1
|
Naithani S, Dubey R, Goswami T, Thetiot F, Kumar S. Optical detection strategies for Ni(II) ion using metal-organic chemosensors: from molecular design to environmental applications. Dalton Trans 2024; 53:17409-17428. [PMID: 39345035 DOI: 10.1039/d4dt02376e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nickel is an important element utilized in various industrial/metallurgical processes, such as surgical and dental prostheses, Ni-Cd batteries, paint pigments, electroplating, ceramics, computer magnetic tapes, catalysis, and alloy manufacturing. However, its extensive use and associated waste production have led to increased nickel pollution in soils and water bodies, which adversely affects human health, animals and plants. This issue has prompted researchers to develop various optical probes, hereafter luminescent/colorimetric sensors, for the facile, sensitive and selective detection of nickel, particularly in biological and environmental contexts. In recent years, numerous functionalized chemosensors have been reported for imaging Ni2+, both in vivo and in vitro. In this context, metal-based receptors offer clear advantages over conventional organic sensors (viz., organic ligands, polymers, and membranes) in terms of cost, durability, stability, water solubility, recyclability, chemical flexibility and scope. This review highlights recent advancements in the design and fabrication of hybrid receptors (i.e., metal complexes and MOFs) for the specific detection of Ni2+ ions in complex environmental and biological mixtures.
Collapse
Affiliation(s)
- Sudhanshu Naithani
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| | - Ritesh Dubey
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| | - Tapas Goswami
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| | - Franck Thetiot
- CEMCA, CNRS, UMR 6521, Université de Bretagne Occidentale, Brest 29238, France
| | - Sushil Kumar
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| |
Collapse
|
2
|
Murugaperumal P, Nallathambi S. A comprehensive review on colorimetric and fluorometric investigations of dual sensing chemosensors for Cu 2+ and Fe 3+ ions from the year 2017 to 2023. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125193. [PMID: 39340942 DOI: 10.1016/j.saa.2024.125193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Dual sensing chemosensors for copper(II) and iron(III) ions are molecules or compounds designed to selectively detect and differentiate between these specific metal ions. Because metal ions like copper(II) and iron(III) are essential to so many industrial, biological, and environmental processes, their detection and measurement have become increasingly important. In this work, a novel dual-sensing chemosensor that combines high selectivity and sensitivity is presented. It is intended to detect copper(II) (Cu2+) and iron (III)(Fe3+) ions concurrently. The chemosensor combines two different recognition components into one platform and achieves dual-mode detection by combining optical and electrochemical sensing approaches. Using a dual sensing chemosensors for two cations can save money and time compared to preparing two separate chemosensors to sense each of those cations separately. We often use various techniques, including spectroscopy, fluorescence, and electrochemistry, to monitor and measure the changes induced by the interaction between the chemosensors and the metal ions. Discussions have been held on the excitation and emission wavelengths, media used in the spectroscopic measurements, binding constant with coordination binding mode, detection mechanism, and detection limit (LOD). This extensive review paper investigates colorimetric and fluorometric dual sensing analysis for Cu2+ and Fe3+ ions which includes more than sixty papers from the year of 2017 to 2023.
Collapse
Affiliation(s)
| | - Sengottuvelan Nallathambi
- Department of Chemistry, Centre for Distance and Online Education (CDOE), Alagappa University, Karaikudi 630003, India.
| |
Collapse
|
3
|
Hu X, Duan R, Wang J, Li M, Chen H, Zhang J, Zeng L. Simultaneous detection of cysteine and glutathione in food with a two-channel near-infrared fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125098. [PMID: 39255549 DOI: 10.1016/j.saa.2024.125098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
L-Cysteine (Cys) and glutathione (GSH) are closely related biological species that widely exist in food and living cells. To simultaneously detect Cys and GSH from different emission channels, we developed a fluorescent probe (BDP-NBD) based on near-infrared BODIPY and 7-nitrobenzofurazan (NBD). Upon nucleophilic substitution reaction with GSH, BDP-NBD generated an emission band at 713 nm, which can be used to determine GSH (0-100 μM) with a low detection limit (34 nM). Different from GSH, BDP-NBD underwent a nucleophilic substitution-rearrangement reaction with Cys, affording two emission bands at 550 nm and 713 nm, respectively. BDP-NBD was successfully employed to quantify Cys and GSH in various food samples with good recoveries (86.6%-104.6%). Besides, BDP-NBD can image Cys and GSH in living cells from two emission channels. Therefore, this work developed a tool for the simultaneous determination of Cys and GSH in both food and living cells so as to ensure food safety and human health.
