1
|
Collado L, Pizarro AH, Barawi M, García-Tecedor M, Liras M, de la Peña O'Shea VA. Light-driven nitrogen fixation routes for green ammonia production. Chem Soc Rev 2024. [PMID: 39387285 DOI: 10.1039/d3cs01075a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The global goal for decarbonization of the energy sector and the chemical industry could become a reality by a massive increase in renewable-based technologies. For this clean energy transition, the versatile green ammonia may play a key role in the future as a fossil-free fertilizer, long-term energy storage medium, chemical feedstock, and clean burning fuel for transportation and decentralized power generation. The high energy-intensive industrial ammonia production has triggered researchers to look for a step change in new synthetic approaches powered by renewable energies. This review provides a comprehensive comparison of light-mediated N2 fixation technologies for green ammonia production, including photocatalytic, photoelectrocatalytic, PV-electrocatalytic and photothermocatalytic routes. Since these approaches are still at laboratory scale, we examine the most recent developments and discuss the open challenges for future improvements. Last, we offer a technoeconomic comparison of current and emerging ammonia production technologies, highlighting costs, barriers, recommendations, and potential opportunities for the real development of the next generation of green ammonia solutions.
Collapse
Affiliation(s)
- Laura Collado
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Alejandro H Pizarro
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Mariam Barawi
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Miguel García-Tecedor
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Marta Liras
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | | |
Collapse
|
2
|
Chen S, Zhang X, Li D, Wang X, Hu B, Guo F, Hao L, Liu B. Strategies for improving photocatalytic performance of g-C 3N 4 by modulating charge separation and current research status. Heliyon 2024; 10:e35098. [PMID: 39165981 PMCID: PMC11333905 DOI: 10.1016/j.heliyon.2024.e35098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Graphitic carbon nitride (g-C3N4) has been extensively investigated over the past decade for its potential utilizations in photocatalytic energy generation and pollutant degradation. To better meeting the requirements for practical utilizations, it is crucial to address the issue of poor charge separation properties in g-C3N4, which origin from the strong interactions in photogenerated electron-hole pairs. In this review, we summarized the pertinent studies on developing strategies to promote the charge separation properties of g-C3N4. The strategies can be categorized into two categories of promoting the surface migration of charge carriers and prolonging the lifetime of surface charge. Finally, we present potential challenges in promoting charge separation and offer feasible suggestions to face these challenges.
Collapse
Affiliation(s)
- Shuangying Chen
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo, 255000, PR China
| | - Xuliang Zhang
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo, 255000, PR China
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, 266 Xincun Xi road, Zibo, 255000, PR China
| | - Degang Li
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo, 255000, PR China
| | - Xiaowen Wang
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo, 255000, PR China
| | - Bingjie Hu
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo, 255000, PR China
| | - Fushui Guo
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo, 255000, PR China
| | - Liantao Hao
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo, 255000, PR China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, 266 Xincun Xi road, Zibo, 255000, PR China
| |
Collapse
|
3
|
Zhang H, Chen Y, Bao L, Ge JY. CeO 2-CDs clusters decorated Co(OH) 2 nanosheets for improved photocatalytic ammonia synthesis. J Colloid Interface Sci 2023; 634:642-650. [PMID: 36549212 DOI: 10.1016/j.jcis.2022.12.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The green synthesis process of photocatalytic ammonia production has received more and more attentions. Herein, a Z-scheme heterojunction with all-solid-state structures is constructed, in which carbon dots can act as electron transferring mediators. The photocatalytic measurement shows that the modified photocatalysts exhibit much higher activities, in which the ammonia production rates can reach above 232 µmol·gcal-1·h-1 under the light irradiation. The improved catalytic properties can be credited to the significantly increased number of photoinduced oxygen vacancies, the excellent visible-light adsorption abilities and photogenerated electron-hole separation efficiencies for the carbon dots bridged heterostructures. More hydroxyl and superoxide radicals can be simultaneously produced in the composites. This work provides reasonable guidance for applications in photocatalytic ammonia synthesis and a promising construction strategy of efficient Z-scheme photocatalysts.
