1
|
Chen L, Tang H, Hu T, Wang J, Ouyang Q, Zhu X, Wang R, Huang W, Huang Z, Chen J. Three Ru(II) complexes modulate the antioxidant transcription factor Nrf2 to overcome cisplatin resistance. J Inorg Biochem 2024; 259:112666. [PMID: 39029397 DOI: 10.1016/j.jinorgbio.2024.112666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Here, we designed, synthesized and characterized three new cyclometalated Ru(II) complexes, [Ru(phen)2(1-(4-Ph-Ph)-IQ)]+ (phen = 1,10-phenanthroline, IQ = isoquinoline, RuIQ9), [Ru(phen)2(1-(4-Ph-Ph)-7-OCH3-IQ)]+ (RuIQ10), and [Ru(phen)2(1-(4-Ph-Ph)-6,7-(OCH3)2-IQ)]+ (RuIQ11). The cytotoxicity experiments conducted on both 2D and 3D multicellular tumor spheroids (MCTSs) indicated that complexes RuIQ9-11 exhibited notably higher cytotoxicity against A549 and A549/DDP cells when compared to the ligands and precursor compounds as well as clinical cisplatin. Moreover, the Ru(II) complexes displayed low toxicity when tested on normal HBE cells in vitro and exposed to zebrafish embryos in vivo. In addition, complexes RuIQ9-11 could inhibit A549 and A549/DDP cell migration and proliferation by causing cell cycle arrest, mitochondrial dysfunction, and elevating ROS levels to induce apoptosis in these cells. Mechanistic studies revealed that RuIQ9-11 could suppress the expression of Nrf2 and its downstream antioxidant protein HO-1 by inhibiting Nrf2 gene transcription in drug-resistant A549/DDP cells. Simultaneously, they inhibited the expression of efflux proteins MRP1 and p-gp in drug-resistant cells, ensuring the accumulation of the complexes within the cells. This led to an increase in intracellular ROS levels in drug-resistant cells, ultimately causing damage and cell death, thus overcoming cisplatin resistance. More importantly, RuIQ11 could effectively inhibit the migration and proliferation of drug-resistant cells within zebrafish, addressing the issue of cisplatin resistance. Accordingly, the prepared Ru(II) complexes possess significant potential for development as highly effective and low-toxicity lung cancer therapeutic agents to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Lanmei Chen
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China
| | - Hong Tang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Tianling Hu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jie Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Qianqian Ouyang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Xufeng Zhu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Rui Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wenyong Huang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zunnan Huang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China.
| | - Jincan Chen
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China.
| |
Collapse
|
2
|
Synergy of ruthenium metallo-intercalator, [Ru(dppz) 2(PIP)] 2+, with PARP inhibitor Olaparib in non-small cell lung cancer cells. Sci Rep 2023; 13:1456. [PMID: 36702871 PMCID: PMC9879939 DOI: 10.1038/s41598-023-28454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) are critical DNA repair enzymes that are activated as part of the DNA damage response (DDR). Although inhibitors of PARP (PARPi) have emerged as small molecule drugs and have shown promising therapeutic effects, PARPi used as single agents are clinically limited to patients with mutations in germline breast cancer susceptibility gene (BRCA). Thus, novel PARPi combination strategies may expand their usage and combat drug resistance. In recent years, ruthenium polypyridyl complexes (RPCs) have emerged as promising anti-cancer candidates due to their attractive DNA binding properties and distinct mechanisms of action. Previously, we reported the rational combination of the RPC DNA replication inhibitor [Ru(dppz)2(PIP)]2+ (dppz = dipyrido[3,2-a:2',3'-c]phenazine, PIP = 2-(phenyl)-imidazo[4,5-f][1,10]phenanthroline), "Ru-PIP", with the PARPi Olaparib in breast cancer cells. Here, we expand upon this work and examine the combination of Ru-PIP with Olaparib for synergy in lung cancer cells, including in 3D lung cancer spheroids, to further elucidate mechanisms of synergy and additionally assess toxicity in a zebrafish embryo model. Compared to single agents alone, Ru-PIP and Olaparib synergy was observed in both A549 and H1975 lung cancer cell lines with mild impact on normal lung fibroblast MRC5 cells. Employing the A549 cell line, synergy was confirmed by loss in clonogenic potential and reduced migration properties. Mechanistic studies indicated that synergy is accompanied by increased double-strand break (DSB) DNA damage and reactive oxygen species (ROS) levels which subsequently lead to cell death via apoptosis. Moreover, the identified combination was successfully able to inhibit the growth of A549 lung cancer spheroids and acute zebrafish embryos toxicity studies revealed that this combination showed reduced toxicity compared to single-agent Ru-PIP.