Collapse
Affiliation(s)
- Xichao Hu
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Ruizhe Duan
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiali Wang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Mingchao Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hong Chen
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Jin Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Nguyen NK, Poduska B, Franks M, Bera M, MacCormack I, Lin G, Petroff AP, Das S, Nag A. A Copper-Selective Sensor and Its Inhibition of Copper-Amyloid Beta Aggregation. BIOSENSORS 2024; 14:247. [PMID: 38785721 PMCID: PMC11117483 DOI: 10.3390/bios14050247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Copper is an essential trace metal for biological processes in humans and animals. A low level of copper detection at physiological pH using fluorescent probes is very important for in vitro applications, such as the detection of copper in water or urine, and in vivo applications, such as tracking the dynamic copper concentrations inside cells. Copper homeostasis is disrupted in neurological diseases like Alzheimer's disease, and copper forms aggregates with amyloid beta (Ab42) peptide, resulting in senile plaques in Alzheimer's brains. Therefore, a selective copper detector probe that can detect amyloid beta peptide-copper aggregates and decrease the aggregate size has potential uses in medicine. We have developed a series of Cu2+-selective low fluorescent to high fluorescent tri and tetradentate dentate ligands and conjugated them with a peptide ligand to amyloid-beta binding peptide to increase the solubility of the compounds and make the resultant compounds bind to Cu2+-amyloid aggregates. The copper selective compounds were developed using chemical scaffolds known to have high affinity and selectivity for Cu2+, and their conjugates with peptides were tested for affinity and selectivity towards Cu2+. The test results were used to inform further improvement of the next compound. The final Cu2+ chelator-peptide conjugate we developed showed high selectivity for Cu2+ and high fluorescence properties. The compound bound 1:1 to Cu2+ ion, as determined from its Job's plot. Fluorescence of the ligand could be detected at nanomolar concentrations. The effect of this ligand on controlling Cu2+-Ab42 aggregation was studied using fluorescence assays and microscopy. It was found that the Cu2+-chelator-peptide conjugate efficiently reduced aggregate size and, therefore, acted as an inhibitor of Ab42-Cu2+ aggregation. Since high micromolar concentrations of Cu2+ are present in senile plaques, and Cu2+ accelerates the formation of toxic soluble aggregates of Ab42, which are precursors of insoluble plaques, the developed hybrid molecule can potentially serve as a therapeutic for Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Arundhati Nag
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA; (N.K.N.); (B.P.); (M.F.); (M.B.); (I.M.); (G.L.); (A.P.P.); (S.D.)
| |
Collapse
|
5
|
Soni H, Verma N, Chaudhari DY, Gandhi SA, Pandya A, Sutariya PG. Construction of coumarin-appended calix[4]arene-based fluorescence sensor for the detection of carbofuran in cabbage. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2400-2411. [PMID: 38572632 DOI: 10.1039/d4ay00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
This study presents a novel approach for the detection of carbofuran (CBF) insecticide by systematically exploring a calix[4]arene-derived fluorescence probe, CouC4S, functionalized with two coumarin-labelled cystamine linkages at the narrow edge of the calix[4]arene platform. The proposed method showed a fluorescence "signal - off" effect when CBF binds with CouC4S by quenching the fluorescence intensity of CouC4S. Its limit of detection was as low as 5.55 μM according to the emission study. The working concentration range for this ligand was observed to be up to 5-65 μM. This method could be applied for the on-spot detection of CBF in real samples such as cabbage by spiking CBFvia in situ experiments, which exhibited a limit of detection of 8.823 ppm. For the further confirmation of CouC4S:CBF binding, cyclic voltammetry, differential pulse voltammetry, powder X-ray diffraction, FT-IR spectroscopy, 1H NMR titration, MALDI-TOF and computational investigations were carried out.
