1
|
Li L, Gao X, Huang F, Miao L, Zhao G, Zhu Z. The Alkylation of Phenol with Methanol: The Influence of Acid-Base Properties of X Zeolite on the Selectivity of para- and meta-Cresol. Inorg Chem 2025; 64:11-24. [PMID: 39713983 DOI: 10.1021/acs.inorgchem.4c04101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The vapor-phase alkylation of phenol with methanol was investigated on X zeolites and modified X zeolites. First, the difference of product distribution was tested between acid zeolite (HZSM-5, HX, HMCM-22, and Hβ) and basic zeolite X (KX and CsX). Then, X zeolites were modified with Li, K, Cs, Ca, Mg, La, and Ce ion exchange to adjust the acid-base properties of the zeolites. Finally, the type of acid sites and strength of acid-base sites on zeolite catalysts were determined by characterization techniques such as Py-IR and TPD, and the alkylation of phenol with methanol was tested. The results showed that O-alkylation products convert to the C-alkylation products on the B acid sites, which enhances the isomerization reaction, thereby increasing the proportion of meta-cresol in cresol. The results of TPD and IR indicated that weak basic sites on the zeolite promote the vertical adsorption of the aromatic ring and strong basic sites promote side-chain activation, while acid sites determine whether ring substitution or side-chain substitution occurs. During the reaction of phenol with methanol, the phenolic hydroxyl group strongly interacts with the surface of zeolites, leading to differences in the adsorption mode of the aromatic ring (vertical or parallel), which, in turn, alters the position of alkyl substitution. It is found that the proper acid-base property of X zeolites can selectively determine the desired alkylated products.
Collapse
Affiliation(s)
- Lei Li
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xianlong Gao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Fangtao Huang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Lei Miao
- Guangzhou Institute for Food Inspection, Guangzhou 510410, Guangdong, P. R. China
| | - Guoqing Zhao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Zhirong Zhu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
2
|
Ma Q, Cheng J, Wu X, Xie J, Zhang R, Mao Z, Yang H, Fan W, Zeng J, Bitter JH, Li G, Li Z, Li C. C-C bond coupling with sp 3 C-H bond via active intermediates from CO 2 hydrogenation. Nat Commun 2025; 16:140. [PMID: 39747077 PMCID: PMC11697012 DOI: 10.1038/s41467-024-55640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Compared to the sluggish kinetics observed in methanol-mediated side-chain alkylation of methyl groups with sp3 C-H bonds, CO2 hydrogenation emerges as a sustainable alternative strategy, yet it remains a challenge. Here, as far as we know, it is first reported that using CO2 hydrogenation replacing methanol can conduct the side-chain alkylation of 4-methylpyridine (MEPY) over a binary metal oxide-zeolite Zn40Zr60O/CsX tandem catalyst (ZZO/CsX). This ZZO/CsX catalyst can achieve 19.6% MEPY single-pass conversion and 82% 4-ethylpyridine (ETPY) selectivity by using CO2 hydrogenation, which is 6.5 times more active than methanol as an alkylation agent. The excellent catalytic performance is realized on the basis of the dual functions of the tandem catalyst: hydrogenation of CO2 on the ZZO and activation of sp3 C-H bond and C-C bond coupling on the CsX zeolite. The thermodynamic and kinetic coupling between the tandem reactions enables the highly efficient CO2 hydrogenation and C-C bond coupling. In-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations suggest that the CHxO* (CH2O*) species, rather than methanol produced from CO2 hydrogenation, is the key intermediate to achieve the C-C bond coupling.
Collapse
Affiliation(s)
- Qianli Ma
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Jianian Cheng
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Xiaojing Wu
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Jin Xie
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Ruihui Zhang
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Zhihe Mao
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Hongfang Yang
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Wenjun Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China
| | - Johannes Hendrik Bitter
- Biobased chemistry and technology group, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Guanna Li
- Biobased chemistry and technology group, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| | - Zelong Li
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.
