH3)2NH reaction can compete well with the naked HCHO + HNO3 reaction at 200-240 K, which may make certain contributions to the formation of organic nitrates under some atmospheric conditions.
Collapse
Affiliation(s)
- Gang-Biao Li
- Department
of Physics, Guizhou University, Guiyang550025, China
| | - Shao-Hong Cai
- Department
of Physics, Guizhou University, Guiyang550025, China
| | - Bo Long
- Department
of Physics, Guizhou University, Guiyang550025, China
- College
of Materials Science and Engineering, Guizhou
Minzu university, Guiyang550025, China
| |
Collapse
|
8
|
Lin X, Huang M, Zhu M, Zhao W, Gu X, Zhang W. Theoretical study on atmospheric gaseous reactions of glyoxal with sulfuric acid and ammonia. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Long B, Xia Y, Truhlar DG. Quantitative Kinetics of HO 2 Reactions with Aldehydes in the Atmosphere: High-Order Dynamic Correlation, Anharmonicity, and Falloff Effects Are All Important. J Am Chem Soc 2022; 144:19910-19920. [PMID: 36264240 DOI: 10.1021/jacs.2c07994] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kinetics provides the fundamental parameters for elucidating sources and sinks of key atmospheric species and for atmospheric modeling more generally. Obtaining quantitative kinetics in the laboratory for the full range of atmospheric temperatures and pressures is quite difficult. Here, we use computational chemistry to obtain quantitative rate constants for the reactions of HO2 with HCHO, CH3CHO, and CF3CHO. First, we calculate the high-pressure-limit rate constants by using a dual-level strategy that combines conventional transition state theory using a high level of electronic structure wave function theory with canonical variational transition state theory including small-curvature tunneling using density functional theory. The wave-function level is beyond-CCSD(T) for HCHO and CCSD(T)-F12a (Level-A) for XCHO (X = CH3, CF3), and the density functional (Level-B) is specifically validated for these reactions. Then, we calculate the pressure-dependent rate constants by using system-specific quantum RRK theory (SS-QRRK) and also by an energy-grained master equation. The two treatments of the pressure dependence agree well. We find that the Level-A//Level-B method gives good agreement with CCSDTQ(P)/CBS. We also find that anharmonicity is an important factor that increases the rate constants of all three reactions. We find that the HO2 + HCHO reaction has a significant dependence on pressure, but the HO2 + CF3CHO reaction is almost independent of pressure. Our findings show that the HO2 + HCHO reaction makes important contribution to the sink for HCHO, and the HO2 + CF3CHO reaction is the dominant sink for CF3CHO in the atmosphere.
Collapse
Affiliation(s)
- Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
10
|
Derbali I, Aroule O, Hoffmann G, Thissen R, Alcaraz C, Romanzin C, Zins EL. On the relevance of the electron density analysis for the study of micro-hydration and its impact on the formation of a peptide-like bond. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Wang PB, Truhlar DG, Xia Y, Long B. Temperature-dependent kinetics of the atmospheric reaction between CH 2OO and acetone. Phys Chem Chem Phys 2022; 24:13066-13073. [PMID: 35583864 DOI: 10.1039/d2cp01118b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Criegee intermediates are important oxidants produced in the ozonolysis of alkenes in the atmosphere. Quantitative kinetics of the reactions of Criegee intermediates are required for atmospheric modeling. However, the experimental studies do not cover the full relevant range of temperature and pressure. Here we report the quantitative kinetics of CH2OO + CH3C(O)CH3 by using our recently developed dual strategy that combines coupled cluster theory with high excitation levels for conventional transition state theory and well validated levels of density functional theory for direct dynamics calculations using canonical variational transition theory including tunneling. We find that the W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ electronic structure method can be used to obtain quantitative kinetics of the CH2OO + CH3C(O)CH3 reaction. Whereas previous investigations considered a one-step mechanistic pathway, we find that the CH2OO + CH3C(O)CH3 reaction occurs in a stepwise manner. This has implications for the modeling of Criegee-intermediate reactions with other ketones and with aldehydes. In the kinetics calculations, we show that recrossing effects of the conventional transition state are negligible for determining the rate constant of CH2OO + CH3C(O)CH3. The present findings reveal that the rate ratio between CH2OO + CH3C(O)CH3 and OH + CH3C(O)CH3 has a significant negative dependence on temperature such that the CH2OO + CH3C(O)CH3 reaction can contribute as a significant sink for atmospheric CH3C(O)CH3 at low temperature. The present findings should have broad implications in understanding the reactions of Criegee intermediates with carbonyl compounds and ketones in the atmosphere.