Collapse
Affiliation(s)
- Heni Soni
- Department of Chemistry, Sardar Patel University, V.V. Nagar, 388120, Gujarat, India.
| | - Nidhi Verma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Divyesh Y Chaudhari
- Bhavan's Shri Ishvarbhai L. Pandya Arts-Sc. & Jashodaben Shah Commerce College, Dakor, 388225, Gujarat, India
| | - Sahaj A Gandhi
- Bhavan's Shri Ishvarbhai L. Pandya Arts-Sc. & Jashodaben Shah Commerce College, Dakor, 388225, Gujarat, India
| | - Alok Pandya
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Pinkesh G Sutariya
- Department of Chemistry, Sardar Patel University, V.V. Nagar, 388120, Gujarat, India.
| |
Collapse
|
6
|
Pandit NR, Bej S, Das R, Ghosal N, Mondal A, Pal R, Ghosh M, Banerjee P, Biswas B. Anion-directed structural tuning of two azomethine-derived Zn 2+ complexes with optoelectronic recognition of Cu 2+ in aqueous medium with anti-cancer activities: from micromolar to femtomolar sensitivity with DFT revelation. Dalton Trans 2023; 52:11130-11142. [PMID: 37496325 DOI: 10.1039/d3dt01901b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Herein, two novel mononuclear transition metal Zn2+ complexes i.e. [Zn(HL)(N3)(OAc)] (NS-1) & [Zn(HL)2(ClO4)2] (NS-2) have been synthesised using a tridentate clickable Schiff base ligand, HL (2-methyl-2-((pyridin-2-ylmethyl)amino)propan-1-ol), and the polyatomic monoanions N3- and ClO4- for NS-1 and NS-2 respectively. Interestingly, NS-1 and NS-2 have been explored for the detection of Cu2+ with an LOD of 48.6 fM (response time ∼6 s) and 2.4 μM respectively through two mutually independent pathways that were studied using sophisticated methods like UV-Vis, cyclic voltammetry, ESI-MS etc. with theoretical DFT support. Herein, both chemosensors are equally responsive towards the detection of Cu2+ in aqueous as well as other targeted real field samples with appreciable recovery percentage (74.8-102%), demonstrating their practical applicability. Moreover, the detection of unbound Cu2+ in a human urine specimen was also analysed which may be helpful for the diagnosis of Cu2+-related disorders like Wilson's disease. Taking one step ahead, TLC strips have been employed for on-field detection of the targeted analytes by contact mode analysis. Additionally, the anti-cancer activity of these complexes has also been studied on breast cancer cells with the help of the MTT assay. It has been found that at a 0.5 mM dose, both NS-1 and NS-2 could kill 81.4% and 73.2% of cancer cells respectively. However, it has been found that NS-1 destroys normal cells together with cancer cells. Hence, NS-2 could be administered as a better anticancer drug for MDA-MB-231 cancer cells in comparison with NS-1. In a nutshell, the present work describes how anion-directed synthesis of two architecturally different metal complexes leads toward the detection of the same analyte via an independent chemodosimetric pathway along with their anti-cancer activities on breast cancer cells.
Collapse
Affiliation(s)
- Nithun Ranjan Pandit
- Department of Chemistry, Presidency University, 86/1, College Street, Kolkata 700073, India.
| | - Sourav Bej
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India.
- Academy of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Riyanka Das
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India.
- Academy of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Nirajan Ghosal
- Department of Life Sciences, Presidency University, Kolkata-700073, India
| | - Ananya Mondal
- Department of Chemistry, Presidency University, 86/1, College Street, Kolkata 700073, India.
- Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, 6, West Bengal, India
| | - Ranjana Pal
- Department of Life Sciences, Presidency University, Kolkata-700073, India
| | - Meenakshi Ghosh
- Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, 6, West Bengal, India
| | - Priyabrata Banerjee
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India.