Collapse
|
3
|
Fathy MM, Saad OA, Elshemey WM, Fahmy HM. Dose-enhancement of MCF 7 cell line radiotherapy using silica-iron oxide nanocomposite. Biochem Biophys Res Commun 2022; 632:100-106. [PMID: 36206593 DOI: 10.1016/j.bbrc.2022.09.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Cancer radiotherapy is one of the most effective regimens of cancer treatments, but cancer cell radioresistance remains a concern. Radiosensitizers can selectively improve the efficacy of radiotherapy and reduce inherent damage. The purpose of this work is to evaluate the effect of silica-coated iron oxide magnetic nanoparticles (SIONPs) as a radiosensitizer and compare their therapeutic effect with that of Iron oxide magnetic nanoparticles (IONPs). IONPs and SIONPs were characterized using several physical techniques such as a transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM). MTT and DNA double-strand breaks (Comet) assays have been used to detect the cytotoxicity, cell viability, and DNA damage of MCF-7 cells, which were treated with different concentrations of prepared nanoparticles and exposed to an X-ray beam. In this study, an efficient radiosensitizer, SIONPs, was successfully prepared and characterized. With 0.5 Gy dose, dose enhancement factor (DEF) values of cells treated with 5 and 10 μg/ml of IONPs were 1 and 1.09, respectively, while those treated with SIONPs at these concentrations had DEF of 1.21 and 1.32, respectively. Results demonstrated that SIONPs provide a potential for improving the radiosensitivity of breast cancer.
Collapse
|
4
|
Wang L, Liu L, Wang X, Tan Y, Duan X, Zhang C, Cheng J, Xiong Y, Jiang G, Wang J, Liao X. Ruthenium(II) complexes targeting membrane as biofilm disruptors and resistance breakers in Staphylococcus aureus bacteria. Eur J Med Chem 2022; 238:114485. [DOI: 10.1016/j.ejmech.2022.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
|
5
|
Li J, Chen T. Transition metal complexes as photosensitizers for integrated cancer theranostic applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213355] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Huang W, Chen Z, Hou L, Feng P, Li Y, Chen T. Adjusting the lipid-water distribution coefficient of iridium(III) complexes to enhance the cellular penetration and treatment efficacy to antagonize cisplatin resistance in cervical cancer. Dalton Trans 2020; 49:11556-11564. [PMID: 32716436 DOI: 10.1039/d0dt02064h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effective design of metal complexes to manipulate their lipid-water distribution coefficient is an appealing strategy for improving their cellular penetration and treatment efficacy. Here, we conveniently synthesized three iridium (Ir) complexes with red fluorescence via the simple non-conjugate modification of the side arm of the ligand. Bio-evaluation revealed that upon adding non-conjugate selenium (Se) arene derivatives, the lipid-water distribution coefficient of Ir-Se was found to be suitable, not only decreasing the toxic side effects of complexes to normal cells, but also effectively improving their anticancer activity via enhancing their penetration into tumor cells. Moreover, mechanistic investigations demonstrated that Ir-Se entered R-HeLa cells through endocytosis, and triggered apoptosis via the down-regulation of the mitochondrial membrane potential and excessive production of singlet oxygen, thereby possessing a highly effective cytotoxicity to antagonize cisplatin resistance. Therefore, we developed a convenient strategy to derive functional metal complexes and revealed that the introduction of Se on the side arm of the ligand provided the complexes with the capacity to reverse multidrug resistance.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Zhen Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Liyuan Hou
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Yiqun Li
