1
|
Alsaç EP, Nelson DL, Yoon SG, Cavallaro KA, Wang C, Sandoval SE, Eze UD, Jeong WJ, McDowell MT. Characterizing Electrode Materials and Interfaces in Solid-State Batteries. Chem Rev 2025. [PMID: 39903474 DOI: 10.1021/acs.chemrev.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Solid-state batteries (SSBs) could offer improved energy density and safety, but the evolution and degradation of electrode materials and interfaces within SSBs are distinct from conventional batteries with liquid electrolytes and represent a barrier to performance improvement. Over the past decade, a variety of imaging, scattering, and spectroscopic characterization methods has been developed or used for characterizing the unique aspects of materials in SSBs. These characterization efforts have yielded new understanding of the behavior of lithium metal anodes, alloy anodes, composite cathodes, and the interfaces of these various electrode materials with solid-state electrolytes (SSEs). This review provides a comprehensive overview of the characterization methods and strategies applied to SSBs, and it presents the mechanistic understanding of SSB materials and interfaces that has been derived from these methods. This knowledge has been critical for advancing SSB technology and will continue to guide the engineering of materials and interfaces toward practical performance.
Collapse
Affiliation(s)
- Elif Pınar Alsaç
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Douglas Lars Nelson
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sun Geun Yoon
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kelsey Anne Cavallaro
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Congcheng Wang
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stephanie Elizabeth Sandoval
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Udochukwu D Eze
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Won Joon Jeong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew T McDowell
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Wang J, Zhang Y, Chen Z, Zhou Z, Wang J, Ma C, Qiao W, Xu Z, Ling L. 0D-2D multifunctional bimetallic MOF derivative-MXene heterojunction for high areal capacity lithium-sulfur batteries. J Colloid Interface Sci 2025; 678:79-88. [PMID: 39277955 DOI: 10.1016/j.jcis.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Lithium-sulfur (Li-S) batteries have attracted much attention due to their high specific capacity. However, at high loads and rates, the polysulfides conversion rate and ion transport of batteries are slow, limiting their commercialization. This work reports zero-dimensional (0D) bimetallic MOF derivatives grown in situ on two-dimensional (2D) MXene by electrostatic adsorption (FeCo@Ti3C2). The 0D bimetallic structure effectively avoids the stacking of MXene while providing a dual catalytic site for polysulfides. The 2D structure of MXene also provides a large number of pathways for the rapid diffusion of lithium ions. This 0D-2D heterostructured heterogeneous catalyst with bimetallic synergistic active sites efficiently immobilizes and catalyzes polysulfides, providing a fast charge transfer pathway for the electrochemical reaction of lithium polysulfides. The Li-S battery with this multifunctional 0D-2D heterojunction structure catalyst has outstanding high rate capacity (703 mAh g-1 at 4 C at room temperature and 555 mAh g-1 at 2 C at 0 °C), fascinating capacity at high load (5.5 mAh cm-2 after 100 cycles at a high sulfur content of 8.2 mg cm-2). The study provides new ideas for the commercialization of high-efficiency Li-S batteries.
Collapse
Affiliation(s)
- Jinxin Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongzheng Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zixin Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqiang Zhou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jitong Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cheng Ma
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Wenming Qiao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Licheng Ling
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Yang H, Duan P, Zhuang Z, Luo Y, Shen J, Xiong Y, Liu X, Wang D. Understanding the Dynamic Evolution of Active Sites among Single Atoms, Clusters, and Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415265. [PMID: 39748626 DOI: 10.1002/adma.202415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Catalysis remains a cornerstone of chemical research, with the active sites of catalysts being crucial for their functionality. Identifying active sites, particularly during the reaction process, is crucial for elucidating the relationship between a catalyst's structure and its catalytic property. However, the dynamic evolution of active sites within heterogeneous metal catalysts presents a substantial challenge for accurately pinpointing the real active sites. The advent of in situ and operando characterization techniques has illuminated the path toward understanding the dynamic changes of active sites, offering robust scientific evidence to support the rational design of catalysts. There is a pressing need for a comprehensive review that systematically explores the dynamic evolution among single atoms, clusters, and nanoparticles as active sites during the reaction process, utilizing in situ and operando characterization techniques. This review aims to delineate the effects of various reaction factors on dynamic evolution of active sites among single atoms, clusters, and nanoparticles. Moreover, several in situ and operando techniques are elaborated with emphases on tracking the dynamic evolution of active sites, linking them to catalytic properties. Finally, it discusses challenges and future perspectives in identifying active sites during the reaction process and advancing in situ and operando characterization techniques.
Collapse
Affiliation(s)
- Hongchen Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Pengfei Duan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yaowu Luo
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ji Shen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Zhang W, Zhang G, Ma J, Xie Z, Gao Z, Yu K, Peng L. The Role of Transition Metal Versus Coordination Mode in Single-Atom Catalyst for Electrocatalytic Sulfur Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66981-66990. [PMID: 38830270 DOI: 10.1021/acsami.4c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Electrocatalytic sulfur reduction reaction (SRR) is emerging as an effective strategy to combat the polysulfide shuttling effect, which remains a critical factor impeding the practical application of the Li-S battery. Single-atom catalyst (SAC), one of the most studied catalytic materials, has shown considerable potential in addressing the polysulfide shuttling effect in a Li-S battery. However, the role played by transition metal vs coordination mode in electrocatalytic SRR is trial-and-error, and the general understanding that guides the synthesis of the specific SAC with desired property remains elusive. Herein, we use first-principles calculations and machine learning to screen a comprehensive data set of graphene-based SACs with different transition metals, heteroatom doping, and coordination modes. The results reveal that the type of transition metal plays the decisive role in SAC for electrocatalytic SRR, rather than the coordination mode. Specifically, the 3d transition metals exhibit admirable electrocatalytic SRR activity for all of the coordination modes. Compared with the reported N3C1 and N4 coordinated graphene-based SACs covering 3d, 4d, and 5d transition metals, the proposed para-MnO2C2 and para-FeN2C2 possess significant advantages on the electrocatalytic SRR, including a considerably low overpotential down to 1 mV and reduced Li2S decomposition energy barrier, both suggesting an accelerated conversion process among the polysulfides. This study may clarify some understanding of the role played by transition metal vs coordination mode for SAC materials with specific structure and desired catalytic properties toward electrocatalytic SRR and beyond.
Collapse
Affiliation(s)
- Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Gaoshang Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jiabin Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhaotian Xie
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Ziyao Gao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Kuang Yu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Lele Peng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
5
|
Zhou L, Zhang X, Hao W, Sun S, Wang R, Liu H. Mirror Plane Effect of Magnetoplumbite-Type Oxide Restraining Long-Chain Polysulfides Disproportionation for High Loading Lithium Sulfur Batteries. SMALL METHODS 2024; 8:e2400475. [PMID: 38837890 DOI: 10.1002/smtd.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Indexed: 06/07/2024]
Abstract
A facile solid-state approach is employed to synthesize a novel magnetoplumbite-type oxide of NdMgAl11O19, which integrates spinel-stacking layers (MgAl2O4) with Nd-O6 mirror plane structures. The resulting NdMgAl11O19 exhibits remarkable catalytic activity and conversion efficiency during the sulfur reduction reaction (SRR) in lithium-sulfur batteries. By employing the 2D projection mapping technique of in situ confocal Raman spectroscopy and electrochemical technique, it is discovered that the exposed mirror plane structure of Nd-O6 can effectively suppress the undesiring disproportionation reaction (S8 2-→S6 2-+1/4 S8) of long-chain lithium polysulfides at the initial stages of sulfur reduction, thereby promoting the positive process of sulfur to lithium sulfide. This not only mitigates the issue of sulfur shuttle loss but also significantly improve the kinetics of the conversion process. Leveraging these advantages, the NdMgAl11O19/S cathode delivered an impressive initial capacity of up to 1398 mAh g-1 at an electrolyte/sulfur (E/S) ratio of 5.1 µL mg-1 and a sulfur loading of 2.3 mg cm-2. Even when the sulfur loading is increased to 10.02 mg cm-2, the cathode retained a reversible areal capacity of 10.01 mAh cm-2 after 200 cycles. This mirror engineering strategy provides valuable and universal insights into enhancing the efficiency of cathodes in Li-S battery.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, College of Science, Donghua University, Shanghai, 201620, China
| | - Xinrui Zhang
- PKU-HKUST ShenZhen-HongKong Institution, Peking University Shenzhen Institute, Shenzhen, Guangdong, 518057, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Sida Sun
- PKU-HKUST ShenZhen-HongKong Institution, Peking University Shenzhen Institute, Shenzhen, Guangdong, 518057, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ruirui Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Handing Liu
- PKU-HKUST ShenZhen-HongKong Institution, Peking University Shenzhen Institute, Shenzhen, Guangdong, 518057, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Wang J, Zuo Y, Zhang Y, Ma C, Chen Z, Wang J, Qiao W, Ling L. Defect-rich porous graphitic phase carbon nitride layer grafted MXene as desolvation promoter for efficient sulfur conversion in extremely harsh conditions. J Colloid Interface Sci 2024; 671:692-701. [PMID: 38823110 DOI: 10.1016/j.jcis.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Lithium-sulfur (Li-S) batteries exhibit superior theoretical capacity and energy density but are still hindered by the sluggish redox conversion kinetic of lithium polysulfides arising from the significant desolvation barrier, especially under high current density or low-temperature environments. Herein, a two-dimensional (2D) porous graphitic phase carbon nitride/MXene (CN-MX) heterostructure with intrinsic defects was designed via electrostatic adherence and in-situ thermal polycondensation. In the design, the defect-rich CN with abundant catalytic activity and porous structure could efficiently facilitate the lithium polysulfides capture, the dissociation of solvated lithium-ion (Li+), and fast Li+ diffusion. Concurrently, 2D MXene nanosheets with high electronic conductivity could act as charge transport channels and provide electrochemical active sites for sulfur redox reactions. The Li-S cells with CN-MX heterostructure modified separator demonstrated uncommon rate performance (945 mAh/g at 4.0 C) and satisfactory areal capacity (5.5 mAh cm-2 at 0.2 C). Most remarkably, even at 0 °C, the assembled Li-S batteries performed favorable cycle stability (91.6% capacity retention after 100 cycles at 0.5 C) and outstanding rate performance (695 mAh/g at 2.0 C), and superior high loading performance (5.1 mAh cm-2 at 0.1 C). This work offers exciting new insights to enable Li-S batteries to operate in extreme environments.