- Academy of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Biplab Biswas
- Department of Chemistry, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
7
|
Sharma H, Singh V, Tamrakar A, Nigam KK, Pandey MD, Tiwari KK, Pandey R. Development of highly selective fluorescent ferrocenyl-iminopyridine chemosensor for biologically relevant Fe 3. LUMINESCENCE 2023; 38:1132-1138. [PMID: 35362235 DOI: 10.1002/bio.4243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 11/07/2022]
Abstract
Design, synthesis, characterization, and ion detection studies of two ferrocene-appended Schiff bases namely N-(2-[ferrocenylamino]ethyl)-5-nitropyridin-2-amine (1) and ferrocenylamino-1H-imidazole-4-carboxamide (2) been reported. Both the chemosensors have been thoroughly characterized using Fourier transfer infrared, 1 H and 13 C nuclear magnetic resonance, high resolution mass spectrometry, and ultraviolet/visible (UV/visible) and fluorescence spectral techniques. Probes 1 and 2 were designed with the aim of appending the ferrocenyl group with pyridine ring having an amine substitution (for 1) and imidazole ring with an amide substitution (for 2). Interaction of these probes with a series of cations and anions was examined through UV/vis and fluorescence spectral techniques. Probe 2 exhibited an insignificant response towards anions and loss of selectivity for cations, whereas 1 displayed highly selective detection towards biologically important Fe3+ in 2:1 (probe:cation) stoichiometry. Notably, none of the cations and anions could interfere the selectivity of Fe3+ ensured by 1 in aqueous medium. The limit of detection for Fe3+ detection using 1 was determined to be 0.2 ppm. The results strongly suggest that 1 could find promising future application as a chemosensor for Fe3+ in biological systems for quantification and qualitative analysis.
Collapse
Affiliation(s)
- Himani Sharma
- Department of Chemistry, National Institute of Technology Uttarakhand, Srinagar, Uttarakhand, India
| | - Vaishali Singh
- Department of Chemistry, National Institute of Technology Uttarakhand, Srinagar, Uttarakhand, India
| | - Arpna Tamrakar
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Kamlesh Kumar Nigam
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Kamal Kant Tiwari
- Department of Chemistry, National Institute of Technology Uttarakhand, Srinagar, Uttarakhand, India
| | - Rampal Pandey
- Department of Chemistry, National Institute of Technology Uttarakhand, Srinagar, Uttarakhand, India
| |
Collapse
|
8
|
Oliveri IP, Attinà A, Di Bella S. A Zinc(II) Schiff Base Complex as Fluorescent Chemosensor for the Selective and Sensitive Detection of Copper(II) in Aqueous Solution. SENSORS (BASEL, SWITZERLAND) 2023; 23:3925. [PMID: 37112266 PMCID: PMC10141078 DOI: 10.3390/s23083925] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The development of chemosensors able to detect analytes in a variety of sample matrices through a low-cost, fast, and direct approach is of current interest in food, health, industrial, and environmental fields. This contribution presents a simple approach for the selective and sensitive detection of Cu2+ ions in aqueous solution based on a transmetalation process of a fluorescent substituted Zn(salmal) complex. Transmetalation is accompanied by relevant optical absorption changes and quenching of the fluorescence emission, leading to high selectivity and sensitivity of the chemosensor, with the advantage of not requiring any sample pretreatment or pH adjustment. Competitive experiments demonstrate a high selectivity of the chemosensor towards Cu2+ with respect to the most common metal cations as potential interferents. A limit of detection down to 0.20 μM and a dynamic linear range up to 40 μM are achieved from fluorometric data. By exploiting the fluorescence quenching upon formation of the copper(II) complex, simple paper-based sensor strips, visible to naked eyes under UV light, are used for the rapid, qualitative, and quantitative in situ detection of Cu2+ ions in aqueous solution over a wide concentration range, up to 10.0 mM, in specific environments, such as in industrial wastewater, where higher concentrations of Cu2+ ions can occur.
