1
|
Kastinen T, Batys P, Tolmachev D, Laasonen K, Sammalkorpi M. Ion-Specific Effects on Ion and Polyelectrolyte Solvation. Chemphyschem 2024; 25:e202400244. [PMID: 38712639 DOI: 10.1002/cphc.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Ion-specific effects on aqueous solvation of monovalent counter ions, Na+ ${^+ }$ , K+ ${^+ }$ , Cl- ${^- }$ , and Br- ${^- }$ , and two model polyelectrolytes (PEs), poly(styrene sulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA) were here studied with ab initio molecular dynamics (AIMD) and classical molecular dynamics (MD) simulations based on the OPLS-aa force-field which is an empirical fixed point-charge force-field. Ion-specific binding to the PE charge groups was also characterized. Both computational methods predict similar response for the solvation of the PEs but differ notably in description of ion solvation. Notably, AIMD captures the experimentally observed differences in Cl- ${^- }$ and Br- ${^- }$ anion solvation and binding with the PEs, while the classical MD simulations fail to differentiate the ion species response. Furthermore, the findings show that combining AIMD with the computationally less costly classical MD simulations allows benefiting from both the increased accuracy and statistics reach.
Collapse
Affiliation(s)
- Tuuva Kastinen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere University, Finland
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239, Krakow, Poland
| | - Dmitry Tolmachev
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| | - Kari Laasonen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| |
Collapse
|
2
|
Gabriel JP, Horstmann R, Tress M. Local and global expansivity in water. J Chem Phys 2024; 160:234502. [PMID: 38884401 DOI: 10.1063/5.0203924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
The supra-molecular structure of a liquid is strongly connected to its dynamics, which in turn control macroscopic properties such as viscosity. Consequently, detailed knowledge about how this structure changes with temperature is essential to understand the thermal evolution of the dynamics ranging from the liquid to the glass. Here, we combine infrared spectroscopy (IR) measurements of the hydrogen (H) bond stretching vibration of water with molecular dynamics simulations and employ a quantitative analysis to extract the inter-molecular H-bond length in a wide temperature range of the liquid. The extracted expansivity of this H-bond differs strongly from that of the average nearest neighbor distance of oxygen atoms obtained through a common conversion of mass density. However, both properties can be connected through a simple model based on a random loose packing of spheres with a variable coordination number, which demonstrates the relevance of supra-molecular arrangement. Furthermore, the exclusion of the expansivity of the inter-molecular H-bonds reveals that the most compact molecular arrangement is formed in the range of ∼316-331K (i.e., above the density maximum) close to the temperature of several pressure-related anomalies, which indicates a characteristic point in the supra-molecular arrangement. These results confirm our earlier approach to deduce inter-molecular H-bond lengths via IR in polyalcohols [Gabriel et al. J. Chem. Phys. 154, 024503 (2021)] quantitatively and open a new alley to investigate the role of inter-molecular expansion as a precursor of molecular fluctuations on a bond-specific level.
Collapse
Affiliation(s)
- Jan Philipp Gabriel
- Institute of Materials Physics in Space, German Aerospace Center, 51170 Köln, Germany
| | - Robin Horstmann
- Institute for Condensed Matter Physics, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - Martin Tress
- Peter Debye Institute for Soft Matter Research, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Dasgupta S, Palos E, Pan Y, Paesani F. Balance between Physical Interpretability and Energetic Predictability in Widely Used Dispersion-Corrected Density Functionals. J Chem Theory Comput 2024; 20:49-67. [PMID: 38150541 DOI: 10.1021/acs.jctc.3c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
We assess the performance of different dispersion models for several popular density functionals across a diverse set of noncovalent systems, ranging from the benzene dimer to molecular crystals. By analyzing the interaction energies and their individual components, we demonstrate that there exists variability across different systems for empirical dispersion models, which are calibrated for reproducing the interaction energies of specific systems. Thus, parameter fitting may undermine the underlying physics, as dispersion models rely on error compensation among the different components of the interaction energy. Energy decomposition analyses reveal that, the accuracy of revPBE-D3 for some aqueous systems originates from significant compensation between dispersion and charge transfer energies. However, revPBE-D3 is less accurate in describing systems where error compensation is incomplete, such as the benzene dimer. Such cases highlight the propensity for unpredictable behavior in various dispersion-corrected density functionals across a wide range of molecular systems, akin to the behavior of force fields. On the other hand, we find that SCAN-rVV10, a targeted-dispersion approach, affords significant reductions in errors associated with the lattice energies of molecular crystals, while it has limited accuracy in reproducing structural properties. Given the ubiquitous nature of noncovalent interactions and the key role of density functional theory in computational sciences, the future development of dispersion models should prioritize the faithful description of the dispersion energy, a shift that promises greater accuracy in capturing the underlying physics across diverse molecular and extended systems.