Collapse
Affiliation(s)
- Jinxin Wang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Specially Functional Materials and Related Technology (Ministry of Education), East China University of Science and Technology, Shanghai 200237, China
| | - Yinze Zuo
- Institute of New Energy Materials and Engineering, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yongzheng Zhang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Specially Functional Materials and Related Technology (Ministry of Education), East China University of Science and Technology, Shanghai 200237, China.
| | - Cheng Ma
- Key Laboratory of Specially Functional Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zixin Chen
- State Key Laboratory of Chemical Engineering, Key Laboratory of Specially Functional Materials and Related Technology (Ministry of Education), East China University of Science and Technology, Shanghai 200237, China
| | - Jitong Wang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Specially Functional Materials and Related Technology (Ministry of Education), East China University of Science and Technology, Shanghai 200237, China
| | - Wenming Qiao
- State Key Laboratory of Chemical Engineering, Key Laboratory of Specially Functional Materials and Related Technology (Ministry of Education), East China University of Science and Technology, Shanghai 200237, China
| | - Licheng Ling
- State Key Laboratory of Chemical Engineering, Key Laboratory of Specially Functional Materials and Related Technology (Ministry of Education), East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
7
|
Dong H, Wang L, Cheng Y, Sun H, You T, Qie J, Li Y, Hua W, Chen K. Flash Joule Heating: A Promising Method for Preparing Heterostructure Catalysts to Inhibit Polysulfide Shuttling in Li-S Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405351. [PMID: 39013082 PMCID: PMC11425280 DOI: 10.1002/advs.202405351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Indexed: 07/18/2024]
Abstract
The "shuttle effect" issue severely hinders the practical application of lithium-sulfur (Li-S) batteries, which is primarily caused by the significant accumulation of lithium polysulfides in the electrolyte. Designing effective catalysts is highly desired for enhancing polysulfide conversion to address the above issue. Here, the one-step flash-Joule-heating route is employed to synthesize a W-W2C heterostructure on the graphene substrate (W-W2C/G) as a catalytic interlayer for this purpose. Theoretical calculations reveal that the work function difference between W (5.08 eV) and W2C (6.31 eV) induces an internal electric field at the heterostructure interface, accelerating the movement of electrons and ions, thus promoting the sulfur reduction reaction (SRR) process. The high catalytic activity is also confirmed by the reduced activation energy and suppressed polysulfide shuttling by in situ Raman analyses. With the W-W2C/G interlayer, the Li-S batteries exhibit an outstanding rate performance (665 mAh g-1 at 5.0 C) and cycle steadily with a low decay rate of 0.06% over 1000 cycles at a high rate of 3.0 C. Moreover, a high areal capacity of 10.9 mAh cm-2 (1381.4 mAh g-1) is obtained with a high area sulfur loading of 7.9 mg cm-2 but a low electrolyte/sulfur ratio of 9.0 µL mg-1.
Collapse
Affiliation(s)
- Huiyi Dong
- Center for the Physics of Low‐Dimensional MaterialsHenan Joint International Research Laboratory of New Energy Materials and DevicesSchool of Physics and ElectronicsHenan UniversityKaifeng475004China
| | - Lu Wang
- School of Materials Science and EngineeringShandong UniversityJinan250061China
| | - Yi Cheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Huiyue Sun
- Center for the Physics of Low‐Dimensional MaterialsHenan Joint International Research Laboratory of New Energy Materials and DevicesSchool of Physics and ElectronicsHenan UniversityKaifeng475004China
| | - Tianqi You
- Center for the Physics of Low‐Dimensional MaterialsHenan Joint International Research Laboratory of New Energy Materials and DevicesSchool of Physics and ElectronicsHenan UniversityKaifeng475004China
| | - Jingjing Qie
- Center for the Physics of Low‐Dimensional MaterialsHenan Joint International Research Laboratory of New Energy Materials and DevicesSchool of Physics and ElectronicsHenan UniversityKaifeng475004China
| | - Yifan Li
- Center for the Physics of Low‐Dimensional MaterialsHenan Joint International Research Laboratory of New Energy Materials and DevicesSchool of Physics and ElectronicsHenan UniversityKaifeng475004China
| | - Wuxing Hua
- Center for the Physics of Low‐Dimensional MaterialsHenan Joint International Research Laboratory of New Energy Materials and DevicesSchool of Physics and ElectronicsHenan UniversityKaifeng475004China
| | - Ke Chen
- Center for the Physics of Low‐Dimensional MaterialsHenan Joint International Research Laboratory of New Energy Materials and DevicesSchool of Physics and ElectronicsHenan UniversityKaifeng475004China
| |
Collapse
|
8
|
Lin P, Gao B, Lan X, Wang M, Li J, Fu H. Advanced Separator Materials for Enhanced Electrochemical Performance of Lithium-Sulfur Batteries: Progress and Prospects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15996-16029. [PMID: 39041346 DOI: 10.1021/acs.langmuir.4c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Lithium-sulfur (Li-S) batteries are promising energy storage devices owing to their high theoretical specific capacity and energy density. However, several challenges, including volume expansion, slow reaction kinetics, polysulfide shuttle effect and lithium dendrite formation, hinder their commercialization. Separators are a key component of Li-S batteries. Traditional separators, made of polypropylene and polyethylene, have certain limitations that should be addressed. Therefore, this review discusses the basic properties and mechanisms of Li-S battery separators, focuses on preparing different functionalized separators to mitigate the shuttle effect of polysulfides. This review also introduces future research trends, emphasizing the potential of separator functionalization in advancing the Li-S battery technology.
Collapse
Affiliation(s)
- Pengshan Lin
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, Liaoning Province, China
| | - Bo Gao
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, Liaoning Province, China
| | - Xin Lan
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, Liaoning Province, China
| | - Ming Wang
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, Liaoning Province, China
| | - Jiahao Li
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, Liaoning Province, China
| | - Haiyang Fu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, Liaoning Province, China
| |
Collapse
|
9
|
Yang J, Zhu C, Wang D. A Simple Organo-Electrocatalysis System for the Chlor-Related Industry. Angew Chem Int Ed Engl 2024; 63:e202406883. [PMID: 38783773 DOI: 10.1002/anie.202406883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Consuming a substantial quantum of energy (~165 TW h), the chlor-alkali industry garners considerable scholarly and industrial interest, with the anode reaction involving the oxidation of chloride ions being a paramount determinant of reaction rates. While the dimensionally stable anode (DSA) displays commendable catalytic activity and longevity, they rely on precious metals and exhibit a non-negligible side reaction in sodium hypochlorite (NaClO) production, underscoring the appeal of metal-free alternatives. However, the molecules and systems currently available are characterized by intricate complexity and are not amenable to large-scale production. Herein, we have successfully developed an economical and highly efficient molecular catalyst, demonstrating superior performance compared with the former organic molecules in the chloride ion oxidation process (COP) for the production of both chlorine gas (Cl2) and NaClO. The molecule of 2N only needs 92 mV to reach a current density of 1000 mA cm-2, with a small cost of only 0.002 $ g-1. Furthermore, we propose a novel mechanism underpinned by non-covalent interactions, serving as the foundation for an innovative approach to the design of efficient anodes for the COP.
Collapse
Affiliation(s)
- Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chenxi Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Ji J, Park M, Kim M, Kang SK, Park GH, Maeng J, Ha J, Seo MH, Kim WB. Accelerated Conversion of Polysulfides for Ultra Long-Cycle of Li-S Battery at High-Rate over Cooperative Cathode Electrocatalyst of Ni 0.261Co 0.739S 2/N-Doped CNTs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402389. [PMID: 38867385 PMCID: PMC11348136 DOI: 10.1002/advs.202402389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Indexed: 06/14/2024]
Abstract
Despite the very high theoretical energy density, Li-S batteries still need to fundamentally overcome the sluggish redox kinetics of lithium polysulfides (LiPSs) and low sulfur utilization that limit the practical applications. Here, highly active and stable cathode, nitrogen-doped porous carbon nanotubes (NPCTs) decorated with NixCo1-xS2 nanocrystals are systematically synthesized as multi-functional electrocatalytic materials. The nitrogen-doped carbon matrix can contribute to the adsorption of LiPSs on heteroatom active sites with buffering space. Also, both experimental and computation-based theoretical analyses validate the electrocatalytic principles of co-operational facilitated redox reaction dominated by covalent-site-dependent mechanism; the favorable adsorption-interaction and electrocatalytic conversion of LiPSs take place subsequently by weakening sulfur-bond strength on the catalytic NiOh 2+-S-CoOh 2+ backbones via octahedral TM-S (TM = Ni, Co) covalency-relationship, demonstrating that fine tuning of CoOh 2+ sites by NiOh 2+ substitution effectively modulates the binding energies of LiPSs on the NixCo1-xS2@NPCTs surface. Noteworthy, the Ni0.261Co0.739S2@NPCTs catalyst shows great cyclic stability with a capacity of up to 511 mAh g-1 and only 0.055% decay per cycle at 5.0 C during 1000 cycles together with a high areal capacity of 2.20 mAh cm-2 under 4.61 mg cm-2 sulfur loading even after 200 cycles at 0.2 C. This strategy highlights a new perspective for achieving high-energy-density Li-S batteries.
Collapse
Affiliation(s)
- Junhyuk Ji
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| | - Minseon Park
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| | - Minho Kim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| | - Song Kyu Kang
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| | - Gwan Hyeon Park
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| | - Junbeom Maeng
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| | - Jungseub Ha
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| | - Min Ho Seo
- Department of Nanotechnology EngineeringPukyong National University (PKNU)45 Yongso‐ro, Nam‐guBusan‐si48513Republic of Korea
| | - Won Bae Kim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
- Graduate Institute of Ferrous & Eco Materials TechnologyPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohang‐siGyeongsangbuk‐do37673Republic of Korea
| |
Collapse
|
11
|
Li H, Meng R, Ye C, Tadich A, Hua W, Gu Q, Johannessen B, Chen X, Davey K, Qiao SZ. Developing high-power Li||S batteries via transition metal/carbon nanocomposite electrocatalyst engineering. NATURE NANOTECHNOLOGY 2024; 19:792-799. [PMID: 38366224 DOI: 10.1038/s41565-024-01614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
The activity of electrocatalysts for the sulfur reduction reaction (SRR) can be represented using volcano plots, which describe specific thermodynamic trends. However, a kinetic trend that describes the SRR at high current rates is not yet available, limiting our understanding of kinetics variations and hindering the development of high-power Li||S batteries. Here, using Le Chatelier's principle as a guideline, we establish an SRR kinetic trend that correlates polysulfide concentrations with kinetic currents. Synchrotron X-ray adsorption spectroscopy measurements and molecular orbital computations reveal the role of orbital occupancy in transition metal-based catalysts in determining polysulfide concentrations and thus SRR kinetic predictions. Using the kinetic trend, we design a nanocomposite electrocatalyst that comprises a carbon material and CoZn clusters. When the electrocatalyst is used in a sulfur-based positive electrode (5 mg cm-2 of S loading), the corresponding Li||S coin cell (with an electrolyte:S mass ratio of 4.8) can be cycled for 1,000 cycles at 8 C (that is, 13.4 A gS-1, based on the mass of sulfur) and 25 °C. This cell demonstrates a discharge capacity retention of about 75% (final discharge capacity of 500 mAh gS-1) corresponding to an initial specific power of 26,120 W kgS-1 and specific energy of 1,306 Wh kgS-1.