Collapse
|
9
|
Paul S, Ray Choudhury A, Dey N. Dual-Mode Multiple Ion Sensing via Analyte-Specific Modulation of Keto-Enol Tautomerization of an ESIPT Active Pyrene Derivative: Experimental Findings and Computational Rationalization. ACS OMEGA 2023; 8:6349-6360. [PMID: 36844601 PMCID: PMC9947992 DOI: 10.1021/acsomega.2c06559] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
A pyrene-based e xcited - state intramolecular proton transfer (ESIPT) active probe PMHMP was synthesized, characterized, and employed for the ppb-level, dual-mode, and high-fidelity detection of Cu2+ (LOD: 7.8 ppb) and Zn2+ ions (LOD: 4.2 ppb) in acetonitrile medium. The colorless solution of PMHMP turned yellow upon the addition of Cu2+, suggesting its ratiometric, naked-eye sensing. On the contrary, Zn2+ ions displayed concentration-dependent fluorescence rise till a 0.5 mole fraction and subsequent quenching. Mechanistic investigations indicated the formation of a 1:2 exciplex (Zn2+:PMHMP) at a lower concentration of Zn2+, which eventually turned into a more stable 1:1 (Zn2+:PMHMP) complex with an additional amount of Zn2+ ions. However, in both cases, it was observed that the hydroxyl group and the nitrogen atom of the azomethine unit were involved in the metal ion coordination, which eventually altered the ESIPT emission. Furthermore, a green-fluorescent 2:1 PMHMP-Zn2+ complex was developed and additionally employed for the fluorimetric analysis of both Cu2+ and H2PO4 - ions. The Cu2+ ion, owing to its higher binding affinity for PMHMP, could replace the Zn2+ ion from the preformed complex. On the other hand, H2PO4 - formed a tertiary adduct with the Zn2+-complex, leading to a distinguishable optical signal. Furthermore, extensive and organized density functional theory calculations were performed to explore the ESIPT behavior of PMHMP and the geometrical and electronic properties of the metal complexes.
Collapse
Affiliation(s)
- Suvendu Paul
- Department
of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | | | - Nilanjan Dey
- Department
of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| |
Collapse
|
10
|
Sharma H, Tamrakar A, Maddeshiya T, Shakya PR, Tiwari KK, Pandey MD, Pandey R. A Zinc (II) Complex Comprising Aminoethyl-Nitropyridine Derived N,N,O-Donor Schiff Base Ligand Serves as an Efficient ON-OFF Probe for Cu (II). LUMINESCENCE 2022. [PMID: 35777923 DOI: 10.1002/bio.4318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022]
Abstract
A new fluorescent zinc (II) complex based probe 1 encompassing a Schiff base (E)-2-methoxy-6-((2-(5-nitropyridin-2-ylamino)ethylimino)methyl)phenol (HL) has been designed, synthesized and used for the highly selective detection of Cu2+ . Ligand HL and complex 1 have been characterized by various spectroscopic techniques such as 1 H, 13 C-NMR, FT-IR, HR-MS, UV/vis and fluorescence studies. Ligand HL did not exhibit any considerable change in fluorescence in presence of various cations. Notably, its Zn (II)-complex 1 exhibited highly selective 'Turn-OFF' fluorescence signalling toward Cu2+ which remains uninterrupted with competing analytes. Probe 1 interacts with Cu2+ in 1:2 (1: Cu2+ ) stoichiometry as estimated through Job's plot. Moreover, selectivity of 1 was further confirmed through interaction of 1+ Cu2+ complex with some possible interfering metal ions inducing insignificant response. Additionally, association and quenching constant have been determined to be 3.30 × 104 M-1 and 0.21× 105 M-1 through Benesi-Hildebrand method and Stern-Volmer plot, respectively.
Collapse
Affiliation(s)
- Himani Sharma
- Department of Chemistry, National Institute of Technology Uttarakhand, Srinagar, Uttarakhand, India
| | - Arpana Tamrakar
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tarkeshwar Maddeshiya
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pawan Raj Shakya
- Department of Chemistry, Tribhuvan University, Padmakanya Multiple Campus, Kathmandu, Nepal
| | - Kamal Kant Tiwari
- Department of Chemistry, National Institute of Technology Uttarakhand, Srinagar, Uttarakhand, India
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rampal Pandey
- Department of Chemistry, National Institute of Technology Uttarakhand, Srinagar, Uttarakhand, India
| |
Collapse
|
11
|
Zhang JQ, Yao GX, Yan YJ, