1
|
Fesenko AA, Grigoriev MS, Shutalev AD. Effective self-assembly of 21- and 14-membered azamacrocycles via condition-controlled cyclotrimerization or cyclodimerization of different thiosemicarbazide-based precursors. Org Biomol Chem 2024; 22:9078-9093. [PMID: 39435579 DOI: 10.1039/d4ob01384k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A preparative synthesis of previously unknown 21- and 14-membered azamacrocycles via acid-promoted cyclotrimerization or cyclodimerization of three readily available precursors, namely, 1-amino-6-hydroxy-4,6-dimethylhexahydropyrimidine-2-thione, 4-(4-oxopent-2-yl)thiosemicarbazide hydrazone, and 5,7-dimethyl-1,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione has been developed. A dramatic dependence of the selectivity of macrocyclization on the reaction conditions is demonstrated. The thermodynamic aspects of the reactions are discussed based on experimental data and DFT calculation results. Plausible pathways for the formation of macrocycles are proposed.
Collapse
Affiliation(s)
- Anastasia A Fesenko
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Ave., 119071 Moscow, Russian Federation
| | - Mikhail S Grigoriev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Ave., 119071 Moscow, Russian Federation
| | - Anatoly D Shutalev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russian Federation.
| |
Collapse
|
2
|
Oluwatoba DS, Safoah HA, Do TD. The rise and fall of adenine clusters in the gas phase: a glimpse into crystal growth and nucleation. Anal Bioanal Chem 2024; 416:5037-5048. [PMID: 39031229 DOI: 10.1007/s00216-024-05442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
The emergence of a crystal nucleus from disordered states is a critical and challenging aspect of the crystallization process, primarily due to the extremely short length and timescales involved. Methods such as liquid-cell or low-dose focal-series transmission electron microscopy (TEM) are often employed to probe these events. In this study, we demonstrate that ion mobility spectrometry-mass spectrometry (IMS-MS) offers a complementary and insightful perspective on the nucleation process by examining the sizes and shapes of small clusters, specifically those ranging from n = 2 to 40. Our findings reveal the significant role of sulfate ions in the growth of adeninediium sulfate clusters, which are the precursors to the formation of single crystals. Specifically, sulfate ions stabilize adenine clusters at the 1:1 ratio. In contrast, guanine sulfate forms smaller clusters with varied ratios, which become stable as they approach the 1:2 ratio. The nucleation size is predicted to be between n = 8 and 14, correlating well with the unit cell dimensions of adenine crystals. This correlation suggests that IMS-MS can identify critical nucleation sizes and provide valuable structural information consistent with established crystallographic data. We also discuss the strengths and limitations of IMS-MS in this context. IMS-MS offers rapid and robust experimental protocols, making it a valuable tool for studying the effects of various additives on the assembly of small molecules. Additionally, it aids in elucidating nucleation processes and the growth of different crystal polymorphs.
Collapse
Affiliation(s)
| | - Happy Abena Safoah
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
3
|
Nkyaagye E, Limbach MN, Do TD. Molecular Selectivity in the Binding of Alkali Metals, Alkaline Earth Metals, First-Row Transition Metals, and Lanthanides with Cyclic Depsipeptides. J Phys Chem B 2024; 128:1209-1219. [PMID: 38293785 DOI: 10.1021/acs.jpcb.3c08385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Beauvericin (BEA) and enniatins (ENN) are cyclic hexadepsipeptide mycotoxins known for their ionophoric activities across cell membranes. While their ability to selectively bind alkali ions to form binary complexes has been studied, their interaction with multivalent metal ions to form higher-order complexes remains less explored. We report the unique characteristics of the 1:2, Mn+:BEA or ENN complexes with monovalent, divalent, and trivalent metal ions. A thorough IMS-MS analysis underscores the substantial interplay among ionic radii, coordination numbers, and their impact on conformational selection within higher-order complexes that is pertinent to ion transport. Transition metals offer insights into the effects of ion radii and ligand side chains on conformational selection, while lanthanide complexes enable a direct evaluation of coordination chemistry. An intriguing finding concerning the lanthanide complexes involves an unexpected C-H bond activation, wherein water ligands may catalyze the deprotonation of the cyclic peptides.
