1
|
Jayasankar G, Koilpillai J, Narayanasamy D. A Systematic Study on Long-acting Nanobubbles: Current Advancement and Prospects on Theranostic Properties. Adv Pharm Bull 2024; 14:278-301. [PMID: 39206408 PMCID: PMC11347731 DOI: 10.34172/apb.2024.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 09/04/2024] Open
Abstract
Delivery of diagnostic drugs via nanobubbles (NBs) has shown to be an emerging field of study. Due to their small size, NBs may more easily travel through constricted blood vessels and precisely target certain bodily parts. NB is considered the major treatment for cancer treatment and other diseases which are difficult to diagnose. The field of NBs is dynamic and continues to grow as researchers discover new properties and seek practical applications in various fields. The predominant usage of NBs in novel drug delivery is to enhance the bioavailability, and controlled drug release along with imaging properties NBs are important because they may change interfacial characteristics including surface force, lubrication, and absorption. The quick diffusion of gas into the water was caused by a hypothetical film that was stimulated and punctured by a strong acting force at the gas/water contact of the bubble. In this article, various prominent aspects of NBs have been discussed, along with the long-acting nature, and the theranostical aspect which elucidates the potential marketed drugs along with clinical trial products. The article also covers quality by design aspects, different production techniques that enable method-specific therapeutic applications, increasing the floating time of the bubble, and refining its properties to enhance the prepared NB's quality. NB containing both analysis and curing properties makes it special from other nano-carriers. This work includes all the possible methods of preparing NB, its application, all marketed drugs, and products in clinical trials.
Collapse
Affiliation(s)
| | | | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institution of Science and Technology, Kattankulathur, Chengalpattu, India
| |
Collapse
|
2
|
Das N, Bora B, Upadhyay A, Das D, Bera A, Goswami TK. Cu(II) flavonoids as potential photochemotherapeutic agents. Dalton Trans 2024; 53:3316-3329. [PMID: 38260975 DOI: 10.1039/d3dt02663a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Flavonoids, naturally derived polyphenolic compounds, have received significant attention due to their remarkable biochemical properties that offer substantial health benefits to humans. In this work, a series of six Cu(II) flavonoid complexes of the formulation [Cu(L1)(L2)](ClO4) where L1 is 3-hydroxy flavone (HF1, 1 and 4), 4-fluoro-3-hydroxy flavone (HF2, 2 and 5), and 2,6-difluoro-3-hydroxy flavone (HF3, 3 and 6); L2 is 1,10-phenanthroline (phen, 1-3) and 2-(anthracen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (aip, 4-6) were successfully synthesized, fully characterized and also evaluated for their in vitro photo-triggered cytotoxicity in cancer cells. The single-crystal X-ray diffraction structure of complex 2 shows square pyramidal geometry around the Cu(II) center. The complexes 1-6 showed quasi-reversible cyclic voltammetric responses for the Cu(II)/Cu(I) couple at ∼-0.230 V with a very large ΔEp value of ∼350-480 mV against the Ag/AgCl reference electrode in DMF-0.1 M tetrabutylammonium perchlorate (TBAP) at a scan rate of 50 mV s-1. The complexes were found to have considerable binding propensity for human serum albumin (HSA) and calf thymus DNA (ct-DNA). The complexes displayed remarkable dose-dependent photocytotoxicity in visible light (400-700 nm) in both A549 (human lung cancer) and MCF-7 (human breast cancer) cell lines while remaining significantly less toxic in darkness. They were found to be much less toxic to HPL1D (immortalized human peripheral lung epithelial) normal cells compared to A549 and MCF-7 cancer cells. Upon exposure to visible light, they generate reactive oxygen species, which are thought to be the main contributors to the death of cancer cells. In the presence of visible light, the complexes predominantly elicit an apoptotic mode of cell death. Complex 6 preferentially localizes in the mitochondria of A549 cells.
