1
|
McNaughter PD, Moore J, Yeates SG, Lewis DJ. Semiconductor Deposition via Laser Printing of a Bespoke Toner Containing Metal Xanthate Complexes. ACS APPLIED ENGINEERING MATERIALS 2024; 2:1225-1233. [PMID: 38808267 PMCID: PMC11129185 DOI: 10.1021/acsaenm.3c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 05/30/2024]
Abstract
A methodology to use laser printing, a form of electrophotography, to print metal chalcogenide complexes on paper, is described. After fusing the toner to paper, a heating step is used to cause the printed metal xanthate complexes to thermolyze within the toner and form three target metal chalcogenides: CuS, SnS, and ZnS. To achieve this, we synthesize a poly(styrene-co-n-butyl acrylate) thermopolymer that emulates the thermal properties of a commercial toner and is also solution processable with the metal xanthate complexes used: [Zn(S2COEt)2], [Cu(S2COEt)·(PPh3)2], and [Sn(S2COEt)2]. We demonstrate through energy dispersive X-ray mapping that the toner is deposited following printing and that thermolysis of the metal xanthate complexes occurs in the fused toner, demonstrating the first example of laser printing of inorganic complexes and, in turn, semiconductors.
Collapse
Affiliation(s)
- Paul D. McNaughter
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Joshua Moore
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Stephen G. Yeates
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - David J. Lewis
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
2
|
Alanazi A, McNaughter PD, Alam F, Vitorica-yrezabal IJ, Whitehead GFS, Tuna F, O’Brien P, Collison D, Lewis DJ. Structural Investigations of α-MnS Nanocrystals and Thin Films Synthesized from Manganese(II) Xanthates by Hot Injection, Solvent-Less Thermolysis, and Doctor Blade Routes. ACS OMEGA 2021; 6:27716-27725. [PMID: 34722972 PMCID: PMC8552351 DOI: 10.1021/acsomega.1c02907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Manganese(II) xanthate complexes of the form [Mn(S2COR)2(TMEDA)], where TMEDA = tetramethylethylenediamine and R = methyl (1), ethyl (2), n-propyl (3), n-butyl (4), n-pentyl (5), n-hexyl (6), and n-octyl (7), have been synthesized and structures elucidated using single-crystal X-ray diffraction. Complexes 1-7 were used as molecular precursors to synthesize manganese sulfide (MnS). Olelyamine-capped nanocrystals have been produced via hot injection, while the doctor blading followed by thermolysis yielded thick films. Free-standing polycrystalline powders of MnS are produced by direct thermolysis of precursor powders. All thermolysis techniques produced cubic MnS, as confirmed by powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy. Magnetic measurements reveal that the α-MnS nanocrystals exhibit ferromagnetic behavior with a large coercive field strength (e.g., 0.723 kOe for 6.8 nm nanocrystals).
Collapse
Affiliation(s)
- Abdulaziz
M. Alanazi
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Paul D. McNaughter
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Firoz Alam
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - George F. S. Whitehead
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Floriana Tuna
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Paul O’Brien
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David Collison
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David J. Lewis
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
3
|
Alharbi YT, Alam F, Salhi A, Missous M, Lewis DJ. Direct synthesis of nanostructured silver antimony sulfide powders from metal xanthate precursors. Sci Rep 2021; 11:3053. [PMID: 33542323 PMCID: PMC7862388 DOI: 10.1038/s41598-021-82446-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/18/2021] [Indexed: 11/08/2022] Open
Abstract
Silver(I) ethylxanthate [AgS2COEt] (1) and antimony(III) ethylxanthate [Sb(S2COEt)3] (2) have been synthesised, characterised and used as precursors for the preparation of AgSbS2 powders and thin films using a solvent-free melt method and spin coating technique, respectively. The as-synthesized AgSbS2 powders were characterized by powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. The crystalline AgSbS2 powder was investigated using XRD, which shows that AgSbS2 has cuboargyrite as the dominant phase, which was also confirmed by Raman spectroscopy. SEM was also used to study the morphology of the resulting material which is potentially nanostructured. EDX spectra gives a clear indication of the presence of silver (Ag), antimony (Sb) and sulfur (S) in material, suggesting that decomposition is clean and produces high quality AgSbS2 crystalline powder, which is consistent with the XRD and Raman data. Electronic properties of AgSbS2 thin films deposited by spin coating show a p-type conductivity with measured carrier mobility of 81 cm2 V-1 s-1 and carrier concentration of 1.9 × 1015 cm-3. The findings of this study reveal a new bottom-up route to these compounds, which have potential application as absorber layers in solar cells.
Collapse
Affiliation(s)
- Yasser T Alharbi
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Firoz Alam
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Abdelmajid Salhi
- Department of Electrical and Electronic Engineering, The University of Manchester, Sackville Street, Manchester, M13 9PL, UK
| | - Mohamed Missous
- Department of Electrical and Electronic Engineering, The University of Manchester, Sackville Street, Manchester, M13 9PL, UK
| | - David J Lewis
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
4
|
Dénoue K, Cheviré F, Calers C, Verger L, Le Coq D, Calvez L. Mechanochemical synthesis and structural characterization of gallium sulfide Ga2S3. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Vakalopoulou E, Buchmaier C, Pein A, Saf R, Fischer RC, Torvisco A, Warchomicka F, Rath T, Trimmel G. Synthesis and characterization of zinc di( O-2,2-dimethylpentan-3-yl dithiocarbonates) bearing pyridine or tetramethylethylenediamine coligands and investigation of their thermal conversion mechanisms towards nanocrystalline zinc sulfide. Dalton Trans 2020; 49:14564-14575. [PMID: 33107536 DOI: 10.1039/d0dt03065a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metal xanthates are versatile single source precursors for the preparation of various metal sulfides. In this study, we present the synthesis of the two novel zinc xanthate complexes bis(O-2,2-dimethylpentan-3-yl-dithiocarbonato)(N,N,N',N'-tetramethylethylenediamine)zinc(ii) and bis(O-2,2-dimethylpentan-3-yl-dithiocarbonato)(pyridine)zinc(ii). A thorough investigation of these compounds revealed distinct differences in their structural and thermal properties. While in the complex containing the chelating tetramethylethylenediamine, the xanthate groups coordinate in a monodentate way, they are bidentally coordinated to the zinc atom in the pyridine containing complex. Both compounds show a two-step thermal decomposition with an onset temperature of 151 °C and 156 °C for the tetramethylethylenediamine and pyridine containing complex, respectively. Moreover, different mechanisms are revealed for the two phases of the decomposition based on high resolution mass spectrometry investigations. By the thermal conversion process nanocrystalline zinc sulfide is produced and the coligand significantly influences its primary crystallite size, which is 4.4 nm using the tetramethylethylenediamine and 11.4 nm using the pyridine containing complex for samples prepared at a temperature of 400 °C.
Collapse
Affiliation(s)
- Efthymia Vakalopoulou
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| | - Christine Buchmaier
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| | - Andreas Pein
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| | - Robert Saf
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| | - Roland C Fischer
- Institute of Inorganic Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Ana Torvisco
- Institute of Inorganic Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Fernando Warchomicka
- Institute of Materials Science, Joining and Forming, Graz University of Technology, Kopernikusgasse 24, 8010, Graz, Austria
| | - Thomas Rath
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| | - Gregor Trimmel
- Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| |
Collapse
|