Collapse
Affiliation(s)
- Huan Li
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, Australia
| | - Rongwei Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chao Ye
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anton Tadich
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - Wuxing Hua
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qinfen Gu
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - Bernt Johannessen
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales, Australia
| | - Xiao Chen
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Kenneth Davey
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
12
|
Yao W, Liao K, Lai T, Sul H, Manthiram A. Rechargeable Metal-Sulfur Batteries: Key Materials to Mechanisms. Chem Rev 2024; 124:4935-5118. [PMID: 38598693 DOI: 10.1021/acs.chemrev.3c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Rechargeable metal-sulfur batteries are considered promising candidates for energy storage due to their high energy density along with high natural abundance and low cost of raw materials. However, they could not yet be practically implemented due to several key challenges: (i) poor conductivity of sulfur and the discharge product metal sulfide, causing sluggish redox kinetics, (ii) polysulfide shuttling, and (iii) parasitic side reactions between the electrolyte and the metal anode. To overcome these obstacles, numerous strategies have been explored, including modifications to the cathode, anode, electrolyte, and binder. In this review, the fundamental principles and challenges of metal-sulfur batteries are first discussed. Second, the latest research on metal-sulfur batteries is presented and discussed, covering their material design, synthesis methods, and electrochemical performances. Third, emerging advanced characterization techniques that reveal the working mechanisms of metal-sulfur batteries are highlighted. Finally, the possible future research directions for the practical applications of metal-sulfur batteries are discussed. This comprehensive review aims to provide experimental strategies and theoretical guidance for designing and understanding the intricacies of metal-sulfur batteries; thus, it can illuminate promising pathways for progressing high-energy-density metal-sulfur battery systems.
Collapse
Affiliation(s)
- Weiqi Yao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kameron Liao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tianxing Lai
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyunki Sul
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Arumugam Manthiram
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Teng X, Shi K, Chen L, Shi J. Coupling Electrochemical Sulfion Oxidation with CO 2 Reduction over Highly Dispersed p-Bi Nanosheets and CO 2 -Assisted Sulfur Extraction. Angew Chem Int Ed Engl 2024; 63:e202318585. [PMID: 38108649 DOI: 10.1002/anie.202318585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
We report herein an electrocatalytic CO2 reduction-coupled sulfion oxidation system for the co-productions of valuable formate and sulfur at much enhanced atom utilization. Specifically, an organic ligand-assisted two-step reconstruction approach has been developed to fabricate the highly dispersed p-Bi nanosheets (p-Bi NSs) for cathodic CO2 reduction reaction (CO2 RR), and meanwhile porous Co-S nanosheets (Co-S NSs) was applied for anodic sulfion oxidation reaction (SOR). Significantly high Faradaic Efficiencies of about 90 % for formate production by CO2 RR in a wide potential range from -0.6 V to -1.1 V, and excellent SOR performances including an ultra-low onset potential of about 0.2 V and recycle capacity of S2- in the 0.1 M and 0.5 M S2- solutions, have been simultaneously achieved. In the meantime, both the structure transformation of the catalysts and the reaction pathways are explored and discussed in detail. A two-electrode CO2 RR||SOR electrolyzer equipped with above electrocatalysts has been established, which features as low as about 1.5 V to run the electrolyzer at 100 mA cm-2 , manifesting extremely lowered electricity consumption in comparison to conventional CO2 RR system. Moreover, a sulfur separation approach has been proposed by using CO2 , which is efficient, environmentally friendly and cost effective with value-added NaHCO3 be obtained as the byproduct.
Collapse
Affiliation(s)
- Xue Teng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200062, Shanghai, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, East China Normal University, 200062, Shanghai, China
| | - Kai Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200062, Shanghai, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, East China Normal University, 200062, Shanghai, China
| | - Lisong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200062, Shanghai, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, East China Normal University, 200062, Shanghai, China
- Institute of Eco-Chongming, 202162, Shanghai, China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P. R. China
| |
Collapse
|
14
|
He T, An Q, Zhang M, Kang N, Kong D, Song H, Wu S, Wang Y, Hu J, Zhang D, Lv K, Huang S. Multiscale Interface Engineering of Sulfur-Doped TiO 2 Anode for Ultrafast and Robust Sodium Storage. ACS NANO 2024. [PMID: 38334266 DOI: 10.1021/acsnano.3c11477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Sodium-ion batteries (SIBs) are a promising electrochemical energy storage system; however, their practical application is hindered by the sluggish kinetics and interfacial instability of anode-active materials. Here, to circumvent these issues, we proposed the multiscale interface engineering of S-doped TiO2 electrodes with minor sulfur/carbon inlaying (S/C@sTiO2), where the electrode-electrolyte interface (SEI) and electrode-current collector interface (ECI) are tuned to improve the Na-storage performance. It is found that the S dopant greatly promotes the Na+ diffusion kinetics. Moreover, the ether electrolyte generates much less NaF in the cycled electrode, but relatively richer NaF in the SEI in comparison to fluoroethylene carbonate-contained ester electrolyte, leading to a thin (9 nm), stable, and kinetically favorable SEI film. More importantly, the minor sodium polysulfide intermediates chemically interact with the Cu current collector to form a Cu2S interface between the electrode and the Cu foil. The conductive tree root-like Cu2S ECI serves not only as active sites to boost the specific capacity but also as a 3D "second current collector" to reinforce the electrode and improve the Na+ reaction kinetics. The synergy of S-doping and optimized SEI and ECI realizes large specific capacity (464.4 mAh g-1 at 0.1 A g-1), ultrahigh rate capability (305.8 mAh g-1 at 50 A g-1), and ultrastable cycling performance (91.5% capacity retention after 3000 cycles at 5 A g-1). To the best of our knowledge, the overall SIB performances of S/C@sTiO2 are the best among all of the TiO2-based electrodes.
Collapse
Affiliation(s)
- Tingting He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central Minzu University, Wuhan, 430074, China
| | - Qi An
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central Minzu University, Wuhan, 430074, China
| | - Manman Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central Minzu University, Wuhan, 430074, China
| | - Ningxin Kang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central Minzu University, Wuhan, 430074, China
| | - Dezhi Kong
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Haobin Song
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central Minzu University, Wuhan, 430074, China
| | - Shuilin Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central Minzu University, Wuhan, 430074, China
| | - Ye Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Junping Hu
- Key Laboratory of Optoelectronic Materials and New Energy Technology & Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Daohong Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central Minzu University, Wuhan, 430074, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Kangle Lv
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central Minzu University, Wuhan, 430074, China
| | - Shaozhuan Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central Minzu University, Wuhan, 430074, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| |
Collapse
|
15
|
Kang X, He T, Zou R, Niu S, Ma Y, Zhu F, Ran F. Size Effect for Inhibiting Polysulfides Shuttle in Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306503. [PMID: 37821397 DOI: 10.1002/smll.202306503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/17/2023] [Indexed: 10/13/2023]
Abstract
It is undeniable that the dissolution of polysulfides is beneficial in speeding up the conversion rate of sulfur in electrochemical reactions. But it also brings the bothersome "shuttle effect". Therefore, if polysulfides can be retained on the cathode side, the efficient utilization of the polysulfides can be guaranteed to achieve the excellent performance of lithium-sulfur batteries. Based on this idea, considerable methods have been developed to inhibit the shuttling of polysulfides. It is necessary to emphasize that no matter which method is used, the solvation mechanism, and existence forms of polysulfides are essential to analyze. Especially, it is important to clarify the sizes of different forms of polysulfides when using the size effect to inhibit the shuttling of polysulfides. In this review, a comprehensive summary and in-depth discussion of the solvation mechanism, the existing forms of polysulfides, and the influencing factors affecting polysulfides species are presented. Meanwhile, the size of diverse polysulfide species is sorted out for the first time. Depending on the size of polysulfides, tactics of using size effect in cathode, separator, and interlayer parts are elaborated. Finally, a design idea of materials pore size is proposed to satisfy the use of size effect to inhibit polysulfides shuttle.
Collapse
Affiliation(s)
- Xiaoya Kang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Tianqi He
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Rong Zou
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Shengtao Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Yingxia Ma
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Fuliang Zhu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| |
Collapse
|
16
|
Li R, Li J, Wang X, Jian C, Wu X, Zhong B, Chen Y. Surface design for high ion flux separator in lithium-sulfur batteries. J Colloid Interface Sci 2024; 654:13-24. [PMID: 37832231 DOI: 10.1016/j.jcis.2023.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Addressing the shuttle effect is a critical challenge in realizing practical applications of lithium-sulfur batteries. One promising avenue refers to the surface modification of separators, transitioning them from closed to open structures. In the current investigation, a high ion flux separator was devised by means of MnO2 self-assembly onto a Porous Polypropylene (PP) separator, subsequently coupling it with biochar. The separator exhibited favorable ion and electronic conductivity. Moreover, it adeptly captured and transformed polysulfides into Li2S2/Li2S, cyclically curbing the mobility of Polysulfide lithium (LiPSs). In addition, this augmentation in the kinetic conversion of LiPSs during the electrochemical process translated into an impressive discharge specific capacity and area capacity of 939 mAh/g and 4 mAh cm-2, respectively. Moreover, this innovative design methodology provides an alternative avenue for future separator designs within lithium-sulfur batteries.
Collapse
Affiliation(s)
- Rong Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jiaqi Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xin Wang
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Caifeng Jian
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xinxiang Wu
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Benhe Zhong
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yanxiao Chen
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
17
|
Zhu X, Bian T, Song X, Zheng M, Shen Z, Liu Z, Guo Z, He J, Zeng Z, Bai F, Wen L, Zhang S, Lu J, Zhao Y. Accelerating S↔Li 2 S Reactions in Li-S Batteries through Activation of S/Li 2 S with a Bifunctional Semiquinone Catalyst. Angew Chem Int Ed Engl 2023:e202315087. [PMID: 38087471 DOI: 10.1002/anie.202315087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Indexed: 12/29/2023]
Abstract
The reaction rate bottleneck during interconversion between insulating S8 (S) and Li2 S fundamentally leads to incomplete conversion and restricted lifespan of Li-S battery, especially under high S loading and lean electrolyte conditions. Herein, we demonstrate a new catalytic chemistry: soluble semiquinone, 2-tertbutyl-semianthraquinone lithium (Li+ TBAQ⋅- ), as both e- /Li+ donor and acceptor for simultaneous S reduction and Li2 S oxidation. The efficient activation of S and Li2 S by Li+ TBAQ⋅- in the initial discharging/charging state maximizes the amount of soluble lithium polysulfide, thereby substantially improve the rate of solid-liquid-solid reaction by promoting long-range electron transfer. With in situ Raman spectra and theoretical calculations, we reveal that the activation of S/Li2 S is the rate-limiting step for effective S utilization under high S loading and low E/S ratio. Beyond that, the S activation ratio is firstly proposed as an accurate indicator to quantitatively evaluate the reaction rate. As a result, the Li-S batteries with Li+ TBAQ⋅- deliver superior cycling performance and over 5 times higher S utilization ratio at high S loading of 7.0 mg cm-2 and a current rate of 1 C compared to those without Li+ TBAQ⋅- . We hope this study contributes to the fundamental understanding of S redox chemical and inspires the design of efficient catalysis for advanced Li-S batteries.