Collapse
Affiliation(s)
- Namisha Das
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India.
| | - Bidisha Bora
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India.
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Dhananjay Das
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India.
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Tridib K Goswami
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India.
| |
Collapse
|
3
|
Zou J. Site-specific delivery of cisplatin and paclitaxel mediated by liposomes: A promising approach in cancer chemotherapy. ENVIRONMENTAL RESEARCH 2023; 238:117111. [PMID: 37734579 DOI: 10.1016/j.envres.2023.117111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
The site-specific delivery of drugs, especially anti-cancer drugs has been an interesting field for researchers and the reason is low accumulation of cytotoxic drugs in cancer cells. Although combination cancer therapy has been beneficial in providing cancer drug sensitivity, targeted delivery of drugs appears to be more efficient. One of the safe, biocompatible and efficient nano-scale delivery systems in anti-cancer drug delivery is liposomes. Their particle size is small and they have other properties such as adjustable physico-chemical properties, ease of functionalization and high entrapment efficiency. Cisplatin is a chemotherapy drug with clinical approval in patients, but its accumulation in cancer cells is low due to lack of targeted delivery and repeated administration results in resistance development. Gene and drug co-administration along with cisplatin/paclitaxel have resulted in increased sensitivity in tumor cells, but there is still space for more progress in cancer therapy. The delivery of cisplatin/paclitaxel by liposomes increases accumulation of drug in tumor cells and impairs activity of efflux pumps in promoting cytotoxicity. Moreover, phototherapy along with cisplatin/paclitaxel delivery can increase potential in tumor suppression. Smart nanoparticles including pH-sensitive nanoparticles provide site-specific delivery of cisplatin/paclitaxel. The functionalization of liposomes can be performed by ligands to increase targetability towards tumor cells in mediating site-specific delivery of cisplatin/paclitaxel. Finally, liposomes can mediate co-delivery of cisplatin/paclitaxel with drugs or genes in potentiating tumor suppression. Since drug resistance has caused therapy failure in cancer patients, and cisplatin/paclitaxel are among popular chemotherapy drugs, delivery of these drugs mediates targeted suppression of cancers and prevents development of drug resistance. Because of biocompatibility and safety of liposomes, they are currently used in clinical trials for treatment of cancer patients. In future, the optimal dose of using liposomes and optimal concentration of loading cisplatin/paclitaxel on liposomal nanocarriers in clinical trials should be determined.
Collapse
Affiliation(s)
- Jianyong Zou
- Department of Thoracic Surgery, The first Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, PR China.
| |
Collapse
|
4
|
Abeydeera N, Stilgenbauer M, Pant BD, Mudarmah K, Dassanayake TM, Zheng YR, Huang SD. Lipophilic Fe(III)-Complex with Potent Broad-Spectrum Anticancer Activity and Ability to Overcome Pt Resistance in A2780cis Cancer Cells. Molecules 2023; 28:4917. [PMID: 37446578 DOI: 10.3390/molecules28134917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Although iron is essential for all forms of life, it is also potentially toxic to cells as the increased and unregulated iron uptake can catalyze the Fenton reaction to produce reactive oxygen species (ROS), leading to lipid peroxidation of membranes, oxidation of proteins, cleavage of DNA and even activation of apoptotic cell death pathways. We demonstrate that Fe(hinok)3 (hinok = 2-hydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one), a neutral Fe(III) complex with high lipophilicity is capable of bypassing the regulation of iron trafficking to disrupt cellular iron homeostasis; thus, harnessing remarkable anticancer activity against a panel of five different cell lines, including Pt-sensitive ovarian cancer cells (A2780; IC50 = 2.05 ± 0.90 μM or 1.20 μg/mL), Pt-resistant ovarian cancer cells (A2780cis; IC50 = 0.92 ± 0.73 μM or 0.50 μg/mL), ovarian cancer cells (SKOV-3; IC50 = 1.23 ± 0.01 μM or 0.67 μg/mL), breast cancer cells (MDA-MB-231; IC50 = 3.83 ± 0.12 μM or 2.0 μg/mL) and lung cancer cells (A549; IC50 = 1.50 ± 0.32 μM or 0.82 μg/mL). Of great significance is that Fe(hinok)3 exhibits unusual selectivity toward the normal HEK293 cells and the ability to overcome the Pt resistance in the Pt-resistant mutant ovarian cancer cells of A2780cis.