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Denkova AG, Liu H, Men Y, Eelkema R. Enhanced Cancer Therapy by Combining Radiation and Chemical Effects Mediated by Nanocarriers. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Antonia G. Denkova
- Department of Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Huanhuan Liu
- Department of Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Yongjun Men
- Department of Chemical EngineeringDelft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Rienk Eelkema
- Department of Chemical EngineeringDelft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
8
|
Radiosensitive core/satellite ternary heteronanostructure for multimodal imaging-guided synergistic cancer radiotherapy. Biomaterials 2019; 226:119545. [PMID: 31648136 DOI: 10.1016/j.biomaterials.2019.119545] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 01/06/2023]
Abstract
Developing safe, effective and targeting radiosensitizers with clear action mechanisms to achieve synergistic localized cancer treatment is an important strategy for radiotherapy. Herein, we design and synthesize a ternary heteronanostructure radiosensitizer (SeAuFe-EpC) with core/satellite morphology by a simple method to realize multimodal imaging-guided cancer radiotherapy. The mechanistic studies reveal that Se incorporation could drastically improve the electrical conductivity and lower the energy barrier between the three components, resulting in more electrons transfer between Se-Au interface and migration over the heterogeneous junction of Au-Fe3O4 NPs interface. This synergistic interaction enhanced the energy transfer and facilitated more excited excitons generated by SeAuFe-EpC NPs, thus promoting the transformation of 3O2 to 1O2via resonance energy transfer, finally resulting in irreversible cancer cell apoptosis. Additionally, based on the X-ray attenuation ability and high NIR absorption of AuNPs and the superparamagnetism of Fe3O4, in vivo computer tomography, photoacoustic and magnetic resonance tri-modal imaging have been employed to visualize the tracking and targeting ability of the NPs. As expected, the NPs specifically accumulated in orthotopic breast tumor area and achieved synergistic anticancer efficacy, but showed no toxic side effects on main organs. Collectively, this study sheds light on the potential roles of core/satellite heteronanostructure in imaging-guided cancer radiotherapy.
Collapse
|
9
|
Liu J, Lai H, Xiong Z, Chen B, Chen T. Functionalization and cancer-targeting design of ruthenium complexes for precise cancer therapy. Chem Commun (Camb) 2019; 55:9904-9914. [PMID: 31360938 DOI: 10.1039/c9cc04098f] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The successful clinical application of the three generation platinum anticancer drugs, cisplatin, carboplatin and oxaliplatin, has promoted research interest in metallodrugs; however, the problems of drug resistance and adverse effects have hindered their further application and effects. Thus, scientists are searching for new anticancer metallodrugs with lower toxicity and higher efficacy. The ruthenium complexes have emerged as the most promising alternatives to platinum-based anticancer agents because of their unique multifunctional biochemical properties. In this review, we first focus on the anticancer applications of various ruthenium complexes in different signaling pathways, including the mitochondria-mediated pathway, the DNA damage-mediated pathway, and the death receptor-mediated pathway. We then discuss the functionalization and cancer-targeting designs of different ruthenium complexes in conjunction with other therapies such as photodynamic therapy, photothermal therapy, radiosensitization, targeted therapy and nanotechnology for precise cancer therapy. This review will help in designing and accelerating the research progress regarding new anticancer ruthenium complexes.
Collapse
Affiliation(s)
- Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou 510120, China
| | | | | | | | | |
Collapse
|