1
|
Raja Mogan T, Zhang J, Ng LS, Boong SK, Chong C, Lee JK, Li H, Lee HK. Harmonizing Plasmonic and Photonic Effects to Boost Photocatalytic H 2 Production over 550 mmol ⋅ h -1 ⋅ g cat -1. Angew Chem Int Ed Engl 2024; 63:e202401277. [PMID: 38351496 DOI: 10.1002/anie.202401277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Indexed: 03/01/2024]
Abstract
Integrating plasmonic nanoparticles with photonic crystals holds immense potential to enhance green hydrogen photosynthesis by amplifying localized electromagnetic field through generating surface plasmons and slow photons. Current plasmonic photonic designs primarily employ semiconductor-based structural backbone deposited with plasmonic nanoparticles. However, the competition between various optical phenomena in these ensembles hinders effective field enhancement rather than facilitating it. This limitation creates a formidable performance bottleneck that retards hydrogen evolution. Herein, we enhance plasmonic catalysis for efficient hydrogen evolution by effectively harmonizing plasmonic and photonic effects. This is achieved by using inert SiO2 opal as a non-photoabsorbing photonic framework. By aligning the excitation wavelengths of surface plasmons and slow photons, our optimized plasmonic photonic crystals demonstrates a remarkable H2 evolution rate of 560 mmol h-1 gAg -1, surpassing bare plasmonic Ag nanoparticles by >106-fold and other high-performance photocatalytic designs by 280-fold. Mechanistic studies highlight the pivotal role of the non-photoabsorbing photonic backbone in facilitating effective light confinement through the photonic effect. This in turn boosts the plasmonic field for enhanced photocatalytic H2 evolution, even without needing additional co-catalysts. Our work offers valuable insights for future design of electromagnetically hot plasmonic catalysts to achieve efficient light-to-chemical transformations in diverse energy, chemical, and environmental applications.
Collapse
Affiliation(s)
- Tharishinny Raja Mogan
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Jiajia Zhang
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Li Shiuan Ng
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Siew Kheng Boong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Carice Chong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Jinn-Kye Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Haitao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A✶STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore
- Centre for Hydrogen Innovations, National University of Singapore (Singapore) E8, 1 Engineering Drive 3, Singapore, 117580
| |
Collapse
|
2
|
Kumar A, Choudhary P, Kumar A, Camargo PHC, Krishnan V. Recent Advances in Plasmonic Photocatalysis Based on TiO 2 and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101638. [PMID: 34396695 DOI: 10.1002/smll.202101638] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/06/2021] [Indexed: 05/24/2023]
Abstract
Plasmonic photocatalysis has emerged as a prominent and growing field. It enables the efficient use of sunlight as an abundant and renewable energy source to drive a myriad of chemical reactions. For instance, plasmonic photocatalysis in materials comprising TiO2 and plasmonic nanoparticles (NPs) enables effective charge carrier separation and the tuning of optical response to longer wavelength regions (visible and near infrared). In fact, TiO2 -based materials and plasmonic effects are at the forefront of heterogeneous photocatalysis, having applications in energy conversion, production of liquid fuels, wastewater treatment, nitrogen fixation, and organic synthesis. This review aims to comprehensively summarize the fundamentals and to provide the guidelines for future work in the field of TiO2 -based plasmonic photocatalysis comprising the above-mentioned applications. The concepts and state-of-the-art description of important parameters including the formation of Schottky junctions, hot electron generation and transfer, near field electromagnetic enhancement, plasmon resonance energy transfer, scattering, and photothermal heating effects have been covered in this review. Synthetic approaches and the effect of various physicochemical parameters in plasmon-mediated TiO2 -based materials on performances are discussed. It is envisioned that this review may inspire and provide insights into the rational development of the next generation of TiO2 -based plasmonic photocatalysts with target performances and enhanced selectivities.
Collapse
Affiliation(s)
- Ajay Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Ashish Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Pedro H C Camargo
- University of Helsinki, Department of Chemistry, A.I. Virtasen aukio 1, Helsinki, Finland
| | - Venkata Krishnan
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
3
|
Lim SY, Hedrich C, Jiang L, Law CS, Chirumamilla M, Abell AD, Blick RH, Zierold R, Santos A. Harnessing Slow Light in Optoelectronically Engineered Nanoporous Photonic Crystals for Visible Light-Enhanced Photocatalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03320] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Siew Yee Lim
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Carina Hedrich
- Center for Hybrid Nanostructures, Universität Hamburg, Hamburg, Hamburg 22761, Germany
| | - Lin Jiang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Cheryl Suwen Law
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Manohar Chirumamilla
- Institute of Optical and Electronic Materials, Hamburg University of Technology, Hamburg, Hamburg 21073, Germany
| | - Andrew D. Abell
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Robert H. Blick
- Center for Hybrid Nanostructures, Universität Hamburg, Hamburg, Hamburg 22761, Germany
| | - Robert Zierold
- Center for Hybrid Nanostructures, Universität Hamburg, Hamburg, Hamburg 22761, Germany
| | - Abel Santos
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
4
|
Domagalski JT, Xifre-Perez E, Marsal LF. Recent Advances in Nanoporous Anodic Alumina: Principles, Engineering, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:430. [PMID: 33567787 PMCID: PMC7914664 DOI: 10.3390/nano11020430] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
The development of aluminum anodization technology features many stages. With the story stretching for almost a century, rather straightforward-from current perspective-technology, raised into an iconic nanofabrication technique. The intrinsic properties of alumina porous structures constitute the vast utility in distinct fields. Nanoporous anodic alumina can be a starting point for: Templates, photonic structures, membranes, drug delivery platforms or nanoparticles, and more. Current state of the art would not be possible without decades of consecutive findings, during which, step by step, the technique was more understood. This review aims at providing an update regarding recent discoveries-improvements in the fabrication technology, a deeper understanding of the process, and a practical application of the material-providing a narrative supported with a proper background.
Collapse
Affiliation(s)
| | | | - Lluis F. Marsal
- Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avinguda dels Països Catalans, 26, 43007 Tarragona, Spain; (J.T.D.); (E.X.-P.)
| |
Collapse
|
5
|
Çakıroğlu B, Özacar M. Efficient chemiluminescence harnessing via slow photons in sensitized TiO2 nanotubes for the photoelectrochemical biosensing. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Tran VT, Nguyen HQ, Kim YM, Ok G, Lee J. Photonic-Plasmonic Nanostructures for Solar Energy Utilization and Emerging Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2248. [PMID: 33198391 PMCID: PMC7696832 DOI: 10.3390/nano10112248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022]
Abstract
Issues related to global energy and environment as well as health crisis are currently some of the greatest challenges faced by humanity, which compel us to develop new pollution-free and sustainable energy sources, as well as next-generation biodiagnostic solutions. Optical functional nanostructures that manipulate and confine light on a nanometer scale have recently emerged as leading candidates for a wide range of applications in solar energy conversion and biosensing. In this review, recent research progress in the development of photonic and plasmonic nanostructures for various applications in solar energy conversion, such as photovoltaics, photothermal conversion, and photocatalysis, is highlighted. Furthermore, the combination of photonic and plasmonic nanostructures for developing high-efficiency solar energy conversion systems is explored and discussed. We also discuss recent applications of photonic-plasmonic-based biosensors in the rapid management of infectious diseases at point-of-care as well as terahertz biosensing and imaging for improving global health. Finally, we discuss the current challenges and future prospects associated with the existing solar energy conversion and biosensing systems.
Collapse
Affiliation(s)
- Van Tan Tran
- Department of Chemistry, Research Institute of Materials Science, Chungnam National University, Daejeon 34134, Korea; (V.T.T.); (H.-Q.N.)
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Huu-Quang Nguyen
- Department of Chemistry, Research Institute of Materials Science, Chungnam National University, Daejeon 34134, Korea; (V.T.T.); (H.-Q.N.)
| | - Young-Mi Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
| | - Gyeongsik Ok
- Research Group of Consumer Safety, Korea Food Research Institute (KFRI), Wanju 55365, Korea;
| | - Jaebeom Lee
- Department of Chemistry, Research Institute of Materials Science, Chungnam National University, Daejeon 34134, Korea; (V.T.T.); (H.-Q.N.)
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
| |
Collapse
|
7
|
Abstract
Noble metal (NM)-modified wide-bandgap semiconductors with activity under visible light (Vis) irradiation, due to localized surface plasmon resonance (LSPR), known as plasmonic photocatalysts, have been intensively studied over the last few years. Despite the novelty of the topic, a large number of reports have already been published, discussing the optimal properties, synthesis methods and mechanism clarification. It has been proposed that both efficient light harvesting and charge carriers’ migration are detrimental for high and stable activity under Vis irradiation. Accordingly, photonic crystals (PCs) with photonic bandgap (PBG) and slow photon effects seem to be highly attractive for efficient use of incident photons. Therefore, the study on PCs-based plasmonic photocatalysts has been conducted, mainly on titania inverse opal (IO) modified with nanoparticles (NPs) of NM. Although, the research is quite new and only several reports have been published, it might be concluded that the matching between LSPR and PBG (especially at red edge) by tuning of NMNPs size and IO-void diameter, respectively, is the most crucial for the photocatalytic activity.
Collapse
|
8
|
Law CS, Lim SY, Liu L, Abell AD, Marsal LF, Santos A. Realization of high-quality optical nanoporous gradient-index filters by optimal combination of anodization conditions. NANOSCALE 2020; 12:9404-9415. [PMID: 32124886 DOI: 10.1039/c9nr10526c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-quality nanoporous anodic alumina gradient-index filters (NAA-GIFs) are realized by sinusoidal pulse anodisation (SPA) of aluminum. A three-level factorial design of experiments is used to determine the effect of three critical anodization parameters -electrolyte temperature, concentration of the electrolyte and anodization time- on the quality of light control in these photonic crystal (PC) structures. Quantitative analysis of the effect of these anodization parameters on the quality of the characteristic photonic stopband (PSB) of NAA-GIFs reveals that all three anodization parameters and their respective combinations have statistically significant effects. However, anodization time is found to have the highest impact on the quality of light control in NAA-GIFs, followed by the electrolyte concentration and its temperature. Our findings demonstrate that NAA-GIFs fabricated under optimal conditions achieve an outstanding quality factor of ∼86 (i.e.∼18% superior to that of other NAA-based PCs reported in the literature). This study provides new insight into optimal anodization conditions to fabricate high-quality NAA-based PC structures, opening new exciting opportunities to integrate these nanoporous PCs as platform materials for light-based technologies requiring a precise control over photons such as ultra-sensitive optical sensors and biosensors, photocatalysts for green energy generation and environmental remediation, optical encoding and lasing.
Collapse
Affiliation(s)
- Cheryl Suwen Law
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | | | | | |
Collapse
|
9
|
Lim SY, Law CS, Bertó-Roselló F, Liu L, Markovic M, Ferré-Borrull J, Abell AD, Voelcker NH, Marsal LF, Santos A. Tailor-engineered plasmonic single-lattices: harnessing localized surface plasmon resonances for visible-NIR light-enhanced photocatalysis. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02561h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A platform material composed of 2D gold (Au) nanodot plasmonic single-lattices (Au-nD-PSLs) featuring tailor-engineered geometric features for visible-NIR light-driven enhanced photocatalysis is presented.
Collapse
|
10
|
Eid K, A. Soliman K, Abdulmalik D, Mitoraj D, Sleim MH, Liedke MO, El-Sayed HA, AlJaber AS, Y. Al-Qaradawi I, Mendoza Reyes O, Abdullah AM. Tailored fabrication of iridium nanoparticle-sensitized titanium oxynitride nanotubes for solar-driven water splitting: experimental insights on the photocatalytic–activity–defects relationship. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02366f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Uniform and vertically aligned nanotube arrays of titanium oxynitride functionalized with iridium nanoparticles (Ir/TiON-NTs) were fabricated for the solar driven-water splitting.
Collapse
Affiliation(s)
- Kamel Eid
- Center for Advanced Materials
- Qatar University
- Doha
- Qatar
| | - Khaled A. Soliman
- Physical Chemistry Department
- National Research Centre
- Cairo 12441
- Egypt
| | - Dana Abdulmalik
- Department of Mathematics
- Statistics and Physics
- College of Arts and Sciences
- Qatar University
- Doha 2713
| | | | | | - Maciej O. Liedke
- Institute of Radiation Physics
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden
- Germany
| | - Hany A. El-Sayed
- Department of Chemistry
- Technische Universität München
- Lichtenbergstrasse 4
- Garching
- Germany
| | - Amina S. AlJaber
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha 2713
- Qatar
| | - Ilham Y. Al-Qaradawi
- Department of Mathematics
- Statistics and Physics
- College of Arts and Sciences
- Qatar University
- Doha 2713
| | | | | |
Collapse
|
11
|
Electrochemical Engineering of Nanoporous Materials for Photocatalysis: Fundamentals, Advances, and Perspectives. Catalysts 2019. [DOI: 10.3390/catal9120988] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Photocatalysis comprises a variety of light-driven processes in which solar energy is converted into green chemical energy to drive reactions such as water splitting for hydrogen energy generation, degradation of environmental pollutants, CO2 reduction and NH3 production. Electrochemically engineered nanoporous materials are attractive photocatalyst platforms for a plethora of applications due to their large effective surface area, highly controllable and tuneable light-harvesting capabilities, efficient charge carrier separation and enhanced diffusion of reactive species. Such tailor-made nanoporous substrates with rational chemical and structural designs provide new exciting opportunities to develop advanced optical semiconductor structures capable of performing precise and versatile control over light–matter interactions to harness electromagnetic waves with unprecedented high efficiency and selectivity for photocatalysis. This review introduces fundamental developments and recent advances of electrochemically engineered nanoporous materials and their application as platforms for photocatalysis, with a final prospective outlook about this dynamic field.
Collapse
|