Collapse
Affiliation(s)
- Xuebing Zhu
- Key Lab for Special Functional Materials of Ministry of Education, National, Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Tengfei Bian
- Key Lab for Special Functional Materials of Ministry of Education, National, Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xiaosheng Song
- Key Lab for Special Functional Materials of Ministry of Education, National, Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Mengting Zheng
- Center for Catalysis and Clean Energy, School of Environmental Science, Griffith University Gold Coast Campus, Queensland, 4222, Australia
| | - Zhengyuan Shen
- Key Lab for Special Functional Materials of Ministry of Education, National, Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Zewen Liu
- Key Lab for Special Functional Materials of Ministry of Education, National, Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Zhijie Guo
- Key Lab for Special Functional Materials of Ministry of Education, National, Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Jinling He
- Key Lab for Special Functional Materials of Ministry of Education, National, Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Zaiping Zeng
- Key Lab for Special Functional Materials of Ministry of Education, National, Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Feng Bai
- Key Lab for Special Functional Materials of Ministry of Education, National, Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shanqing Zhang
- Center for Catalysis and Clean Energy, School of Environmental Science, Griffith University Gold Coast Campus, Queensland, 4222, Australia
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National, Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
18
|
Wang T, He J, Zhu Z, Cheng XB, Zhu J, Lu B, Wu Y. Heterostructures Regulating Lithium Polysulfides for Advanced Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303520. [PMID: 37254027 DOI: 10.1002/adma.202303520] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single-component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium-sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium-sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium-sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium-sulfur batteries.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Jiarui He
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Zhi Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Xin-Bing Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Jian Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yuping Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
19
|
Zhao Y, Huang L, Zhao D, Yang Lee J. Fast Polysulfide Conversion Catalysis and Reversible Anode Operation by A Single Cathode Modifier in Li-Metal Anode-Free Lithium-Sulfur Batteries. Angew Chem Int Ed Engl 2023; 62:e202308976. [PMID: 37475640 DOI: 10.1002/anie.202308976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
The two major issues confronting the commercialization of rechargeable lithium-sulfur (Li-S) batteries are the sluggish kinetics of the sulfur electrochemical reactions on the cathode and inadequate lithium deposition/stripping reversibility on the anode. They are commonly mitigated with additives designed specifically for the anode and the cathode individually. Here, we report the use of a single cathode modifier, In2 Se3 , which can effectively catalyse the polysulfide reactions on the cathode, and also improve the reversibility of Li deposition and removal on the anode through a LiInS2 /LiInSe2 containing solid electrolyte interface formed in situ by the Se and In ions dissolved in the electrolyte. The amounts of dissolved Se and In are small relative to the amount of In2 Se3 administered. The benefits of using this single modification approach were verified in Li-metal anode-free Li-S batteries with a Li2 S loading of 4 mg cm-2 and a low electrolyte/Li2 S ratio of 7.5 μL mg-1 . The resulting battery showed 60 % capacity retention after 160 cycles at the 0.2 C rate and an average Coulombic efficiency of 98.27 %, comparing very well with recent studies using separate electrode modifiers.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Avenue, 518055, Shenzhen, P. R. China
| | - Limin Huang
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Avenue, 518055, Shenzhen, P. R. China
| | - Dan Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Jim Yang Lee
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| |
Collapse
|
20
|
Yoshida L, Matsui Y, Deguchi M, Hakari T, Watanabe M, Ishikawa M. Improvement of Lithium-Sulfur Battery Performance by Porous Carbon Selection and LiFSI/DME Electrolyte Optimization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37467-37476. [PMID: 37494603 DOI: 10.1021/acsami.3c06624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
High-concentration lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane (LiFSI/DME) electrolytes are promising candidates for highly reversible lithium-metal anodes. However, the performance of lithium-sulfur (Li-S) batteries with a high concentration of LiFSI/DME declines because LiFSI reacts irreversibly with lithium polysulfide, which is formed during the charge-discharge process of Li-S batteries. Hence, to apply high-concentration LiFSI/DME to Li-S batteries, we investigated carbon with an appropriate pore size for use in a sulfur composite cathode and optimized the composition of high-concentration LiFSI/DME. The results showed that the combination of carbon with mesopores of 2-3 nm diameter and 3 M LiFSI in DME/1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropylether (HFE) (1:1 by vol.) provided a high-rate capability (943 mA h g-1 at a rate of 2 C). Moreover, the ratio of the 50th discharge capacity to the 2nd discharge capacity (capacity retention) improved from 50.0 to 61.6% with HFE dilution of high-concentration LiFSI/DME. The improved performance was achieved by suppressing the dissolution of lithium polysulfide, decreasing the viscosity of the electrolyte, and forming a thin solid electrolyte interface on the lithium-metal anode due to HFE dilution.
Collapse
Affiliation(s)
- Luna Yoshida
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita 564-8680, Japan
| | - Yukiko Matsui
- Organization for Research & Development of Innovative Science & Technology, Kansai University, 3-3-35 Yamate-Cho, Suita 564-8680, Japan
| | - Minako Deguchi
- Organization for Research & Development of Innovative Science & Technology, Kansai University, 3-3-35 Yamate-Cho, Suita 564-8680, Japan
| | - Takashi Hakari
- Organization for Research & Development of Innovative Science & Technology, Kansai University, 3-3-35 Yamate-Cho, Suita 564-8680, Japan
| | - Masayoshi Watanabe
- Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Masashi Ishikawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita 564-8680, Japan
| |
Collapse
|
21
|
Liu H, Yang X, Jin B, Cui M, Li Y, Li Q, Li L, Sheng Q, Lang X, Jin E, Jeong S, Jiang Q. Coordinated Immobilization and Rapid Conversion of Polysulfide Enabled by a Hollow Metal Oxide/Sulfide/Nitrogen-Doped Carbon Heterostructure for Long-Cycle-Life Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300950. [PMID: 37066725 DOI: 10.1002/smll.202300950] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Lithium-sulfur batteries (LSBs) are recognized as the prospective candidate in next-generation energy storage devices due to their gratifying theoretical energy density. Nonetheless, they still face the challenges of the practical application including low utilization of sulfur and poor cycling life derived from shuttle effect of lithium polysulfides (LiPSs). Herein, a hollow polyhedron with heterogeneous CoO/Co9 S8 /nitrogen-doped carbon (CoO/Co9 S8 /NC) is obtained through employing zeolitic imidazolate framework as precursor. The heterogeneous CoO/Co9 S8 /NC balances the redox kinetics of Co9 S8 with chemical adsorption of CoO toward LiPSs, effectively inhibiting the shuttle of LiPSs. The mechanisms are verified by both experiment and density functional theory calculation. Meanwhile, the hollow structure acts as a sulfur storage chamber, which mitigates the volumetric expansion of sulfur and maximizes the utilization of sulfur. Benefiting from the above advantages, lithium-sulfur battery with S-CoO/Co9 S8 /NC achieves a high initial discharge capacity (1470 mAh g-1 ) at 0.1 C and long cycle life (ultralow capacity attenuation of 0.033% per cycle after 1000 cycles at 1 C). Even under high sulfur loading of 3.0 mg cm-2 , lithium-sulfur battery still shows the satisfactory electrochemical performance. This work may provide an idea to elevate the electrochemical performance of LSBs by constructing a hollow metal oxide/sulfide/nitrogen-doped carbon heterogeneous structure.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Xuejing Yang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Bo Jin
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Mengyang Cui
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Yiyang Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Qicheng Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Lei Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Qidong Sheng
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Xingyou Lang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Enmei Jin
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea
| | - Sangmun Jeong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| |
Collapse
|
22
|
Xiao P, Yun X, Chen Y, Guo X, Gao P, Zhou G, Zheng C. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chem Soc Rev 2023; 52:5255-5316. [PMID: 37462967 DOI: 10.1039/d3cs00151b] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Lithium-based rechargeable batteries have dominated the energy storage field and attracted considerable research interest due to their excellent electrochemical performance. As indispensable and ubiquitous components, electrolytes play a pivotal role in not only transporting lithium ions, but also expanding the electrochemical stable potential window, suppressing the side reactions, and manipulating the redox mechanism, all of which are closely associated with the behavior of solvation chemistry in electrolytes. Thus, comprehensively understanding the solvation chemistry in electrolytes is of significant importance. Here we critically reviewed the development of electrolytes in various lithium-based rechargeable batteries including lithium-metal batteries (LMBs), nonaqueous lithium-ion batteries (LIBs), lithium-sulfur batteries (LSBs), lithium-oxygen batteries (LOBs), and aqueous lithium-ion batteries (ALIBs), and emphasized the effects of interactions between cations, anions, and solvents on solvation chemistry, and functions of solvation chemistry in different types of electrolytes (strong solvating electrolytes, moderate solvating electrolytes, and weak solvating electrolytes) on the electrochemical performance and redox mechanism in the abovementioned rechargeable batteries. Specifically, the significant effects of solvation chemistry on the stability of electrode-electrolyte interphases, suppression of lithium dendrites in LMBs, inhibition of the co-intercalation of solvents in LIBs, improvement of anodic stability at high cut-off voltages in LMBs, LIBs and ALIBs, regulation of redox pathways in LSBs and LOBs, and inhibition of hydrogen/oxygen evolution reactions in LOBs are thoroughly summarized. Finally, the review concludes with a prospective outlook, where practical issues of electrolytes, advanced in situ/operando techniques to illustrate the mechanism of solvation chemistry, and advanced theoretical calculation and simulation techniques such as "material knowledge informed machine learning" and "artificial intelligence (AI) + big data" driven strategies for high-performance electrolytes have been proposed.
Collapse
Affiliation(s)
- Peitao Xiao
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China.
| | - Xiaoru Yun
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China.
| | - Yufang Chen
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China.
| | - Xiaowei Guo
- College of Computer, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Peng Gao
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University Changsha, Changsha, Hunan, 410082, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Chunman Zheng
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China.
| |
Collapse
|
23
|
Lyu D, Xu J, Wang Z. Time-resolved in situ vibrational spectroscopy for electrocatalysis: challenge and opportunity. Front Chem 2023; 11:1231886. [PMID: 37577063 PMCID: PMC10416263 DOI: 10.3389/fchem.2023.1231886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Understanding the structure-activity relationship of catalysts and the reaction pathway is crucial for designing efficient, selective, and stable electrocatalytic systems. In situ vibrational spectroscopy provides a unique tool for decoding molecular-level factors involved in electrocatalytic reactions. Typically, spectra are recorded when the system reaches steady states under set potentials, known as steady-state measurements, providing static pictures of electrode properties at specific potentials. However, transient information that is crucial for understanding the dynamic of electrocatalytic reactions remains elusive. Thus, time-resolved in situ vibrational spectroscopies are developed. This mini review summarizes time-resolved in situ infrared and Raman techniques and discusses their application in electrocatalytic research. With different time resolutions, these time-resolved techniques can capture unique dynamic processes of electrocatalytic reactions, short-lived intermediates, and the surface structure revolution that would be missed in steady-state measurements alone. Therefore, they are essential for understanding complex reaction mechanisms and can help unravel important molecular-level information hidden in steady states. Additionally, improving spectral time resolution, exploring low/ultralow frequency detection, and developing operando time-resolved devices are proposed as areas for advancing time-resolved techniques and their further applications in electrocatalytic research.
Collapse
Affiliation(s)
- Danya Lyu
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, China
| | - Jinchang Xu
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, China
| | - Zhenyou Wang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, China
| |
Collapse
|
24
|
Yang J, Li WH, Tang HT, Pan YM, Wang D, Li Y. CO 2-mediated organocatalytic chlorine evolution under industrial conditions. Nature 2023; 617:519-523. [PMID: 37198309 DOI: 10.1038/s41586-023-05886-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 02/24/2023] [Indexed: 05/19/2023]
Abstract
During the chlor-alkali process, in operation since the nineteenth century, electrolysis of sodium chloride solutions generates chlorine and sodium hydroxide that are both important for chemical manufacturing1-4. As the process is very energy intensive, with 4% of globally produced electricity (about 150 TWh) going to the chlor-alkali industry5-8, even modest efficiency improvements can deliver substantial cost and energy savings. A particular focus in this regard is the demanding chlorine evolution reaction, for which the state-of-the-art electrocatalyst is still the dimensionally stable anode developed decades ago9-11. New catalysts for the chlorine evolution reaction have been reported12,13, but they still mainly consist of noble metal14-18. Here we show that an organocatalyst with an amide functional group enables the chlorine evolution reaction; and that in the presence of CO2, it achieves a current density of 10 kA m-2 and a selectivity of 99.6% at an overpotential of only 89 mV and thus rivals the dimensionally stable anode. We find that reversible binding of CO2 to the amide nitrogen facilitates formation of a radical species that plays a critical role in Cl2 generation, and that might also prove useful in the context of Cl- batteries and organic synthesis19-21. Although organocatalysts are typically not considered promising for demanding electrochemical applications, this work demonstrates their broader potential and the opportunities they offer for developing industrially relevant new processes and exploring new electrochemical mechanisms.
Collapse
Affiliation(s)
- Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Wen-Hao Li
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
25
|
Wang Z, Ji H, Zhou J, Zheng Y, Liu J, Qian T, Yan C. Exploiting nonaqueous self-stratified electrolyte systems toward large-scale energy storage. Nat Commun 2023; 14:2267. [PMID: 37081028 PMCID: PMC10119102 DOI: 10.1038/s41467-023-37995-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
Biphasic self-stratified batteries (BSBs) provide a new direction in battery philosophy for large-scale energy storage, which successfully reduces the cost and simplifies the architecture of redox flow batteries. However, current aqueous BSBs have intrinsic limits on the selection range of electrode materials and energy density due to the narrow electrochemical window of water. Thus, herein, we develop nonaqueous BSBs based on Li-S chemistry, which deliver an almost quadruple increase in energy density of 88.5 Wh L-1 as compared with the existing aqueous BSBs systems. In situ spectral characterization and molecular dynamics simulations jointly elucidate that while ensuring the mass transfer of Li+, the positive redox species are strictly confined to the bottom-phase electrolyte. This proof-of-concept of Li-S BSBs pushes the energy densities of BSBs and provides an idea to realize massive-scale energy storage with large capacitance.
Collapse
Affiliation(s)
- Zhenkang Wang
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, 215006, China
| | - Haoqing Ji
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, 215006, China
| | - Jinqiu Zhou
- College of Chemistry and Chemical Engineering, Nantong University, Seyuan 9, Nantong, 226000, China
| | - Yiwei Zheng
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, 215006, China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, Nantong University, Seyuan 9, Nantong, 226000, China
| | - Tao Qian
- College of Chemistry and Chemical Engineering, Nantong University, Seyuan 9, Nantong, 226000, China
- Light Industry Institute of Electrochemical Power Sources, Suzhou, 215600, China
| | - Chenglin Yan
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, 215006, China.
- Light Industry Institute of Electrochemical Power Sources, Suzhou, 215600, China.
| |
Collapse
|
26
|
Gao Q, Shen Z, Guo Z, Li M, Wei J, He J, Zhao Y. Metal Coordinated Polymer as Three-Dimensional Network Binder for High Sulfur Loading Cathode of Lithium-Sulfur Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301344. [PMID: 36971297 DOI: 10.1002/smll.202301344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 06/18/2023]
Abstract
The construction of high sulfur (S) loading cathode is one of the critical parameters to obtain lithium-sulfur (Li-S) batteries with high energy density, but the slow redox reaction rate of high S loading cathode limits the development process. In this paper, a metal coordinated polymer-based three-dimensional network binder, which can improve the reaction rate and stability of S electrode. Compared with traditional linear polymer binders, the metal coordinated polymer binder can not only increase the load amount of S through the three-dimensional cross-linking, but also promote the interconversion reactions between S and lithium sulfide (Li2 S), avoiding the passivation of electrode and improving the stability of the positive electrode. At an S load of 4-5 mg cm-2 and an E/S ratio of 5.5 µL mg-1 , the discharged voltage in the second platform is 2.04 V and the initial capacity is 938 mA h g-1 with metal coordinated polymer binder. Moreover, the capacity retention rate approaches 87% after 100 cycles. In comparison, the discharged voltage in the second platform is lost and the initial capacity is 347 mA h g-1 with PVDF binder. It demonstrates the advanced properties of metal-coordinated polymer binders for improving the performance of Li-S batteries.
Collapse
Affiliation(s)
- Qiaomeng Gao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Zhengyuan Shen
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Zhijie Guo
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Minggang Li
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Jun Wei
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Jinling He
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
27
|
Liu F, Fan Z. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem Soc Rev 2023; 52:1723-1772. [PMID: 36779475 DOI: 10.1039/d2cs00931e] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In the global trend towards carbon neutrality, sustainable energy conversion and storage technologies are of vital significance to tackle the energy crisis and climate change. However, traditional electrode materials gradually reach their property limits. Two-dimensional (2D) materials featuring large aspect ratios and tunable surface properties exhibit tremendous potential for improving the performance of energy conversion and storage devices. To rationally control the physical and chemical properties for specific applications, defect engineering of 2D materials has been investigated extensively, and is becoming a versatile strategy to promote the electrode reaction kinetics. Simultaneously, exploring the in-depth mechanisms underlying defect action in electrode reactions is crucial to provide profound insight into structure tailoring and property optimization. In this review, we highlight the cutting-edge advances in defect engineering in 2D materials as well as their considerable effects in energy-related applications. Moreover, the confronting challenges and promising directions are discussed for the development of advanced energy conversion and storage systems.
Collapse
Affiliation(s)
- Fu Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China. .,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
28
|
Deng Q, Dong X, Shen PK, Zhu J. Li-S Chemistry of Manganese Phosphides Nanoparticles With Optimized Phase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207470. [PMID: 36737850 PMCID: PMC10037994 DOI: 10.1002/advs.202207470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 06/18/2023]
Abstract
The targeted synthesis of manganese phosphides with target phase remains a huge challenge because of their various stoichiometries and phase-dependent physicochemical properties. In this study, phosphorus-rich MnP, manganese-rich Mn2 P, and their heterostructure MnP-Mn2 P nanoparticles evenly dispersed on porous carbon are accurately synthesized by a convenient one-pot heat treatment of phosphate resin combined with Mn2+ . Moreover, their electrochemical properties are systematically investigated as sulfur hosts in lithium-sulfur batteries. Density functional theory calculations demonstrate the superior adsorption, catalysis capabilities, and electrical conductivity of MnP-Mn2 P/C, compared with MnP/C and Mn2 P/C. The MnP-Mn2 P/C@S exhibits an excellent capacity of 763.3 mAh g-1 at 5 C with a capacity decay rate of only 0.013% after 2000 cycles. A phase evolution product (MnS) of MnP-Mn2 P/C@S is detected during the catalysis of MnP-Mn2 P/C with polysulfides redox through in situ X-ray diffraction and Raman spectroscopy. At a sulfur loading of up to 8 mg cm-2 , the MnP-Mn2 P/C@S achieves an area capacity of 6.4 mAh cm-2 at 0.2 C. A pouch cell with the MnP-Mn2 P/C@S cathode exhibits an initial energy density of 360 Wh kg-1 .
Collapse
Affiliation(s)
- Qiao Deng
- School of ResourcesEnvironment and MaterialsCollaborative Innovation Center of Sustainable Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| | - Xinji Dong
- School of ResourcesEnvironment and MaterialsCollaborative Innovation Center of Sustainable Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| | - Pei Kang Shen
- School of ResourcesEnvironment and MaterialsCollaborative Innovation Center of Sustainable Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| | - Jinliang Zhu
- School of ResourcesEnvironment and MaterialsCollaborative Innovation Center of Sustainable Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
29
|
Hua W, Shang T, Li H, Sun Y, Guo Y, Xia J, Geng C, Hu Z, Peng L, Han Z, Zhang C, Lv W, Wan Y. Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis. Nat Catal 2023. [DOI: 10.1038/s41929-023-00912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
A bifunctional lithium polysilicate as highly efficient adhesion agent and anchoring host for long-lifespan Li-S battery. J Colloid Interface Sci 2023; 629:1045-1054. [DOI: 10.1016/j.jcis.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022]
|
31
|
Zhang H, Chen J, Hong Y, Wu X, Huang X, Dai P, Luo H, Zhang B, Qiao Y, Sun SG. Titration Mass Spectroscopy (TMS): A Quantitative Analytical Technology for Rechargeable Batteries. NANO LETTERS 2022; 22:9972-9981. [PMID: 36512422 DOI: 10.1021/acs.nanolett.2c03535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Development of high-energy-density rechargeable battery systems not only needs advanced qualitative characterizations for mechanism exploration but also requires accurate quantification technology to quantitatively elucidate products and fairly assess numerous modification strategies. Herein, as a reliable quantification technology, titration mass spectroscopy (TMS) is developed to accurately quantify O-related anionic redox reactions (Li-O2 battery and nickel-cobalt-manganese (NCM)/Li-rich cathodes), parasitic carbonate deposition and decomposition (derived from air-exposure degradation and electrolyte oxidation), and dead Li0 formation (Li-metal battery and over-discharged graphite anode). TMS technology can harvest key information on products (e.g., quantification of oxidized lattice oxygen and solid electrolyte interphase (SEI)/cathode electrolyte interphase (CEI) components) and guide corresponding design strategy by enhancing understanding of the mechanism (e.g., clearly distinguish the catalytic target of highly oxidative Ni4+ on the NCM cathode). Not limited as a rigid quantification tool for widely known products/mechanisms, TMS technology has been demonstrated as a powerful and versatile tool for the investigations of advanced batteries.