Collapse
Affiliation(s)
- Huaiwei Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yifan Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Liang Bao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Photon driven nitrogen fixation via Ni-incorporated ZrO2/Bi2O3: p-n heterojunction. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Fabrication of UiO-66-NH2/Ce(HCOO)3 heterojunction with enhanced photocatalytic reduction of CO2 to CH4. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Zhang L, Hou S, Wang T, Liu S, Gao X, Wang C, Wang G. Recent Advances in Application of Graphitic Carbon Nitride-Based Catalysts for Photocatalytic Nitrogen Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202252. [PMID: 35710700 DOI: 10.1002/smll.202202252] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Ammonia, the second most-produced chemical, is widely used in agricultural and industrial applications. However, traditional industrial ammonia production dominated by the Haber-Bosch process presents huge resource and environment issues due to the massive energy consumption and CO2 emission. The newly emerged nitrogen fixation technology, photocatalytic N2 reduction reaction (p-NRR), uses clean solar energy with zero-emission, holding great prospect to achieve sustainable ammonia synthesis. Although great efforts are made, the p-NRR catalysts still suffer from poor N2 adsorption and activation, inferior light absorption, and fast recombination of photocarriers. Due to the tunable electronic structure of the metal-free polymeric graphitic carbon nitride (g-C3 N4 ), the above-mentioned issues can be significantly alleviated, making it the most promising p-NRR photocatalyst. This review summarizes the recent development of g-C3 N4 -based catalysts for p-NRR, including the working principle of p-NRR catalysts, the challenges of developing p-NRR catalysts, and corresponding solutions. Particularly, the roles of defect engineering and heterojunction construction on g-C3 N4 to the enhancement of photocatalytic performances are emphasized. In addition, computational studies are introduced to deepen the understanding of reaction pathways. At last, perspectives are provided on the development of p-NRR catalysts.
Collapse
Affiliation(s)
- Lei Zhang
- The College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Shaoqi Hou
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Tianyi Wang
- The College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Sixiao Liu
- The College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Xiaochun Gao
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264000, China
| | - Chengyin Wang
- The College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| |
Collapse
|
7
|
Wang D, Lin Z, Miao C, Jiang W, Li H, Liu C, Che G. An S-scheme photocatalyst constructed by modifying Ni-doped Sn3O4 micro-flowers on g-C3N4 nanosheets for enhanced visible-light-driven hydrogen evolution. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Double quantum dots decorated layer structure CeCO3OH for improved N2 photo-fixation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Wei Y, Jiang W, Liu Y, Bai X, Hao D, Ni BJ. Recent advances in photocatalytic nitrogen fixation and beyond. NANOSCALE 2022; 14:2990-2997. [PMID: 35166288 DOI: 10.1039/d2nr00198e] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The traditional synthesis of ammonia is an industrial process with high energy consumption that is not environmentally friendly; thus, it is urgent to develop cost-effective approaches to synthesize ammonia under ambient conditions. In recent years, the photochemical synthesis of ammonia has become a hot research frontier. In this mini review, we summarize the recent advances in materials sciences for photocatalytic nitrogen fixation. Beyond nitrogen fixation, we talk about an alternative for artificial ammonia synthesis and coupling reactions with other reactions for the synthesis of other high-value chemicals. The results and findings of this review will help the development of ammonia synthesis and the synthesis of other high-value chemicals.
Collapse
Affiliation(s)
- Yunxia Wei
- College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, 730070, China
| | - Wenjun Jiang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Yang Liu
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaojuan Bai
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Derek Hao
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia.
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia.
| |
Collapse
|
10
|
Liao G, Li C, Liu SY, Fang B, Yang H. Emerging frontiers of Z-scheme photocatalytic systems. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Sultana S, Paramanik L, Mansingh S, Parida K. Robust Photoelectrochemical Route for the Ambient Fixation of Dinitrogen into Ammonia over a Nanojunction Assembled from Ceria and an Iron Boride/Phosphide Cocatalyst. Inorg Chem 2021; 61:131-140. [PMID: 34936349 DOI: 10.1021/acs.inorgchem.1c02504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nitrogen reduction reaction is of great scientific significance as a hydrogen fuel carrier as well as a source of value-added products; in context to this, photoelectrochemical (PEC) nitrogen fixation emerges as an effective and environmentally benign strategy to meet the need. Hence, the current work reports an effective catalytic system containing a low-cost iron boride-based cocatalyst onto the CeO2 nanosheet matrix for photoelectrochemical nitrogen reduction reaction. The harmonized electronic property and the ensemble effect of phosphorus and boron in FeB/P with unsaturated metal sites make it a site-selective cocatalyst for nitrogen adsorption and its polarization. Furthermore, the low Fermi level of iron borophosphide enhances the trapping of photogenerated electrons from CeO2 and productively provides it to the adsorbed nitrogen species. The observed peculiar photocurrent behavior confirms the interaction of photogenerated electrons with adsorbed nitrogen species and its subsequent reduction by the surrounding protonic environment. The optimized CeO2-FeB/P photoelectrocatalyst exhibited an excellent NH3 yield velocity, i.e., 9.54 μg/h/cm2 at -0.12 V vs RHE with a solar-to-chemical conversion efficiency of 0.046% under ambient conditions. The same catalyst is also very active under near-zero biasing conditions and possesses impressive durability even after multiple uses. This work might strategically direct a promising way for the exploration of new photoelectrocatalytic systems for effective PEC-nitrogen reduction reaction.