Collapse
Affiliation(s)
- Peng-Biao Wang
- Department of Physics, Guizhou University, Guiyang, 550025, China.
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Bo Long
- Department of Physics, Guizhou University, Guiyang, 550025, China. .,College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
12
|
Fan W, Chen T, Zhu Z, Zhang H, Qiu Y, Yin D. A review of secondary organic aerosols formation focusing on organosulfates and organic nitrates. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128406. [PMID: 35149506 DOI: 10.1016/j.jhazmat.2022.128406] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Secondary organic aerosols (SOA) are crucial constitution of fine particulate matter (PM), which are mainly derived from photochemical oxidation products of primary organic matter and volatile organic compounds (VOCs), and can induce terrible impacts to human health, air quality and climate change. As we know, organosulfates (OSs) and organic nitrates (ON) are important contributors for SOA formation, which could be possibly produced through various pathways, resulting in extremely complex formation mechanism of SOA. Although plenty of research has been focused on the origins, spatial distribution and formation mechanisms of SOA, a comprehensive and systematic understanding of SOA formation in the atmosphere remains to be detailed explored, especially the most important OSs and ON dedications. Thus, in this review, we systematically summarize the recent research about origins and formation mechanisms of OSs and ON, and especially focus on their contribution to SOA, so as to have a clearer understanding of the origin, spatial distribution and formation principle of SOA. Importantly, we interpret the complex interaction with coexistence effect of SOx and NOx on SOA formation, and emphasize the future insights for SOA research to expect a more comprehensive theory and practice to alleviate SOA burden.
Collapse
Affiliation(s)
- Wulve Fan
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Ting Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China.
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China.
| |
Collapse
|
13
|
Xia Y, Long B, Lin S, Teng C, Bao JL, Truhlar DG. Large Pressure Effects Caused by Internal Rotation in the s-cis-syn-Acrolein Stabilized Criegee Intermediate at Tropospheric Temperature and Pressure. J Am Chem Soc 2022; 144:4828-4838. [PMID: 35262353 DOI: 10.1021/jacs.1c12324] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Criegee intermediates are important atmospheric oxidants, and quantitative kinetics for stabilized Criegee intermediates are key parameters for atmospheric modeling but are still limited. Here we report barriers and rate constants for unimolecular reactions of s-cis-syn-acrolein oxide (scsAO), in which the vinyl group makes it a prototype for Criegee intermediates produced in the ozonolysis of isoprene. We find that the MN15-L and M06-2X density functionals have CCSD(T)/CBS accuracy for the unimolecular cyclization and stereoisomerization of scsAO. We calculated high-pressure-limit rate constants by the dual-level strategy that combines (a) high-level wave function-based conventional transition-state theory (which includes coupled-cluster calculations with quasiperturbative inclusion of quadruple excitations because of the strongly multiconfigurational character of the electronic wave function) and (b) canonical variational transition-state theory with small-curvature tunneling based on a validated density functional. We calculated pressure-dependent rate constants both by system-specific quantum Rice-Ramsperger-Kassel theory and by solving the master equation. We report rate constants for unimolecular reactions of scsAO over the full range of atmospheric temperature and pressure. We found that the unimolecular reaction rates of this larger-than-previously studied Criegee intermediate depend significantly on pressure. Particularly, we found that falloff effects decrease the effective unimolecular cyclization rate constant of scsAO by about a factor of 3, but the unimolecular reaction is still the dominant atmospheric sink for scsAO at low altitudes. The large falloff caused by the inclusion of the stereoisomerization channel in the master equation calculations has broad implications for mechanistic analysis of reactions with competitive internal rotations that can produce stable rotamers.