| | - Can Li
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
| |
Collapse
|
3
|
Hong Z, Deng L, Wang F, Zhu F, Fang Y, Song L, Li L, Zhu Z. Intergrowth MFI Zeolite with Inverse Al Zoning and Predominant Sinusoidal Channels for Highly Selective Production of Styrene. Inorg Chem 2024; 63:20888-20899. [PMID: 39425971 DOI: 10.1021/acs.inorgchem.4c03697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
ZSM-5 zeolites with accessible micropore architecture and tunable acid-base sites are important shape-selective catalysts. However, the presence of exposed straight channels and the external acid-base sites of conventional ZSM-5 has a negative impact on shape selectivity. Herein, we report on the direct synthesis of an intergrowth ZSM-5 zeolite mimicking the mortise-tenon joints. It can be revealed by various methods that the mortise-tenon ZSM-5 shows an inverse Al gradient from the surface to the core of the zeolite. More importantly, the sinusoidal channels predominantly opened to their external surfaces are constructed. The shape-selective capability of the ZSM-5 zeolite has been fully exploited due to the intrinsic inert external surface and unique sinusoidal channel features, thereby resulting in high styrene selectivity (>90%) and good catalytic stability (>100 h) in the toluene side-chain alkylation reaction. In addition, in situ DRIFTS confirms that this intergrowth ZSM-5 contributes to the formation of more active intermediates of HCOO* and H3CO*, which is another reason responsible for the superior performance.
Collapse
Affiliation(s)
- Zhe Hong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Lihua Deng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Fanglin Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Fangyu Zhu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Yingsen Fang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Li Song
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Zhirong Zhu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Kong Q, Jiang S, Wang Z, Xu X, Zhang R, Zhu G, Yang J, Han P, Liu R, Hong F, Luo N, Chen J, Yang B. Highly Stable Cesium Molybdenum Chloride Perovskite Nanocrystals for Photothermal Semihydrogenation Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35752-35760. [PMID: 38917413 DOI: 10.1021/acsami.4c05157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Metal halide perovskite materials with excellent carrier transport properties have been regarded as a new class of catalysts with great application potential. However, their development is hampered by their instability in polar solvents and high temperatures. Herein, we report a solution-processed Cs2MoCl6 perovskite nanocrystals (NCs) capped with the Mo6+, showing high thermostability in polar solvents. Furthermore, the Pd single atoms (PdSA) can be anchored on the surface of Cs2MoCl6 NCs through the unique coordination structure of Pd-Cl sites, which exhibit excellent semihydrogenation of different alkyne derivatives with high selectivity at full conversion at room temperature. Moreover, the activity could be improved greatly under Xe lamp irradiation. Detailed experimental characterization and DFT calculations indicate the improved activity under light illumination is due to the synergistic effect of photo-to-heat conversion and photoinduced electron transfer from Cs2MoCl6 to PdSA, which facilitates the activation of the C≡C group. This work not only provides a new catalyst for high selective semihydrogenation of alkyne derivatives but also opens a new avenue for metal halides as photothermal catalysts.
Collapse
Affiliation(s)
- Qingkun Kong
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shuchao Jiang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhongyi Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xin Xu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Guoqing Zhu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Junxia Yang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Peigeng Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Runze Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Feng Hong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Nengchao Luo
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Ko̷benhavn, Denmark
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
5
|
Hong Z, Wang X, Fang Y, Deng L, Li L, Zhu Z. Restructuring Surface Lewis Pairs of FAU Zeolite through N Doping for Boosting the Toluene Side-Chain Alkylation Performance. Inorg Chem 2024; 63:3258-3266. [PMID: 38320256 DOI: 10.1021/acs.inorgchem.3c03454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Toluene side-chain alkylation with methanol for the styrene monomer formation remains a great challenge. An optimal synergy between acidic and basic sites on zeolites is required for an efficient catalysis process. It is important to modulate the surface Lewis acid-base pairs precisely. Herein, we report a strategy to restructure the surface Lewis acid-base pairs in cesium-modified X zeolite (CsX) by N doping. In the process of toluene side-chain alkylation, the CsX-BN-600 catalyst, where N species is doped into the framework of the X zeolite, exhibits 2.7 times the styrene formation rate and a much better selectivity of 85.7% in comparison to the parent CsX of 70.1% selectivity to styrene at the same reaction conditions. The introduction of N species into zeolites acts as a new Lewis base site and optimizes the Lewis sites due to its ability of electron donation. Meanwhile, the frustrated Lewis pair (FLP) between the deprotonated framework nitrogen in X zeolite and positively polarized C species in the side-chain alkylation reaction is created. Furthermore, the N doping contributes to the generation of the active intermediates of HCOO* and H3CO*. These reasons favor the superiority of the catalyst through N doping.
Collapse
Affiliation(s)
- Zhe Hong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Xin Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Yingsen Fang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Lihua Deng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Zhirong Zhu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Wen Z, Cao F, Liu JB, Xue B. Shape-Selective Alkylation of Toluene with Dimethyl Carbonate into p-Xylene Over MgO/MCM-22 Prepared by a Novel Pre-impregnation Method. Catal Letters 2023. [DOI: 10.1007/s10562-023-04289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Ge G, Wei X, Guo H, Zhao Z. Assembly‐in‐Foam Approach to Construct Nanodiamond/Carbon Nanotube Hybrid Monolithic Carbocatalysts for Direct Dehydrogenation of Ethylbenzene to Styrene. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guifang Ge
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xiaojing Wei
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Hongchen Guo
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Zhongkui Zhao
- Dalian University of Technology Department of Catalysis Chemistry and Engineering No 2 Linggong Road 116024 Dalian CHINA
| |
Collapse
|
8
|
Li Z, Hu R, Ye S, Song J, Liu L, Qu J, Song W, Cao C. High-Performance Heterogeneous Thermocatalysis Caused by Catalyst Wettability Regulation. Chemistry 2022; 28:e202104588. [PMID: 35253287 DOI: 10.1002/chem.202104588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 01/11/2023]
Abstract
Catalyst wettability regulation has emerged as an attractive approach for high catalytic performance for the past few years. By introducing appropriate wettability, the molecule diffusion of reactants and products can be enhanced, leading to high activity. Besides this, undesired molecules are isolated for high selectivity of target products and long-term stability of catalyst. Herein, we summarize wettability-induced high-performance heterogeneous thermocatalysis in recent years, including hydrophilicity, hydrophobicity, hybrid hydrophilicity-hydrophobicity, amphiphilicity, and superaerophilicity. Relevant reactions are further classified and described according to the reason for the performance improvement. It should be pointed out that studies of utilizing superaerophilicity to improve heterogeneous thermocatalytic performance have been included for the first time, so this is a comparatively comprehensive review in this field as yet.
Collapse
Affiliation(s)
- Zhaohua Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.,Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shuai Ye
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russian Federation
| | - Weiguo Song
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
9
|
Ran Z, Shao X, Mushtaq MA, Du X, Liu H, Hou S, Ji S. Preparation of Cs/Cu-LDO@X catalysts and reaction mechanism of the side-chain alkylation of toluene to styrene. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Methanol Steam Reforming on Bimetallic Catalysts Based on In and Nb Doped Titania or Zirconia: A Support Effect. Processes (Basel) 2021. [DOI: 10.3390/pr10010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methanol steam reforming (MSR) is considered an effective method for hydrogen storage and to generate high-quality hydrogen for fuel cells. In this work, a comprehensive investigation of the methanol steam reforming process using a bimetallic Pt–Rh and Cu–Ni based on different oxide supports is presented. Highly dispersed titania and zirconia doped with indium and niobium ions were synthesized by sol–gel method. The effect of the nature and quantity of the dopant cation (In, Nb) on the catalytic performance of titania supported metal catalysts was investigated. The conclusions obtained show a significant effect of both the metal alloy and the oxide support nature on the activity and selectivity of the methanol steam reforming process. Pt–Rh alloy catalyst shows higher hydrogen yield, but its selectivity in the MSR process is lower than for the catalysts containing the Cu0.8-Ni0.2 alloy. Heterovalent indium doping of titania leads to the catalytic activity increase. It was suggested that this is due to the defects formation in the oxygen TiO2 sublattice. On the contrary, the use of niobium oxide as a dopant decreases the catalyst activity in the methanol steam reforming process but leads to the selectivity increase in the studied process.
Collapse
|
11
|
Luo Z, Wan Q, Yu Z, Lin S, Xie Z, Wang X. Photo-fluorination of nanodiamonds catalyzing oxidative dehydrogenation reaction of ethylbenzene. Nat Commun 2021; 12:6542. [PMID: 34764285 PMCID: PMC8586349 DOI: 10.1038/s41467-021-26891-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022] Open
Abstract
Styrene is one of the most important industrial monomers and is traditionally synthesized via the dehydrogenation of ethylbenzene. Here, we report a photo-induced fluorination technique to generate an oxidative dehydrogenation catalyst through the controlled grafting of fluorine atoms on nanodiamonds. The obtained catalyst has a fabulous performance with ethylbenzene conversion reaching 70% as well as styrene yields of 63% and selectivity over 90% on a stream of 400 °C, which outperforms other equivalent benchmarks as well as the industrial K-Fe catalysts (with a styrene yield of 50% even at a much higher temperature of ca. 600 °C). Moreover, the yield of styrene remains above 50% after a 500 h test. Experimental characterizations and density functional theory calculations reveal that the fluorine functionalization not only promotes the conversion of sp3 to sp2 carbon to generate graphitic layers but also stimulates and increases the active sites (ketonic C=O). This photo-induced surface fluorination strategy facilitates innovative breakthroughs on the carbocatalysis for the oxidative dehydrogenation of other arenes.
Collapse
Affiliation(s)
- Zhishan Luo
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Qiang Wan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Zailai Xie
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China.
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China.
| |
Collapse
|
12
|
Han H, Liu M, Yang H, Shi C, Xu S, Wei Y, Liu Z, Song C, Guo X. Effects of the Pore Structure and Acid–Base Property of X Zeolites on Side-Chain Alkylation of Toluene with Methanol. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- He Han
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024, P.R. China
| | - Min Liu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024, P.R. China
| | - Hong Yang
- Department of Mechanical Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Chuan Shi
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024, P.R. China
| | - Shutao Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning Province 116023, P.R. China
| | - Yingxu Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning Province 116023, P.R. China
| | - Zhongmin Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning Province 116023, P.R. China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024, P.R. China
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong 999077, P.R. China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024, P.R. China
| |
Collapse
|
13
|
Hattori H, Aitani AM. Catalytic and Mechanistic Insights into Side‐Chain Alkenylation of Toluene with Methanol for Styrene Formation. ChemistrySelect 2021. [DOI: 10.1002/slct.202101342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hideshi Hattori
- Center for Refining & Advanced Chemicals King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
- Professor Emeritus Hokkaido University 5-10-2-3, Nishino Nishi-ku, Sapporo 063-0035 Japan
| | - Abdullah M. Aitani
- Center for Refining & Advanced Chemicals King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| |
Collapse
|
14
|
Hong Z, Wang X, Huang F, Miao L, Huang Y, Zhu Z. Highly dispersed Pt nanoparticles in the Cs-modified X zeolite with enhancement for toluene side-chain alkylation with methanol. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02002h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Modification of Cs/X with highly dispersed Pt NPs improved the activity and durability in the side-chain alkylation of toluene.
Collapse
Affiliation(s)
- Zhe Hong
- School of Chemical Science and Engineering
- TongJi University
- Shanghai
- PR China
| | - Xiaoxia Wang
- School of Chemical Science and Engineering
- TongJi University
- Shanghai
- PR China
| | - Fangtao Huang
- School of Chemical Science and Engineering
- TongJi University
- Shanghai
- PR China
| | - Lei Miao
- School of Chemical Science and Engineering
- TongJi University
- Shanghai
- PR China
| | - Yanqing Huang
- School of Chemical Science and Engineering
- TongJi University
- Shanghai
- PR China
| | - Zhirong Zhu
- School of Chemical Science and Engineering
- TongJi University
- Shanghai
- PR China
| |
Collapse
|
15
|
Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem Rev 2020; 120:11703-11809. [PMID: 33085890 DOI: 10.1021/acs.chemrev.0c00576] [Citation(s) in RCA: 394] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.
Collapse
Affiliation(s)
- Selina K Kaiser
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Zupeng Chen
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Dario Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
16
|
Li P, Han Q, Yuan Y, Zhang X, Guo H, Xu L. The role of boron sites in side-chain alkylation of toluene with methanol and a high performance composite catalyst. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00232a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method and key factors for preparing high performance catalysts for side-chain alkylation of toluene with methanol were developed and proposed.
Collapse
Affiliation(s)
- Peidong Li
- National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- People's Republic of China
| | - Qiao Han
- National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- People's Republic of China
| | - Yangyang Yuan
- National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- People's Republic of China
| | - Xiaomin Zhang
- National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- People's Republic of China
| | - Hongchen Guo
- Department of Catalytic Chemistry and Engineering & State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116012
- People's Republic of China
| | - Lei Xu
- National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- People's Republic of China
| |
Collapse
|
17
|
Busca G, Gervasini A. Solid acids, surface acidity and heterogeneous acid catalysis. ADVANCES IN CATALYSIS 2020. [DOI: 10.1016/bs.acat.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|