Collapse
Affiliation(s)
- Sabiha Sultana
- Centre for Nano Science and Nano Technology, SOA Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - Lekha Paramanik
- Centre for Nano Science and Nano Technology, SOA Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - Sriram Mansingh
- Centre for Nano Science and Nano Technology, SOA Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, SOA Deemed to be University, Bhubaneswar 751 030, Odisha, India
| |
Collapse
|
12
|
Ali H, Masar M, Guler AC, Urbanek M, Machovsky M, Kuritka I. Heterojunction-based photocatalytic nitrogen fixation: principles and current progress. NANOSCALE ADVANCES 2021; 3:6358-6372. [PMID: 36133492 PMCID: PMC9417957 DOI: 10.1039/d1na00565k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/16/2021] [Indexed: 06/15/2023]
Abstract
Nitrogen fixation is considered one of the grand challenges of the 21st century for achieving the ultimate vision of a green and sustainable future. It is crucial to develop and design sustainable nitrogen fixation techniques with minimal environmental impact as an alternative to the energy-cost intensive Haber-Bosch process. Heterojunction-based photocatalysis has recently emerged as a viable solution for the various environmental and energy issues, including nitrogen fixation. The primary advantages of heterojunction photocatalysts are spatially separated photogenerated charge carriers while retaining high oxidation and reduction potentials of the individual components, enabling visible light-harvesting. This review summarises the fundamental principles of photocatalytic heterostructures, the reaction mechanism of the nitrogen reduction reaction, ammonia detection methods, and the current progress of heterostructured photocatalysts for nitrogen fixation. Finally, future challenges and prospects are briefly discussed for the emerging field of heterostructured photocatalytic nitrogen fixation.
Collapse
Affiliation(s)
- Hassan Ali
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 76001 Zlin Czech Republic
| | - Milan Masar
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 76001 Zlin Czech Republic
| | - Ali Can Guler
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 76001 Zlin Czech Republic
| | - Michal Urbanek
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 76001 Zlin Czech Republic
| | - Michal Machovsky
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 76001 Zlin Czech Republic
| | - Ivo Kuritka
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 76001 Zlin Czech Republic
| |
Collapse
|
13
|
Photocatalytic Fixation of Molecular Nitrogen in Systems Based on Graphite-Like Carbon Nitride: a Review. THEOR EXP CHEM+ 2021. [DOI: 10.1007/s11237-021-09678-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Lee J, Tan LL, Chai SP. Heterojunction photocatalysts for artificial nitrogen fixation: fundamentals, latest advances and future perspectives. NANOSCALE 2021; 13:7011-7033. [PMID: 33889914 DOI: 10.1039/d1nr00783a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As an indispensable energy source, ammonia plays an essential role in agriculture and various industries. Given that the current ammonia production is still dominated by the energy-intensive and high carbon footprint Haber-Bosch process, photocatalytic nitrogen fixation represents a low-energy consuming and sustainable approach to generate ammonia. Heterostructured photocatalysts are hybrid materials composed of semiconductor materials containing interfaces that make full use of the unique superiorities of the constituents and synergistic effects between them. These promising photocatalysts have superior performances and substantial potential in photocatalytic reduction of nitrogen. In this review, a wide spectrum of recently developed heterostructured photocatalysts for nitrogen fixation to ammonia are evaluated. The fundamentals of solar-to-ammonia conversion, basic principles of various heterojunction photocatalysts and modification strategies are systematically reviewed. Finally, a brief summary and perspectives on the ongoing challenges and directions for future development of nitrogen photofixation catalysts are also provided.
Collapse
Affiliation(s)
- Jiale Lee
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia.
| | | | | |
Collapse
|
15
|
Huang R, Li X, Gao W, Zhang X, Liang S, Luo M. Recent advances in photocatalytic nitrogen fixation: from active sites to ammonia quantification methods. RSC Adv 2021; 11:14844-14861. [PMID: 35423978 PMCID: PMC8697998 DOI: 10.1039/d0ra10439f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Photocatalytic nitrogen fixation has become a hot topic in recent years due to its mild and sustainable advantages. While modifying the photocatalyst to enhance its electron separation, light absorption and nitrogen reduction abilities, the role of the active sites in the catalytic reaction cannot be ignored because the N[triple bond, length as m-dash]N nitrogen bond is too strong to activate. This review summarizes the recent research on nitrogen fixation, focusing on the active sites for N2 on the catalyst surface, classifying common active sites, explaining the main role and additional role of the active sites in catalytic reactions, and discussing the methods to increase the number of active sites and their activation ability. Finally, the outlook for future research is presented. It is hoped this review could help researchers understand more about the activation of the nitrogen molecules and lead more efforts into research on nitrogen fixation photocatalysts.
Collapse
Affiliation(s)
- Rong Huang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan Ningxia 750021 China
- Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan Ningxia 750021 China
| | - Wanguo Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan Ningxia 750021 China
| | - Xu Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan Ningxia 750021 China
| | - Sen Liang
- Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University Yinchuan Ningxia 750021 China
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan Ningxia 750021 China
| |
Collapse
|
16
|
Li P, Gao S, Liu Q, Ding P, Wu Y, Wang C, Yu S, Liu W, Wang Q, Chen S. Recent Progress of the Design and Engineering of Bismuth Oxyhalides for Photocatalytic Nitrogen Fixation. ADVANCED ENERGY AND SUSTAINABILITY RESEARCH 2021. [DOI: 10.1002/aesr.202000097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Peishen Li
- Laboratory for Micro-sized Functional Materials College of Elementary Education Department of Chemistry Capital Normal University Beijing 100048 China
- Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT) Key Laboratory of Water and Sediment Sciences (Ministry of Education) College of Environmental Sciences and Engineering Peking University Beijing 100871 China
| | - Shuai Gao
- Laboratory for Micro-sized Functional Materials College of Elementary Education Department of Chemistry Capital Normal University Beijing 100048 China
| | - Qiming Liu
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| | - Peiren Ding
- Laboratory for Micro-sized Functional Materials College of Elementary Education Department of Chemistry Capital Normal University Beijing 100048 China
| | - Yunyun Wu
- Laboratory for Micro-sized Functional Materials College of Elementary Education Department of Chemistry Capital Normal University Beijing 100048 China
| | - Changzheng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environmental Remediation Beijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Shaobin Yu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environmental Remediation Beijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Wen Liu
- Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT) Key Laboratory of Water and Sediment Sciences (Ministry of Education) College of Environmental Sciences and Engineering Peking University Beijing 100871 China
| | - Qiang Wang
- Laboratory for Micro-sized Functional Materials College of Elementary Education Department of Chemistry Capital Normal University Beijing 100048 China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| |
Collapse
|
17
|
Vesali-Kermani E, Habibi-Yangjeh A, Ghosh S. Visible-light-induced nitrogen photofixation ability of g-C3N4 nanosheets decorated with MgO nanoparticles. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Lin L, Zhu Q, Cheng A, Ma L. Efficient solar-driven nitrogen fixation over an elemental phosphorus photocatalyst. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00680g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An elemental semiconductor (red phosphorus) based photocatalyst was developed for nitrogen fixation under full-spectrum irradiation without using any hole scavenger.
Collapse
Affiliation(s)
- Ling Lin
- School of Chemical Engineering and Light Industry
- Guangdong University of technology
- Guangzhou
- P. R. China
| | - Qing Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Center for Excellence in Nanoscience
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
| | - Aozhi Cheng
- School of Chemical Engineering and Light Industry
- Guangdong University of technology
- Guangzhou
- P. R. China
| | - Liang Ma
- School of Chemical Engineering and Light Industry
- Guangdong University of technology
- Guangzhou
- P. R. China
| |
Collapse
|
19
|
Ren Y, Zhan W, Tang L, Zheng H, Liu H, Tang K. Constructing a ternary H2SrTa2O7/g-C3N4/Ag3PO4 heterojunction based on cascade electron transfer with enhanced visible light photocatalytic activity. CrystEngComm 2020. [DOI: 10.1039/d0ce00998a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A ternary H2SrTa2O7/g-C3N4/Ag3PO4 heterojunction was fabricated for the first time and displayed excellent visible light photocatalytic activity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Wenqi Zhan
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Lulu Tang
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Hui Zheng
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Huimin Liu
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Kaibin Tang
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale
| |
Collapse
|
20
|
Zhou S, Zhang C, Liu J, Liao J, Kong Y, Xu Y, Chen G. Formation of an oriented Bi2WO6 photocatalyst induced by in situ Bi reduction and its use for efficient nitrogen fixation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00972h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An in situ Bi reduction strategy to induce a preferential orientation that significantly enhanced the photocatalytic nitrogen fixation performance of Bi2WO6.
Collapse
Affiliation(s)
- Shengyao Zhou
- A MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Congmin Zhang
- A MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Jingyuan Liu
- A MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Jie Liao
- A MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Yi Kong
- A MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Yanling Xu
- A MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Gang Chen
- A MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| |
Collapse
|