Collapse
Affiliation(s)
- Haitang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, PR China
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen361005, PR China
| | - Jianken Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, PR China
| | - Yuhao Hong
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen361005, PR China
| | - Xiaohong Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, PR China
| | - Xiao Huang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen518060, Guangdong, China
| | - Peng Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, PR China
| | - Haiyan Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, PR China
| | - Baodan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, PR China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, PR China
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen361005, PR China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, PR China
| |
Collapse
|
32
|
Wang Z, Li Y, Ji H, Zhou J, Qian T, Yan C. Unity of Opposites between Soluble and Insoluble Lithium Polysulfides in Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203699. [PMID: 35816349 DOI: 10.1002/adma.202203699] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Rechargeable batteries based on Li-S chemistry show promise as being possible for next-generation energy storage devices because of their ultrahigh capacities and energy densities. Research over the past decade has demonstrated that the morphology of lithium polysulfides (LPSs) in electrolytes (soluble or insoluble) plays a decisive role in battery performance. Early studies have focused mainly on inhibiting the dissolution of LPSs and invested considerable effort to realize this objective. However, in recent years, a completely different view that the dissolution of LPSs during battery discharge/charge should be promoted has emerged. At this critical juncture in the large-scale application of Li-S batteries, it is time to summarize and discuss both sides of the contradiction. Herein, an overview of these two opposite views pertaining to soluble and insoluble LPSs, including their historical environment, classical strategies, advantages, and disadvantages. Finally, the future morphology of LPSs in Li-S batteries is predicted based on a multiangle review of research studies conducted thus far, and the reasoning behind this conjecture is thoroughly discussed.
Collapse
Affiliation(s)
- Zhenkang Wang
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Ya Li
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Haoqing Ji
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Jinqiu Zhou
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Tao Qian
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
- Light Industry Institute of Electrochemical Power Sources, Suzhou, Jiangsu, 215600, P. R. China
| | - Chenglin Yan
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Light Industry Institute of Electrochemical Power Sources, Suzhou, Jiangsu, 215600, P. R. China
| |
Collapse
|
33
|
Cao X, Wang M, Li Y, Chen L, Song L, Cai W, Zhang W, Song Y. Nitrogen Balance on Ni-N-C Promotor for High-Energy Lithium-Sulfur Pouch Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204027. [PMID: 36216582 PMCID: PMC9685457 DOI: 10.1002/advs.202204027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/31/2022] [Indexed: 06/16/2023]
Abstract
The viability of lithium-sulfur (Li-S) batteries toward real implementation directly correlates with unlocking lithium polysulfide (LiPS) evolution reactions. Along this line, designing promotors with the function of synchronously relieving LiPS shuttle and promoting sulfur conversion is critical. Herein, the nitrogen evolution on hierarchical and atomistic Ni-N-C electrocatalyst, mainly pertaining to the essential subtraction, reservation and coordination of nitrogen atoms, is manipulated to attain favorable Li-S pouch cell performances. Such rational evolution behavior realizes the "nitrogen balance" in simultaneously regulating the Ni-N coordination environment, Ni single atom loading, abundant vacancy defects, active nitrogen and electron conductivity, and maximizing the electrocatalytic activity elevation of Ni-N-C system. With such merit, the cathode harvests favorable performances in a soft-packaged pouch cell prototype even under high sulfur mass loading and lean electrolyte usage. A specific energy density up to 405.1 Wh kg-1 is harvested by the 0.5-Ah-level pouch cell.
Collapse
Affiliation(s)
- Xuan Cao
- State Key Laboratory of Environment‐Friendly Energy MaterialsTianfu Institute of Research and InnovationSchool of Materials and ChemistrySouthwest University of Science and TechnologyMianyangSichuan621010P. R. China
| | - Menglei Wang
- College of EnergySoochow Institute for Energy and Materials InnovationKey Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu ProvinceSoochow UniversitySuzhouJiangsu215006P. R. China
| | - Yuanli Li
- State Key Laboratory of Environment‐Friendly Energy MaterialsTianfu Institute of Research and InnovationSchool of Materials and ChemistrySouthwest University of Science and TechnologyMianyangSichuan621010P. R. China
| | - Le Chen
- State Key Laboratory of Environment‐Friendly Energy MaterialsTianfu Institute of Research and InnovationSchool of Materials and ChemistrySouthwest University of Science and TechnologyMianyangSichuan621010P. R. China
| | - Lixian Song
- State Key Laboratory of Environment‐Friendly Energy MaterialsTianfu Institute of Research and InnovationSchool of Materials and ChemistrySouthwest University of Science and TechnologyMianyangSichuan621010P. R. China
| | - Wenlong Cai
- Department of Advanced Energy MaterialsCollege of Materials Science and EngineeringSichuan UniversityChengduSichuan610064P. R. China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714P. R. China
| | - Yingze Song
- State Key Laboratory of Environment‐Friendly Energy MaterialsTianfu Institute of Research and InnovationSchool of Materials and ChemistrySouthwest University of Science and TechnologyMianyangSichuan621010P. R. China
| |
Collapse
|
34
|
Xu J, Zhu Z, Zhang M, Zhang X, Li Q, You Y, Liu J, Wu Y. Artificially Layered CoSe 2 Nanosheets by a Dual-Templating Strategy for High-Performance Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47788-47799. [PMID: 36254823 DOI: 10.1021/acsami.2c14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Owing to the attractive merits of layered transition metal dichalcogenides (LTMDs) with van der Waals interactions, it is significant to modulate electronic structures and endow them with fascinating physiochemical properties by converting a nonlayered metal dichalcogenide into an atomic layered one. Herein, a dual-templating strategy is designed to prepare artificially layered CoSe2 nanosheets on carbon fiber cloth (L-CoSe2/CFC). It is found that not only the nanosheet morphology but also the layered structure is well inherited from the precursor of layered Co(OH)2 nanosheets through a wet-solution ion-exchange approach. The as-prepared L-CoSe2/CFC serves as an efficient multifunctional interlayer to solve the challenges of "shuttling effect" and slow multistep reaction kinetics in lithium-sulfur batteries (LSBs), thus dramatically improving their electrochemical performance. Benefiting from the L-CoSe2 nanosheets with large interlayer spacing, strong chemical adsorption, and superior catalytic activity, L-CoSe2/CFC promotes the anchoring of lithium polysulfides (LiPSs) and their catalytic conversion. Consequently, the L-CoSe2/CFC cell yields a large reversible capacity of 1584 mAh g-1 at 0.2C and a high rate capability of 987 mAh g-1 at 4C. A high areal capacity of 4.38 mAh cm-2 after 100 cycles at 0.2C is achieved for the high-S-loading LSB (4.6 mg cm-2) using the L-CoSe2/CFC interlayer.
Collapse
Affiliation(s)
- Jun Xu
- School of Microelectronics, Hefei University of Technology, Hefei230009, P. R. China
| | - Zhiqian Zhu
- School of Microelectronics, Hefei University of Technology, Hefei230009, P. R. China
| | - Maijie Zhang
- School of Microelectronics, Hefei University of Technology, Hefei230009, P. R. China
| | - Xuhui Zhang
- School of Microelectronics, Hefei University of Technology, Hefei230009, P. R. China
| | - Qiang Li
- School of Physics, Hefei University of Technology, Hefei230009, P. R. China
| | - Yu You
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei235000, P. R. China
| | - Jiaqin Liu
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei230009, P. R. China
| | - Yucheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei230009, P. R. China
| |
Collapse
|
35
|
Shi F, Onofrio N, Chen C, Cai S, Li Y, Zhai L, Zhuang L, Xu ZL, Lau SP. Stable Liquid-Sulfur Generation on Transition-Metal Dichalcogenides toward Low-Temperature Lithium-Sulfur Batteries. ACS NANO 2022; 16:14412-14421. [PMID: 36001112 DOI: 10.1021/acsnano.2c04769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The electrochemical formation of liquid sulfur at room temperature on the basal plane of MoS2 has attracted much attention due to the high areal capacity and rapid kinetics of lithium-liquid sulfur chemistry. However, the liquid sulfur is converted to the solid phase once it contacts the solid sulfur crystals generated from the edge of MoS2. Thus, stable liquid sulfur cannot be formed on the entire MoS2 surface. Herein, we report entire liquid sulfur generation on hydrogen-annealed MoS2 (H2-MoS2), even under harsh conditions of large overpotentials and low working temperatures. The origins of the solely liquid sulfur formation are revealed to be the weakened interactions between H2-MoS2 and sulfur molecules and the decreased electrical polarization on the edges of the H2-MoS2. Progressive nucleation and droplet-merging growth behaviors are observed during the sulfur formation on H2-MoS2, signifying high areal capacities by releasing active H2-MoS2 surfaces. To demonstrate the universality of this strategy, other transition-metal dichalcogenides (TMDs) annealed in hydrogen also exhibit similar sulfur growth behaviors. Furthermore, the H2 annealing treatment can induce sulfur vacancies on the basal plane and partial oxidation on the edge of TMDs, which facilitates liquid sulfur formation. Finally, liquid sulfur can be generated on H2-MoS2 flakes at an ultralow temperature of -50 °C, which provides a possible development of low-temperature lithium-sulfur batteries. This work demonstrates the potential of a pure liquid sulfur-lithium electrochemical system using functionalized two-dimensional materials.