Collapse
Affiliation(s)
- Emmanuel Nkyaagye
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Miranda N Limbach
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
4
|
Zoumpoulaki M, Schanne G, Delsuc N, Preud'homme H, Quévrain E, Eskenazi N, Gazzah G, Guillot R, Seksik P, Vinh J, Lobinski R, Policar C. Deciphering the Metal Speciation in Low‐Molecular‐Weight Complexes by IMS‐MS: Application to the Detection of Manganese Superoxide Dismutase Mimics in Cell Lysates. Angew Chem Int Ed Engl 2022; 61:e202203066. [DOI: 10.1002/anie.202203066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Martha Zoumpoulaki
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
- SMBP ESPCI Paris PSL University, UMR 8249 CNRS France
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
| | - Gabrielle Schanne
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
| | - Nicolas Delsuc
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | | | - Elodie Quévrain
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | | | - Géraldine Gazzah
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Regis Guillot
- ICMMO UMR CNRS 8182 Université Paris-Saclay 91405 Orsay France
| | - Philippe Seksik
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
- Gastroenterology Department Saint-Antoine Hospital Sorbonne Université, APHP Paris France
| | - Joelle Vinh
- SMBP ESPCI Paris PSL University, UMR 8249 CNRS France
| | - Ryszard Lobinski
- Universite de Pau, CNRS, E2S, IPREM-UMR5254, Hélioparc 64053 Pau France
- Chair of Analytical Chemistry Warsaw University of Technology, Noakowskiego 3 00-664 Warsaw Poland
| | - Clotilde Policar
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| |
Collapse
|
5
|
Deciphering the Metal Speciation in Low‐Molecular‐Weight Complexes by IMS‐MS: Application to the Detection of Manganese Superoxide Dismutase Mimics in Cell Lysates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Oluwatoba DS, Islam MF, Som B, Sindt AJ, Smith MD, Shimizu LS, Do TD. Evaluating the Effects of Metal Adduction and Charge Isomerism on Ion-Mobility Measurements using m-Xylene Macrocycles as Models. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:840-850. [PMID: 35471025 DOI: 10.1021/jasms.2c00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gas-phase ion-mobility spectrometry provides a unique platform to study the effect of mobile charge(s) or charge location on collisional cross section and ion separation. Here, we evaluate the effects of cation/anion adduction in a series of xylene and pyridyl macrocycles that contain ureas and thioureas. We explore how zinc binding led to unexpected deprotonation of the thiourea macrocyclic host in positive polarity ionization and subsequently how charge isomerism due to cation (zinc metal) and anion (chloride counterion) adduction or proton competition among acceptors can affect the measured collisional cross sections in helium and nitrogen buffer gases. Our approach uses synthetic chemistry to design macrocycle targets and a combination of ion-mobility spectrometry mass spectrometry experiments and quantum mechanics calculations to characterize their structural properties. We demonstrate that charge isomerism significantly improves ion-mobility resolution and allows for determination of the metal binding mechanism in metal-inclusion macrocyclic complexes. Additionally, charge isomers can be populated in molecules where individual protons are shared between acceptors. In these cases, interactions via drift gas collisions magnify the conformational differences. Finally, for the macrocyclic systems we report here, charge isomers are observed in both helium and nitrogen drift gases with similar resolution. The separation factor does not simply increase with increasing drift gas polarizability. Our study sheds light on important properties of charge isomerism and offers strategies to take advantage of this phenomenon in analytical separations.