Collapse
Affiliation(s)
- Yu Xia
- College of Mechanical and Electrical Engineering, Guizhou Minzu University, Guiyang 550025, China.,College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Bo Long
- College of Mechanical and Electrical Engineering, Guizhou Minzu University, Guiyang 550025, China.,College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Shiru Lin
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chong Teng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Junwei Lucas Bao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
14
|
Zhang T, Zhang Y, Tian S, Zhou M, Liu D, Lin L, Zhang Q, Wang R, Muthiah B. Possible atmospheric source of NH 2SO 3H: the hydrolysis of HNSO 2 in the presence of neutral, basic, and acidic catalysts. Phys Chem Chem Phys 2022; 24:4966-4977. [PMID: 35141735 DOI: 10.1039/d1cp04437k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NH2SO3H can directly participate in H2SO4-(CH3)2NH-based cluster formation, and thereby substantially enhance the cluster formation rate. Herein, the reaction mechanisms and kinetics for the formation of NH2SO3H from the hydrolysis of HNSO2 without and with neutral (H2O, (H2O)2, and (H2O)3), basic (NH3 and CH3NH2), and acidic (HCOOH, H2SO4, H2SO4⋯H2O, and (H2SO4)2) catalysts were studied theoretically at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311+G(2df,2pd) level. The calculated results showed that neutral, basic, and acidic catalysts decrease the energy barrier by over 18.1 kcal mol-1; meanwhile, the product formation of NH2SO3H was more strongly bonded to neutral, basic, and acidic catalysts than to the reactants HNSO2 and H2O. This reveals that the reported neutral, basic, and acidic catalysts promote the formation of NH2SO3H from the hydrolysis of HNSO2 both kinetically and thermodynamically. Kinetic calculations using the master equation showed that (H2O)2 (100% RH) dominate over the other catalysts within the range of 0-10 km altitudes and 230-320 K with its rate ratio larger by at least 2.98 times, whereas HCOOH (3.2 × 109 molecules cm-3) is the most favorable catalysts at 15 km altitude in the troposphere. Overall, the present results will provide a definitive example that neutral, basic, and acidic catalysts have important influences on atmospheric reactions.
Collapse
Affiliation(s)
- Tianlei Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Yongqi Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Shiyu Tian
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Mi Zhou
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Dong Liu
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Ling Lin
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Qiang Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Rui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Balaganesh Muthiah
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
15
|
Derbali I, Thissen R, Alcaraz C, Romanzin C, Zins EL. Study of the Reactivity of CH 3COOH +• and COOH + Ions with CH 3NH 2: Evidence of the Formation of New Peptide-like C(O)-N Bonds. J Phys Chem A 2021; 125:10006-10020. [PMID: 34761946 DOI: 10.1021/acs.jpca.1c06630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetamide, a small organic compound containing a peptide bond, was observed in the interstellar medium, but reaction pathways leading to the formation of this prebiotic molecule remain uncertain. We investigated the possible formation of a peptide-like bond from the reaction between acetic acid (CH3-COOH) and methylamine (CH3-NH2) that were identified in the interstellar medium. From an experimental point of view, a quadrupole/octopole/quadrupole mass spectrometer was used in combination with synchrotron radiation as a tunable source of VUV photons for monitoring the reactivity of selected ions. Acetic acid was photoionized, and the reactivity of CH3COOH+• as well as COOH+ (produced from either acetic acid or formic acid) ions with neutral CH3NH2 was further studied. With no surprise, charge transfer, proton transfer, and concomitant dissociation processes were found to largely dominate the reactivity. However, a C(O)-N bond formation process between the two reactants was also evidenced, with a weak cross section reaction. From a theoretical point of view, results concerning reactivity and barrier heights were obtained using density functional theory, with the LC-ωPBE range-separated functional in combination with the 6-311++G(d,p) Pople basis set and are in perfect agreement with the experimental data.
Collapse
Affiliation(s)
- Imene Derbali
- De la Molécule aux Nano-Objets: Réactivité, Interactions Spectroscopies, MONARIS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Roland Thissen
- Institut de Chimie Physique, UMR 8000, Université Paris-Saclay, CNRS, Bât. 350, 91405 Orsay, France.,SOLEIL Synchrotron, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Christian Alcaraz
- Institut de Chimie Physique, UMR 8000, Université Paris-Saclay, CNRS, Bât. 350, 91405 Orsay, France.,SOLEIL Synchrotron, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Claire Romanzin
- Institut de Chimie Physique, UMR 8000, Université Paris-Saclay, CNRS, Bât. 350, 91405 Orsay, France.,SOLEIL Synchrotron, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Emilie-Laure Zins
- De la Molécule aux Nano-Objets: Réactivité, Interactions Spectroscopies, MONARIS, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
16
|
Arathala P, Tangtartharakul CB, Sinha A. Atmospheric Ring-Closure and Dehydration Reactions of 1,4-Hydroxycarbonyls in the Gas Phase: The Impact of Catalysts. J Phys Chem A 2021; 125:5963-5975. [PMID: 34191509 DOI: 10.1021/acs.jpca.1c02331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,4-Hydroxycarbonyls can potentially undergo sequential reactions involving cyclization followed by dehydration to form dihydrofurans. As dihydrofurans contain a double bond, they are highly reactive toward atmospheric oxidants such as OH, O3, and NO3. In the present study, we use ab initio calculations to examine the impact of various atmospheric catalysts on the energetics and kinetics of the gas-phase cyclization and dehydration reaction steps associated with 4-hydroxybutanal, a prototypical 1,4-hydroxycarbonyl molecule. The cyclization step transforms 4-hydroxybutanal into 2-hydroxytetrahydrofuran, which can subsequently undergo dehydration to form 2,3-dihydrofuran. As the barriers associated with the cyclization and dehydration steps for 4-hydroxybutanal are, respectively, 34.8 and 63.0 kcal/mol in the absence of a catalyst, both reaction steps are inaccessible under atmospheric conditions in the gas phase. However, the presence of a suitable catalyst can significantly reduce the reaction barriers, and we have examined the impact of a single molecule of H2O, HO2 radical, HC(O)OH, HNO3, and H2SO4 on these reactions. We find that H2SO4 reduces the reaction barriers the greatest, with the barrier for the cyclization step being reduced to -13.1 kcal/mol and that for the dehydration step going down to 9.2 kcal/mol, measured relative to their respective separated starting reactants. Interestingly, our kinetic study shows that HNO3 gives the fastest rate due to the combined effects of a larger atmospheric concentration and a reduced barrier. Thus, our study suggests that, with acid catalysis, the cyclization reaction step can readily occur for 1,4-hydroxycarbonyls in the gas phase. Because the dehydration step exhibits a significant barrier even with acid catalysis, the 2-hydroxytetrahydrofuran products, once formed, are likely lost through their reaction with OH radicals in the atmosphere. We have investigated the reaction pathways and the rate constant for this bimolecular reaction in the presence of excess molecular oxygen (3O2), as it would occur under tropospheric conditions, using computational chemistry over the 200-300 K temperature range. We find that the main products from these OH-initiated oxidation reactions are succinaldehyde + HO2 and 2,3-dihydro-2-furanol + HO2.
Collapse
Affiliation(s)
- Parandaman Arathala
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| | - Chanin B Tangtartharakul
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| | - Amitabha Sinha
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| |
Collapse
|
17
|
Long B, Wang Y, Xia Y, He X, Bao JL, Truhlar DG. Atmospheric Kinetics: Bimolecular Reactions of Carbonyl Oxide by a Triple-Level Strategy. J Am Chem Soc 2021; 143:8402-8413. [PMID: 34029069 DOI: 10.1021/jacs.1c02029] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Criegee intermediates in the atmosphere serve as oxidizing agents to initiate aerosol formation, which are particularly important for atmospheric modeling, and understanding their kinetics is one of the current outstanding challenges in climate change modeling. Because experimental kinetics are still limited, we must rely on theory for the complete picture, but obtaining absolute rates from theory is a formidable task. Here, we report the bimolecular reaction kinetics of carbonyl oxide with ammonia, hydrogen sulfide, formaldehyde, and water dimer by designing a triple-level strategy that combines (i) benchmark results close to the complete-basis limit of coupled-cluster theory with the single, double, triple, and quadruple excitations (CCSDTQ/CBS), (ii) a new hybrid meta density functional (M06CR) specifically optimized for reactions of Criegee intermediates, and (iii) variational transition-state theory with both variable rection coordinates and optimized reaction paths, with multidimensional tunneling, and with pressure effects. For (i) we have found that quadruple excitations are required to obtain quantitative reaction barriers, and we designed new composite methods and strategies to reach CCSDTQ/CBS accuracy. The present findings show that (i) the CH2OO + HCHO reaction can make an important contribution to the sink of HCHO under wide atmospheric conditions in the gas phase and that (ii) CH2OO + (H2O)2 dominates over the CH2OO + H2O reaction below 10 km.
Collapse
Affiliation(s)
- Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China.,Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Ying Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Junwei Lucas Bao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
18
|
Rufino VC, Pliego JR. Bifunctional Primary Amino‐thiourea Asymmetric Catalysis: The Imine‐Iminium Ion Mechanism in the Michael Addition of Nitromethane to Enone. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Virginia C. Rufino
- Departamento de Ciências Naturais Universidade Federal de São João del-Rei 36301-160 São João del-Rei MG Brazil
| | - Josefredo R. Pliego
- Departamento de Ciências Naturais Universidade Federal de São João del-Rei 36301-160 São João del-Rei MG Brazil
| |
Collapse
|
19
|
An Z, Han D, Sun J, Mei Q, Wei B, Li M, Qiu Z, Bo X, Wang X, Xie J, Zhan J, He M. Full insights into the roles of pH on hydroxylation of aromatic acids/bases and toxicity evaluation. WATER RESEARCH 2021; 190:116689. [PMID: 33279740 DOI: 10.1016/j.watres.2020.116689] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Advanced oxidation processes (AOPs) based on hydroxyl radicals (•OH) are the most important technologies for the removal of bio-recalcitrant organic pollutants in industrial wastewater. The pH is one of the crucial environmental parameters that affect the removal efficiency of pollutants in AOPs. In this work, the mechanistic and kinetic insights into the roles of pH on the hydroxylation of five aromatic acids and bases in UV/H2O2 process have been investigated using theoretical calculation methods. Results show that the reactivity of •OH towards the twelve ionic/neutral species is positively correlated with electron-donating effect of substituents, which contributes to the positively pH-dependent reactivity of aromatic acids and bases towards •OH. The hydroxylation apparent rate constants (kapp, M-1 s-1) (at 298 K) increase as the pH values increase from about 1 to 10, but they decrease as the pH values increase from about 10 to 14. However, the best pH values for degradation are not around 10 because the [•OH] decreases continuously with the increasing pH values from 3 to 9.5. Combining the factors of kapp and [•OH], the best degradation pH values are around 5.5~7.5 for p-hydroxybenzoic acid, p-aminophenol, aniline and benzoic acid, 3.0~7.5 for phenol and 5.5~7.5 for mixed pollutants of these aromatic acids/bases in UV/H2O2 process. Moreover, a significant number of hydroxylation by-products are more toxic or harmful to aquatic organisms and rat (oral) than their parental pollutants. Altogether, this work provides comprehensive understanding of the roles of pH on •OH-initiated degradation behavior of aromatic acids and bases.
Collapse
Affiliation(s)
- Zexiu An
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Dandan Han
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China
| | - Jianfei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, P. R. China
| | - Qiong Mei
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Bo Wei
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Zhaoxu Qiu
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Xiaofei Bo
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Xueyu Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jinhua Zhan
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan 250100, P. R. China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China.
| |
Collapse
|
20
|
Qiu Z, Wei F, Sun J, Niu Y, Mei Q, Wei B, An Z, Bo X, Xie J, He M. Theoretical Study of Ozonation of Methylparaben and Ethylparaben in Aqueous Solution. J Phys Chem A 2020; 124:10967-10976. [PMID: 33346642 DOI: 10.1021/acs.jpca.0c09207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parabens are widely employed in toothpaste, cosmetics, textiles, beverages, and preservatives, causing a serious environmental concern because they are endocrine-disrupting compounds (EDCs). As one of the highly reactive oxidants, ozone has a great effect on EDC removal. To understand the degradation and transformation of parabens in the aquatic environment and their toxicity to aquatic organisms, the degradation reaction of parabens initiated by O3 was studied meticulously using quantum chemical calculations. The degradation process includes multiple initial reaction channels and consequent degradation pathways of the Criegee intermediates. Through thermodynamic data, the rate constants were computed using the transition state theory (TST). At a temperature of 298 K and a pressure of 1 atm, the calculated rate constants were 3.92 and 3.94 M-1 s-1 for methylparaben (MPB) and ethylparaben (EPB), respectively. The rate constants increased as the temperature increased or as the length of the alkyl chain on the benzene ring increased. Through the ecotoxicity assessment procedure, the ecotoxicity of parabens and the products in the degradation process can be assessed. Most degradation byproducts are either less toxic or nontoxic. Some byproducts are still harmful, such as oxalaldehyde (P2) and ethyl 2,3-dioxopropanoate (P10). Furthermore, the ecological toxicity of parabens increased with augmentation of the alkyl chain on the benzene ring. The effect of the alkyl chain length on the benzene ring in the compound cannot be ignored.
Collapse
Affiliation(s)
- Zhaoxu Qiu
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Fenghua Wei
- Assets and Labratory Management Office, Shandong University, Qingdao 266237, P. R. China
| | - Jianfei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, P. R. China
| | - Yao Niu
- Marine College, Shandong University, Weihai 264209, P. R. China
| | - Qiong Mei
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Bo Wei
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Zexiu An
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Xiaofei Bo
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
21
|
Rufino VC, Pliego JR. The role of carboxylic acid impurity in the mechanism of the formation of aldimines in aprotic solvents. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Zhang T, Wen M, Zhang Y, Chen X, Qiao Z, Su Y, Lily M, Wang Z. Sulfuric acid catalyzed HCl + HO → Cl + H2O reaction in troposphere: A quantum chemical investigation. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|