Collapse
Affiliation(s)
- Fangyi Shi
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China
| | - Nicolas Onofrio
- Institut Européen des Membranes, IEM, UMR 5635, Univeristé Montpellier, ENSCM, CNRS, Montpellier 34000, France
| | - Chunhong Chen
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China
| | - Songhua Cai
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China
| | - Yanyong Li
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China
| | - Lingling Zhai
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China
| | - Lyuchao Zhuang
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China
| | - Zheng-Long Xu
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China
- State Key Laboratory of Ultraprecision Machining Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Shu Ping Lau
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China
| |
Collapse
|
36
|
Understanding the lithium-sulfur battery redox reactions via operando confocal Raman microscopy. Nat Commun 2022; 13:4811. [PMID: 35973986 PMCID: PMC9381601 DOI: 10.1038/s41467-022-32139-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
The complex interplay and only partial understanding of the multi-step phase transitions and reaction kinetics of redox processes in lithium–sulfur batteries are the main stumbling blocks that hinder the advancement and broad deployment of this electrochemical energy storage system. To better understand these aspects, here we report operando confocal Raman microscopy measurements to investigate the reaction kinetics of Li–S redox processes and provide mechanistic insights into polysulfide generation/evolution and sulfur deposition. Operando visualization and quantification of the reactants and intermediates enabled the characterization of potential-dependent rates during Li–S redox and the linking of the electronic conductivity of the sulfur-based electrode and concentrations of polysulfides to the cell performance. We also report the visualization of the interfacial evolution and diffusion processes of different polysulfides that demonstrate stepwise discharge and parallel recharge mechanisms during cell operation. These results provide fundamental insights into the mechanisms and kinetics of Li–S redox reactions. The complex redox processes in lithium–sulfur batteries are not yet fully understood at the fundamental level. Here, the authors report operando confocal Raman microscopy measurements to provide mechanistic insights into polysulfide evolution and sulfur deposition during battery cycling.
Collapse
|
37
|
Chang Z, Yang H, Qiao Y, Zhu X, He P, Zhou H. Tailoring the Solvation Sheath of Cations by Constructing Electrode Front-Faces for Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201339. [PMID: 35396751 DOI: 10.1002/adma.202201339] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Solvent molecules within the solvation sheath of cations (e.g., Li+ , Na+ , Zn2+ ) are easily to be dehydrogenated especially when coupled with high-voltage cathodes, and lead to detrimental electrolytes decompositions which finally accelerate capacity decays of rechargeable batteries. Tremendous efforts are devoted to tackle with this long-lasting issue. Among them, salt-concentrated strategies are frequently employed to tailor the solvation sheath of cations and improve the stabilities of electrolytes. However, the cost challenges caused by adding extra dose of expensive salts, additives/cosolvents in preparing highly concentrated electrolytes, hinder their further utilizations to some extent. Introducing porous materials-based electrode front-faces on the surface of electrodes even within dilute electrolytes can transfer the high-energy-state desolvated solvents from the reactive electrodes to the nonconductive porous material surfaces, thus eliminate the contact chances between desolvated solvents and electrode materials, and greatly reduce solvents-related decomposition issues. Herein, recent advances in using electrode front-faces to tailor the solvation sheath of metal ions for rechargeable batteries are discussed. Finally, perspectives to the future challenges and opportunities of constructing electrode front-faces to tailor the solvation sheath of cations by constructing electrode front-face for rechargeable batteries are provided.
Collapse
Affiliation(s)
- Zhi Chang
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, 305-8568, Japan
| | - Huijun Yang
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, 305-8568, Japan
| | - Yu Qiao
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, 305-8568, Japan
| | - Xingyu Zhu
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, 305-8568, Japan
| | - Ping He
- National Laboratory of Solid State Microstructures & Department of Energy Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Haoshen Zhou
- Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, 305-8568, Japan
- National Laboratory of Solid State Microstructures & Department of Energy Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
38
|
Wang H, Ning D, Wang L, Li H, Li Q, Ge M, Zou J, Chen S, Shao H, Lai Y, Zhang Y, Xing G, Pang WK, Tang Y. In Operando Neutron Scattering Multiple-Scale Studies of Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107491. [PMID: 35195340 DOI: 10.1002/smll.202107491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Real-time observation of the electrochemical mechanistic behavior at various scales offers new insightful information to improve the performance of lithium-ion batteries (LIBs). As complementary to the X-ray-based techniques and electron microscopy-based methodologies, neutron scattering provides additional and unique advantages in materials research, owing to the different interactions with atomic nuclei. The non-Z-dependent elemental contrast, in addition to the high penetration ability and weak interaction with matters, makes neutron scattering an advanced probing tool for the in operando mechanistic studies of LIBs. The neutron-based techniques, such as neutron powder diffraction, small-angle neutron scattering, neutron reflectometry, and neutron imaging, have their distinct functionalities and characteristics regimes. These result in their scopes of application distributed in different battery components and covering the full spectrum of all aspects of LIBs. The review surveys the state-of-the-art developments of real-time investigation of the dynamic evolutions of electrochemically active compounds at various scales using neutron techniques. The atomic-scale, the mesoscopic-scale, and at the macroscopic-scale within LIBs during electrochemical functioning provide insightful information to battery researchers. The authors envision that this review will popularize the applications of neutron-based techniques in LIB studies and furnish important inspirations to battery researchers for the rational design of the new generation of LIBs.
Collapse
Affiliation(s)
- Huibo Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - De Ning
- Center for Photonics Information and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Litong Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Heng Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Qingyuan Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Mingzheng Ge
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Junyan Zou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Shi Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Huaiyu Shao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Wei Kong Pang
- Institute for Superconducting and Electronic Materials (ISEM), Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Fujian Science and Technology Innovation Laboratory for Chemical Engineering of China, Quanzhou, 362801, P. R. China
| |
Collapse
|
39
|
Zhang Z, Wang Z, Zhang L, Liu D, Yu C, Yan X, Xie J, Huang J. Unraveling the Conversion Evolution on Solid-State Na-SeS 2 Battery via In Situ TEM. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200744. [PMID: 35320621 PMCID: PMC9109063 DOI: 10.1002/advs.202200744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Indexed: 05/11/2023]
Abstract
All-solid-state (ASS) Na-S batteries are promising for a large-scale energy-storage system owing to numerous merits. However, the high conversion reaction barrier impedes their practical application. In this work, the basic mechanism on how Se catalyzes the conversion reaction in the Na-S batteries is unraveled. The sodiation/desodiation of Na-SeS2 nanobatteries are systematically evaluated via in situ transmission electron microscopy (in situ TEM) with a microheating device. The real-time analyses reveal an amorphous Na-Sex Sy intermediate phase appears during the direct conversion from SeS2 to Na2 S, and a reverse reaction succeeds at 100 °C with a prior formation of Se. The absence of polysulfides and a much lower desodiation temperature in contrast to Na-S nanobatteries demonstrate that the Se incorporation significantly lowers the conversion reaction barrier. According to these findings, the ASS SeS2 batteries using a Na3 SbS4 solid electrolyte (SE) are assembled using various SE:C ratios in the composite cathodes to investigate the effect of the ion and electron transport on the electrochemical properties, including the effective transport properties, MacMullin number, and the tortuosity factor. The obtained results in turn confirm the findings from the in situ TEM. These findings are applicable to optimize other S-based active materials and improve their utilization.
Collapse
Affiliation(s)
- Ziqi Zhang
- Clean Nano Energy CenterState Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoHebei066004China
| | - Zaifa Wang
- Clean Nano Energy CenterState Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoHebei066004China
| | - Long Zhang
- Clean Nano Energy CenterState Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoHebei066004China
| | - Di Liu
- Clean Nano Energy CenterState Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoHebei066004China
| | - Chuang Yu
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologySchool of Electrical and Electronic EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xinlin Yan
- Institute of Solid State PhysicsVienna University of TechnologyVienna1040Austria
| | - Jia Xie
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologySchool of Electrical and Electronic EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Jianyu Huang
- Clean Nano Energy CenterState Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoHebei066004China
| |
Collapse
|
40
|
Hao H, Hutter T, Boyce BL, Watt J, Liu P, Mitlin D. Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries. Chem Rev 2022; 122:8053-8125. [PMID: 35349271 DOI: 10.1021/acs.chemrev.1c00838] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alkali metal batteries based on lithium, sodium, and potassium anodes and sulfur-based cathodes are regarded as key for next-generation energy storage due to their high theoretical energy and potential cost effectiveness. However, metal-sulfur batteries remain challenged by several factors, including polysulfides' (PSs) dissolution, sluggish sulfur redox kinetics at the cathode, and metallic dendrite growth at the anode. Functional separators and interlayers are an innovative approach to remedying these drawbacks. Here we critically review the state-of-the-art in separators/interlayers for cathode and anode protection, covering the Li-S and the emerging Na-S and K-S systems. The approaches for improving electrochemical performance may be categorized as one or a combination of the following: Immobilization of polysulfides (cathode); catalyzing sulfur redox kinetics (cathode); introduction of protective layers to serve as an artificial solid electrolyte interphase (SEI) (anode); and combined improvement in electrolyte wetting and homogenization of ion flux (anode and cathode). It is demonstrated that while the advances in Li-S are relatively mature, less progress has been made with Na-S and K-S due to the more challenging redox chemistry at the cathode and increased electrochemical instability at the anode. Throughout these sections there is a complementary discussion of functional separators for emerging alkali metal systems based on metal-selenium and the metal-selenium sulfide. The focus then shifts to interlayers and artificial SEI/cathode electrolyte interphase (CEI) layers employed to stabilize solid-state electrolytes (SSEs) in metal-sulfur solid-state batteries (SSBs). The discussion of SSEs focuses on inorganic electrolytes based on Li- and Na-based oxides and sulfides but also touches on some hybrid systems with an inorganic matrix and a minority polymer phase. The review then moves to practical considerations for functional separators, including scaleup issues and Li-S technoeconomics. The review concludes with an outlook section, where we discuss emerging mechanics, spectroscopy, and advanced electron microscopy (e.g. cryo-transmission electron microscopy (cryo-TEM) and cryo-focused ion beam (cryo-FIB))-based approaches for analysis of functional separator structure-battery electrochemical performance interrelations. Throughout the review we identify the outstanding open scientific and technological questions while providing recommendations for future research topics.
Collapse
Affiliation(s)
- Hongchang Hao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tanya Hutter
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brad L Boyce
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87110, United States
| | - John Watt
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengcheng Liu
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - David Mitlin
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
41
|
Shao C, Wang X, Yang C, Liu G, Yu W, Dong X, Zhang Q, Wang J. Two steps synthesis of plum-shaped C@Ni/MnO nanofiber heterostructures for trapping and catalyzing polysulfides in lithium-sulfur batteries. J Colloid Interface Sci 2022; 613:15-22. [PMID: 35032773 DOI: 10.1016/j.jcis.2022.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
Both spherical MnO as adsorbent and Ni nanoparticles as catalyzer, with highly exposed contact surface area in the carbon nanofibers, are successfully synthesized via electrospinning technology combined with carbothermal reduction. Compared with typical electrospun carbon nanofiber composites, the as-prepared C@Ni/MnO composite fibers as interlayer enable MnO and Ni to contact fully with polysulfides rather than provide local contact surface. With the sulfur loading of 1.6 mg cm-2 and the approximately 0.1 g composite fibers as interlayer, the cathode shows initial capacity of 687.36 mAh g-1 at 0.5C and superior capacity retention of 70%. This simple technical route leads a way to prepare nanoparticles with highly exposed contact surfaces partially embedded in the carbon nanofibers, which can be applied in electrocatalysis.