Collapse
Affiliation(s)
- Damilola S Oluwatoba
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Md Faizul Islam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Bozumeh Som
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemistry, University of Ghana, P.O. Box LG 56, Legon, Accra, Ghana
| | - Ammon J Sindt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Linda S Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
7
|
Gray ALH, Sawaya MR, Acharyya D, Lou J, Edington EM, Best MD, Prosser RA, Eisenberg DS, Do TD. Atomic view of an amyloid dodecamer exhibiting selective cellular toxic vulnerability in acute brain slices. Protein Sci 2022; 31:716-727. [PMID: 34954854 PMCID: PMC8862425 DOI: 10.1002/pro.4268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
Atomic structures of amyloid oligomers that capture the neurodegenerative disease pathology are essential to understand disease-state causes and finding cures. Here we investigate the G6W mutation of the cytotoxic, hexameric amyloid model KV11. The mutation results into an asymmetric dodecamer composed of a pair of 30° twisted antiparallel β-sheets. The complete break between adjacent β-strands is unprecedented among amyloid fibril crystal structures and supports that our structure is an oligomer. The poor shape complementarity between mated sheets reveals an interior channel for binding lipids, suggesting that the toxicity may be due to a perturbation of lipid transport rather than a direct disruption of membrane integrity. Viability assays on mouse suprachiasmatic nucleus, anterior hypothalamus, and cerebral cortex demonstrated selective regional vulnerability consistent with Alzheimer's disease. Neuropeptides released from the brain slices may provide clues to how G6W initiates cellular injury.
Collapse
Affiliation(s)
- Amber L. H. Gray
- Department of ChemistryUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Michael R. Sawaya
- HHMIUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Biological ChemistryUniversity of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Energy Institute for Genomics and ProteomicsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Debalina Acharyya
- Department of Biochemistry & Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Jinchao Lou
- Department of ChemistryUniversity of TennesseeKnoxvilleTennesseeUSA
| | | | - Michael D. Best
- Department of ChemistryUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Rebecca A. Prosser
- Department of Biochemistry & Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - David S. Eisenberg
- HHMIUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Biological ChemistryUniversity of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Energy Institute for Genomics and ProteomicsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Thanh D. Do
- Department of ChemistryUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
8
|
Lloyd Williams OH, Rijs NJ. Reaction Monitoring and Structural Characterisation of Coordination Driven Self-Assembled Systems by Ion Mobility-Mass Spectrometry. Front Chem 2021; 9:682743. [PMID: 34169059 PMCID: PMC8217442 DOI: 10.3389/fchem.2021.682743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 01/03/2023] Open
Abstract
Nature creates exquisite molecular assemblies, required for the molecular-level functions of life, via self-assembly. Understanding and harnessing these complex processes presents an immense opportunity for the design and fabrication of advanced functional materials. However, the significant industrial potential of self-assembly to fabricate highly functional materials is hampered by a lack of knowledge of critical reaction intermediates, mechanisms, and kinetics. As we move beyond the covalent synthetic regime, into the domain of non-covalent interactions occupied by self-assembly, harnessing and embracing complexity is a must, and non-targeted analyses of dynamic systems are becoming increasingly important. Coordination driven self-assembly is an important subtype of self-assembly that presents several wicked analytical challenges. These challenges are "wicked" due the very complexity desired confounding the analysis of products, intermediates, and pathways, therefore limiting reaction optimisation, tuning, and ultimately, utility. Ion Mobility-Mass Spectrometry solves many of the most challenging analytical problems in separating and analysing the structure of both simple and complex species formed via coordination driven self-assembly. Thus, due to the emerging importance of ion mobility mass spectrometry as an analytical technique tackling complex systems, this review highlights exciting recent applications. These include equilibrium monitoring, structural and dynamic analysis of previously analytically inaccessible complex interlinked structures and the process of self-sorting. The vast and largely untapped potential of ion mobility mass spectrometry to coordination driven self-assembly is yet to be fully realised. Therefore, we also propose where current analytical approaches can be built upon to allow for greater insight into the complexity and structural dynamics involved in self-assembly.