Collapse
Affiliation(s)
- Nalin Abeydeera
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Morgan Stilgenbauer
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Bishnu D Pant
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Khalil Mudarmah
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
- Department of Chemistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Thiloka M Dassanayake
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Songping D Huang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
5
|
Jogadi W, Zheng YR. Supramolecular platinum complexes for cancer therapy. Curr Opin Chem Biol 2023; 73:102276. [PMID: 36878171 PMCID: PMC10033446 DOI: 10.1016/j.cbpa.2023.102276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
The rise of supramolecular chemistry offers new tools to design therapeutics and delivery platforms for biomedical applications. This review aims to highlight the recent developments that harness host-guest interactions and self-assembly to design novel supramolecular Pt complexes as anticancer agents and drug delivery systems. These complexes range from small host-guest structures to large metallosupramolecules and nanoparticles. These supramolecular complexes integrate the biological properties of Pt compounds and novel supramolecular structures, which inspires new designs of anticancer approaches that overcome problems in conventional Pt drugs. Based on the differences in Pt cores and supramolecular structures, this review focuses on five different types of supramolecular Pt complexes, and they include host-guest complexes of the FDA-approved Pt(II) drugs, supramolecular complexes of nonclassical Pt(II) metallodrugs, supramolecular complexes of fatty acid-like Pt(IV) prodrugs, self-assembled nanotherapeutics of Pt(IV) prodrugs, and self-assembled Pt-based metallosupramolecules.
Collapse
Affiliation(s)
- Wjdan Jogadi
- 236 Integrated Sciences Building, Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Yao-Rong Zheng
- 236 Integrated Sciences Building, Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
6
|
Momeni BZ, Abd-El-Aziz AS. Recent advances in the design and applications of platinum-based supramolecular architectures and macromolecules. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Migliaccio V, Blal N, De Girolamo M, Mastronardi V, Catalano F, Di Gregorio I, Lionetti L, Pompa PP, Guarnieri D. Inter-Organelle Contact Sites Mediate the Intracellular Antioxidant Activity of Platinum Nanozymes: A New Perspective on Cell-Nanoparticle Interaction and Signaling. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3882-3893. [PMID: 36629473 PMCID: PMC9880958 DOI: 10.1021/acsami.2c22375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/30/2022] [Indexed: 05/25/2023]
Abstract
The catalytic and antioxidant properties of platinum nanoparticles (PtNPs) make them promising candidates for several applications in nanomedicine. However, an open issue, still shared among most nanomaterials, is the understanding on how internalized PtNPs, which are confined within endo-lysosomal compartments, can exert their activities. To address this problem, here we study the protective effect of 5 nm PtNPs on a human hepatic (HepG2) cell line exposed to dichlorodiphenylethylene (DDE) as a model of oxidative stress. Our results indicate that PtNPs are very efficient to reduce DDE-induced damage in HepG2 cells, in an extent that depends on DDE dose. PtNPs can contrast the unbalance of mitochondrial dynamics induced by DDE and increase the expression of the SOD2 mitochondrial enzyme that recovers cells from oxidative stress. Interestingly, in cells treated with PtNPs─alone or in combination with DDE─mitochondria form contact sites with a rough endoplasmic reticulum and endo-lysosomes containing nanoparticles. These findings indicate that the protective capability of PtNPs, through their intrinsic antioxidant properties and modulating mitochondrial functionality, is mediated by an inter-organelle crosstalk. This study sheds new light about the protective action mechanisms of PtNPs and discloses a novel nano-biointeraction mechanism at the intracellular level, modulated by inter-organelle communication and signaling.