Collapse
Affiliation(s)
- Saswata Dasgupta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Etienne Palos
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Yuanhui Pan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
|
5
|
Dumouilla V, Dussap CG. Online analysis of D-glucose and D-mannose aqueous mixtures using Raman spectroscopy: an in silico and experimental approach. Bioengineered 2021; 12:4420-4431. [PMID: 34308749 PMCID: PMC8806848 DOI: 10.1080/21655979.2021.1955550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022] Open
Abstract
Raman spectroscopy was applied to an aqueous solution containing D-mannose and D-glucose at a fixed dry matter content. The Raman measurement apparatus was adapted online at the industrial scale to monitor a bioprocess including an epimerization reaction. Online Raman spectroscopy and deconvolution techniques were successfully applied to monitor in real time the D-mannose and D-glucose concentrations using the Raman shifts at 960 cm-1 and 974 cm-1 respectively. The two anomeric forms, α and β of D-mannose in the pyranose conformation were quantified. In silico analysis of vibrational frequencies and Raman intensities of hydrated structure of D-mannose and D-glucose in the pyranose form for α and β anomers were carried out using a two-step procedure. First molecular dynamics was used to generate the theoretical carbohydrates' structures keeping the experimental dry matter content, then quantum mechanics was used to compute the Raman frequencies and intensities. Computed vibrational frequencies are in satisfactory agreement with the experimental spectra considering a hydration shell approach. Raman intensities are qualitatively in accordance with the experimental data. The interpretation of Raman frequencies and intensities led to acceptable results regarding the current possible structures of D-mannose and D-glucose in aqueous solution. Online Raman spectroscopy coupled with in silico approaches such as quantum mechanics and molecular dynamics methodology is proved to be a valuable tool to quantify the carbohydrates and stereoisomers content in complex aqueous mixtures. This methodology offers a new way to monitor any bioprocesses that encounter aqueous mixtures of D-glucose and D-mannose.
Collapse
Affiliation(s)
- Vincent Dumouilla
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
- Biotechnology and Process Department, Roquettes Frères, Lestrem, France
| | - Claude Gilles Dussap
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
6
|
Drużbicki K, Gaboardi M, Fernandez-Alonso F. Dynamics & Spectroscopy with Neutrons-Recent Developments & Emerging Opportunities. Polymers (Basel) 2021; 13:1440. [PMID: 33947108 PMCID: PMC8125526 DOI: 10.3390/polym13091440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022] Open
Abstract
This work provides an up-to-date overview of recent developments in neutron spectroscopic techniques and associated computational tools to interrogate the structural properties and dynamical behavior of complex and disordered materials, with a focus on those of a soft and polymeric nature. These have and continue to pave the way for new scientific opportunities simply thought unthinkable not so long ago, and have particularly benefited from advances in high-resolution, broadband techniques spanning energy transfers from the meV to the eV. Topical areas include the identification and robust assignment of low-energy modes underpinning functionality in soft solids and supramolecular frameworks, or the quantification in the laboratory of hitherto unexplored nuclear quantum effects dictating thermodynamic properties. In addition to novel classes of materials, we also discuss recent discoveries around water and its phase diagram, which continue to surprise us. All throughout, emphasis is placed on linking these ongoing and exciting experimental and computational developments to specific scientific questions in the context of the discovery of new materials for sustainable technologies.
Collapse
Affiliation(s)
- Kacper Drużbicki
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastian, Spain;
- Polish Academy of Sciences, Center of Molecular and Macromolecular Studies, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Mattia Gaboardi
- Elettra—Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, 34149 Trieste, Italy;
| | - Felix Fernandez-Alonso
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastian, Spain;
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Spain
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
7
|
Goldsmith ZK, Calegari Andrade MF, Selloni A. Effects of applied voltage on water at a gold electrode interface from ab initio molecular dynamics. Chem Sci 2021; 12:5865-5873. [PMID: 34168811 PMCID: PMC8179682 DOI: 10.1039/d1sc00354b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Electrode–water interfaces under voltage bias demonstrate anomalous electrostatic and structural properties that are influential in their catalytic and technological applications. Mean-field and empirical models of the electrical double layer (EDL) that forms in response to an applied potential do not capture the heterogeneity that polarizable, liquid-phase water molecules engender. To illustrate the inhomogeneous nature of the electrochemical interface, Born–Oppenheimer ab initio molecular dynamics calculations of electrified Au(111) slabs interfaced with liquid water were performed using a combined explicit–implicit solvent approach. The excess charges localized on the model electrode were held constant and the electrode potentials were computed at frequent simulation times. The electrode potential in each trajectory fluctuated with changes in the atomic structure, and the trajectory-averaged potentials converged and yielded a physically reasonable differential capacitance for the system. The effects of the average applied voltages, both positive and negative, on the structural, hydrogen bonding, dynamical, and vibrational properties of water were characterized and compared to literature where applicable. Controlled-potential simulations of the interfacial solvent dynamics provide a framework for further investigation of more complex or reactive species in the EDL and broadly for understanding electrochemical interfaces in situ. Ab initio molecular dynamics of an aqueous electrode interface reveal the electrostatic, structural, and dynamic effects of quantifiable voltage biases on water.![]()
Collapse
Affiliation(s)
| | | | - Annabella Selloni
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| |
Collapse
|
8
|
Vibrational couplings and energy transfer pathways of water's bending mode. Nat Commun 2020; 11:5977. [PMID: 33239630 PMCID: PMC7688972 DOI: 10.1038/s41467-020-19759-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Coupling between vibrational modes is essential for energy transfer and dissipation in condensed matter. For water, different O-H stretch modes are known to be very strongly coupled both within and between water molecules, leading to ultrafast dissipation and delocalization of vibrational energy. In contrast, the information on the vibrational coupling of the H-O-H bending mode of water is lacking, even though the bending mode is an essential intermediate for the energy relaxation pathway from the stretch mode to the heat bath. By combining static and femtosecond infrared, Raman, and hyper-Raman spectroscopies for isotopically diluted water with ab initio molecular dynamics simulations, we find the vibrational coupling of the bending mode differs significantly from the stretch mode: the intramode intermolecular coupling of the bending mode is very weak, in stark contrast to the stretch mode. Our results elucidate the vibrational energy transfer pathways of water. Specifically, the librational motion is essential for the vibrational energy relaxation and orientational dynamics of H-O-H bending mode. Vibrational energy transfer in water involves intermolecular coupling of O-H stretching modes, but much less is known about the role of the bending modes. Here the authors, combining static and femtosecond infrared, Raman, and hyper-Raman spectroscopy and ab initio molecular dynamics simulations, provide insight into the energy dynamics of the bend vibrations.
Collapse
|