Collapse
Affiliation(s)
| | - Nicole J. Rijs
- School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Gray ALH, Steren CA, Haynes IW, Bermejo GA, Favretto F, Zweckstetter M, Do TD. Structural Flexibility of Cyclosporine A Is Mediated by Amide Cis- Trans Isomerization and the Chameleonic Roles of Calcium. J Phys Chem B 2021; 125:1378-1391. [PMID: 33523658 DOI: 10.1021/acs.jpcb.0c11152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Falling outside of Lipinski's rule of five, macrocyclic drugs have accessed unique binding sites of their target receptors unreachable by traditional small molecules. Cyclosporin(e) A (CycA), an extensively studied macrocyclic natural product, is an immunosuppressant with undesirable side effects such as electrolytic imbalances. In this work, a comprehensive view on the conformational landscape of CycA, its interactions with Ca2+, and host-guest interactions with cyclophilin A (CypA) is reported through exhaustive analyses that combine ion-mobility spectrometry-mass spectrometry (IMS-MS), nuclear magnetic resonance (NMR) spectroscopy, distance-geometry modeling, and NMR-driven molecular dynamics. Our IMS-MS data show that CycA can adopt extremely compact conformations with significantly smaller collisional cross sections than the closed conformation observed in CDCl3. To adopt these conformations, the macrocyclic ring has to twist and bend via cis-trans isomerization of backbone amides, and thus, we termed this family of structures the "bent" conformation. Furthermore, NMR measurements indicate that the closed conformation exists at 19% in CD3OD/H2O and 55% in CD3CN. However, upon interacting with Ca2+, in addition to the bent and previously reported closed conformations of free CycA, the CycA:Ca2+ complex is open and has all-trans peptide bonds. Previous NMR studies using calcium perchlorate reported only the closed conformation of CycA (which contains one cis peptide bond). Here, calcium chloride, a more biologically relevant salt, was used, and interestingly, it helps converting the cis-MeLeu9-MeLeu10 peptide bond into a trans bond. Last, we were able to capture the native binding of CycA and CypA to give forth evidence that IMS-MS is able to probe the solution-phase structures of the complexes and that the Ca2+:CycA complex may play an essential role in the binding of CycA to CypA.
Collapse
Affiliation(s)
- Amber L H Gray
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Carlos A Steren
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Isaac W Haynes
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Guillermo A Bermejo
- Computational Biomolecular Magnetic Resonance Core, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Filippo Favretto
- Translational Structural Biology in Dementia, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Markus Zweckstetter
- Translational Structural Biology in Dementia, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany.,Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
10
|
Gray ALH, Antevska A, Oluwatoba DS, Schonfeld GE, Lazar Cantrell KL, Do TD. Cytotoxicity of α-Helical, Staphylococcus aureus PSMα3 Investigated by Post-Ion-Mobility Dissociation Mass Spectrometry. Anal Chem 2020; 92:11802-11808. [PMID: 32786488 DOI: 10.1021/acs.analchem.0c01974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our knowledge of amyloid formation and cytotoxicity originating from self-assembly of α-helical peptides is incomplete. PSMα3 is the only system where high-resolution X-ray crystallography and toxicity data are available. Oligomers of multiple α-helical monomers are less stable than those of β-strands, partially due to the lack of a consistent hydrogen-bonding network. It is challenging to preserve such oligomers in the gas phase where mass-selected structural studies using ion-mobility spectrometry mass spectrometry (IMS-MS) could be performed. As the oligomers fall apart after exiting the drift cell of the mass spectrometer, novel features that have shorter (a loss of charged species) or longer (a loss of neutral species) arrival times than expected are present together with those from the intact species. By obtaining a complete data set of PSMα3 peptides in solution and with n-dodecyl-β-d-maltoside, a micelle-forming detergent, we are able to discern the dissociated from the intact oligomers and detergent-bound complexes and correlate the reported cytotoxicity to the peptide oligomeric structures and their interactions with membrane mimetics. The study sheds new insights into the interpretation of IMS-MS data from biomolecular self-assembly studies-an important and timely topic.
Collapse
Affiliation(s)
- Amber L H Gray
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Aleksandra Antevska
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Damilola S Oluwatoba
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Grace E Schonfeld
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | | | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|