Collapse
Affiliation(s)
- Vincenzo Migliaccio
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Naym Blal
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Micaela De Girolamo
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Valentina Mastronardi
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia (IIT), Via Morego 30, Genova 16163, Italy
| | - Federico Catalano
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia (IIT), Via Morego 30, Genova 16163, Italy
| | - Ilaria Di Gregorio
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Lillà Lionetti
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia (IIT), Via Morego 30, Genova 16163, Italy
| | - Daniela Guarnieri
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| |
Collapse
|
8
|
Niculescu AG, Grumezescu AM. Polymer-Based Nanosystems-A Versatile Delivery Approach. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6812. [PMID: 34832213 PMCID: PMC8619478 DOI: 10.3390/ma14226812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Polymer-based nanoparticles of tailored size, morphology, and surface properties have attracted increasing attention as carriers for drugs, biomolecules, and genes. By protecting the payload from degradation and maintaining sustained and controlled release of the drug, polymeric nanoparticles can reduce drug clearance, increase their cargo's stability and solubility, prolong its half-life, and ensure optimal concentration at the target site. The inherent immunomodulatory properties of specific polymer nanoparticles, coupled with their drug encapsulation ability, have raised particular interest in vaccine delivery. This paper aims to review current and emerging drug delivery applications of both branched and linear, natural, and synthetic polymer nanostructures, focusing on their role in vaccine development.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov no. 3, 50044 Bucharest, Romania
| |
Collapse
|
9
|
Zhang Y, Yan X, Shi L, Cen M, Wang J, Ding Y, Yao Y. Platinum(II) Metallatriangle: Construction, Coassembly with Polypeptide, and Application in Combined Cancer Photodynamic and Chemotherapy. Inorg Chem 2021; 60:7627-7631. [PMID: 33974406 DOI: 10.1021/acs.inorgchem.1c00962] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The development of the supramolecular coordination complex with different shapes and dimensionalities lays the basis for its application in different areas. In this study, a porphyrin-based 3D organo-Pt(II) metallatriangle (MTA) was fabricated through the reported method termed as "coordination driven self-assembly". 31P NMR, 1H NMR, HR-MS, and theoretical calculation were employed to characterize the resultant MTA fully. Furthermore, the fabricated nanocomposite through coassembly of MTA and an amphiphilic polypeptide (PEG-PPT) could generate singlet oxygen (1O2) under the NIR irradiation and release a Pt drug under a low-pH microenvironment. 1O2 and the Pt drug can both damage the cancer cells, which improves the efficiency of cancer therapies. The fabrication of a Pt-porphyrin metallatriangle expands the topological structures, and the Pt-porphyrin metallatriangle can be applied to the combined cancer therapies. Moreover, various stimuli-responsive groups can be modified to the triangle, so a new method is created to develop high-performance biosupramolecular materials.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Xin Yan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Ling Shi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Moupan Cen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P.R. China
| |
Collapse
|
10
|
Jayawardhana AMDS, Stilgenbauer M, Datta P, Qiu Z, Mckenzie S, Wang H, Bowers D, Kurokawa M, Zheng YR. Fatty acid-like Pt(IV) prodrugs overcome cisplatin resistance in ovarian cancer by harnessing CD36. Chem Commun (Camb) 2020; 56:10706-10709. [PMID: 32789350 DOI: 10.1039/d0cc02174a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Resistance to the platinum-based chemotherapy drug, cisplatin, is a significant setback in ovarian cancer. We engineered fatty acid-like Pt(iv) prodrugs that harness the fatty acid transporter CD36 to facilitate their entry to ovarian cancer cells. We show that these novel constructs effectively kill cisplatin-resistant ovarian cancer cells.
Collapse
|