Collapse
Affiliation(s)
- Chenglong Shao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Xinlu Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Changsheng Yang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Guixia Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Wensheng Yu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Xiangting Dong
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Qinfeng Zhang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Jinxian Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China.
| |
Collapse
|
42
|
Biliškov N. Infrared spectroscopic monitoring of solid-state processes. Phys Chem Chem Phys 2022; 24:19073-19120. [DOI: 10.1039/d2cp01458k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We put a spotlight on IR spectroscopic investigations in materials science by providing a critical insight into the state of the art, covering both fundamental aspects, examples of its utilisation, and current challenges and perspectives focusing on the solid state.
Collapse
Affiliation(s)
- Nikola Biliškov
- Rudjer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|
43
|
Sun Z, Zhang Y, Liu Y, Hou L, Yuan C. Recent Progress on In Situ/Operando Characterization of Rechargeable Alkali Ion Batteries. Chempluschem 2021; 86:1487-1496. [PMID: 34674379 DOI: 10.1002/cplu.202100393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/01/2021] [Indexed: 02/02/2023]
Abstract
The specific chemical and physical evolutions of electrode materials under operating conditions should be understood to optimize their electrochemical performances. The in-situ/operando techniques including Raman spectrum, transmission electron microscope, X-ray diffraction, X-ray absorption spectrum, and magnetization are powerful tools, which can provide the real-time surficial/interfacial changes of electrodes, the transformation of crystal lattice structures, the adjustment of electronic states and even the influence of magnetic properties under operating conditions. In this Review, the advantages and limitations of these in-situ/operando techniques in investigating the inner energy storage mechanisms of various type electrode materials are analyzed. The representative research results such as the ion dependent storage mechanism, step-alloying processes and space charge storage theory are highlighted. In addition, the challenges and opportunities of in-situ/operando characterizations are proposed as well.
Collapse
Affiliation(s)
- Zehang Sun
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yamin Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yang Liu
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Linrui Hou
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
44
|
Huang Y, Shaibani M, Gamot TD, Wang M, Jovanović P, Dilusha Cooray MC, Mirshekarloo MS, Mulder RJ, Medhekar NV, Hill MR, Majumder M. A saccharide-based binder for efficient polysulfide regulations in Li-S batteries. Nat Commun 2021; 12:5375. [PMID: 34508070 PMCID: PMC8433142 DOI: 10.1038/s41467-021-25612-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
The viability of lithium-sulfur batteries as an energy storage technology depends on unlocking long-term cycle stability. Most instability stems from the release and transport of polysulfides from the cathode, which causes mossy growth on the lithium anode, leading to continuous consumption of electrolyte. Therefore, development of a durable cathode with minimal polysulfide escape is critical. Here, we present a saccharide-based binder system that has a capacity for the regulation of polysulfides due to its reducing properties. Furthermore, the binder promotes the formation of viscoelastic filaments during casting which endows the sulfur cathode with a desirable web-like microstructure. Taken together this leads to 97% sulfur utilisation with a cycle life of 1000 cycles (9 months) and capacity retention (around 700 mAh g-1 after 1000 cycles). A pouch cell prototype with a specific energy of up to 206 Wh kg-1 is produced, demonstrating the promising potential for practical applications.
Collapse
Affiliation(s)
- Yingyi Huang
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - Mahdokht Shaibani
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia.
| | - Tanesh D Gamot
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - Mingchao Wang
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Petar Jovanović
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - M C Dilusha Cooray
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - Meysam Sharifzadeh Mirshekarloo
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | | | - Nikhil V Medhekar
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Matthew R Hill
- CSIRO, Clayton, VIC, Australia.
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia.
| | - Mainak Majumder
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
45
|
Hua W, Li H, Pei C, Xia J, Sun Y, Zhang C, Lv W, Tao Y, Jiao Y, Zhang B, Qiao SZ, Wan Y, Yang QH. Selective Catalysis Remedies Polysulfide Shuttling in Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101006. [PMID: 34338356 DOI: 10.1002/adma.202101006] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The shuttling of soluble lithium polysulfides between the electrodes leads to serious capacity fading and excess use of electrolyte, which severely bottlenecks practical use of Li-S batteries. Here, selective catalysis is proposed as a fundamental remedy for the consecutive solid-liquid-solid sulfur redox reactions. The proof-of-concept Indium (In)-based catalyst targetedly decelerates the solid-liquid conversion, dissolution of elemental sulfur to polysulfides, while accelerates the liquid-solid conversion, deposition of polysulfides into insoluble Li2 S, which basically reduces accumulation of polysulfides in electrolyte, finally inhibiting the shuttle effect. The selective catalysis is revealed, experimentally and theoretically, by changes of activation energies and kinetic currents, modified reaction pathway together with the probed dynamically changing catalyst (LiInS2 catalyst), and gradual deactivation of the In-based catalyst. The In-based battery works steadily over 1000 cycles at 4.0 C and yields an initial areal capacity up to 9.4 mAh cm-2 with a sulfur loading of ≈9.0 mg cm-2 .
Collapse
Affiliation(s)
- Wuxing Hua
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Huan Li
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Chun Pei
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China
| | - Jingyi Xia
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yafei Sun
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China
| | - Chen Zhang
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Wei Lv
- Shenzhen Key Laboratory for Graphene-based Materials and Engineering Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Ying Tao
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ying Wan
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China
| | - Quan-Hong Yang
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
46
|
Dong Y, Li T, Cai D, Yang S, Zhou X, Nie H, Yang Z. Progress and Prospect of Organic Electrocatalysts in Lithium-Sulfur Batteries. Front Chem 2021; 9:703354. [PMID: 34336789 PMCID: PMC8322034 DOI: 10.3389/fchem.2021.703354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
Lithium-sulfur (Li-S) batteries featured by ultra-high energy density and cost-efficiency are considered the most promising candidate for the next-generation energy storage system. However, their pragmatic applications confront several non-negligible drawbacks that mainly originate from the reaction and transformation of sulfur intermediates. Grasping and catalyzing these sulfur species motivated the research topics in this field. In this regard, carbon dopants with metal/metal-free atoms together with transition-metal complex, as traditional lithium polysulfide (LiPS) propellers, exhibited significant electrochemical performance promotions. Nevertheless, only the surface atoms of these host-accelerators can possibly be used as active sites. In sharp contrast, organic materials with a tunable structure and composition can be dispersed as individual molecules on the surface of substrates that may be more efficient electrocatalysts. The well-defined molecular structures also contribute to elucidate the involved surface-binding mechanisms. Inspired by these perceptions, organic electrocatalysts have achieved a great progress in recent decades. This review focuses on the organic electrocatalysts used in each part of Li-S batteries and discusses the structure-activity relationship between the introduced organic molecules and LiPSs. Ultimately, the future developments and prospects of organic electrocatalysts in Li-S batteries are also discussed.
Collapse
Affiliation(s)
- Yangyang Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Tingting Li
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Dong Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Shuo Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| |
Collapse
|
47
|
Li S, Lin J, Xiong W, Guo X, Wu D, Zhang Q, Zhu QL, Zhang L. Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213872] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
In situ/operando vibrational spectroscopy for the investigation of advanced nanostructured electrocatalysts. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213824] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
49
|
Tian J, Guo H, Wan J, Liu G, Yan H, Wen R, Wan L. In Situ/ Operando Advances of Electrode Processes in Solid-state Lithium Batteries. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21060255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Xiao Y, Yamamoto K, Matsui Y, Watanabe T, Nakanishi K, Uchiyama T, Shingubara S, Ishikawa M, Watanabe M, Uchimoto Y. Operando soft X-ray absorption spectroscopic study on microporous carbon-supported sulfur cathodes. RSC Adv 2020; 10:39875-39880. [PMID: 35515411 PMCID: PMC9057504 DOI: 10.1039/d0ra08299f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 01/30/2023] Open
Abstract
Sulfur is a promising material for next-generation cathodes, owing to its high energy and low cost. However, sulfur cathodes have the disadvantage of serious cyclability issues due to the dissolution of polysulfides that form as intermediate products during discharge/charge cycling. Filling sulfur into the micropores of porous carbon is an effective method to suppress its dissolution. Although microporous carbon-supported sulfur cathodes show an electrochemical behavior different from that of the conventional sulfur ones, the corresponding reaction mechanism is not clearly understood. In this study, we focused on clarifying the reaction mechanism of microporous carbon-supported sulfur cathodes by operando soft X-ray absorption spectroscopy. In the microporous carbon support, sulfur was present as smaller fragments compared to conventional sulfur. During the first discharge process, the sulfur species in the microporous carbon were initially reduced to S62− and S22− and then to Li2S. The S62− and S22− species were observed first, with S22− being the main polysulfide species during the discharge process, while Li2S was produced in the final discharge process. The narrow pores of microporous carbon prevent the dissolution of polysulfides and influence the reaction mechanism of sulfur cathodes. The reaction mechanism of the sulfur cathode in the microporous carbon during discharge was observed by operando XAS.![]()
Collapse
Affiliation(s)
- Yao Xiao
- Graduate School of Human and Environmental Studies, Kyoto University Yoshida-nihonmatsu-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Kentaro Yamamoto
- Graduate School of Human and Environmental Studies, Kyoto University Yoshida-nihonmatsu-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Yukiko Matsui
- Department of Chemistry and Materials Engineering, Kansai University 3-3-35 Yamate-cho Suita Osaka 564-8680 Japan
| | - Toshiki Watanabe
- Graduate School of Human and Environmental Studies, Kyoto University Yoshida-nihonmatsu-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Koji Nakanishi
- Graduate School of Human and Environmental Studies, Kyoto University Yoshida-nihonmatsu-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Tomoki Uchiyama
- Graduate School of Human and Environmental Studies, Kyoto University Yoshida-nihonmatsu-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Shoso Shingubara
- Department of Mechanical Engineering, Kansai University 3-3-35 Yamate-cho Suita Osaka 564-8680 Japan
| | - Masashi Ishikawa
- Department of Chemistry and Materials Engineering, Kansai University 3-3-35 Yamate-cho Suita Osaka 564-8680 Japan
| | - Masayoshi Watanabe
- Institute of Advanced Sciences, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | - Yoshiharu Uchimoto
- Graduate School of Human and Environmental Studies, Kyoto University Yoshida-nihonmatsu-cho, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|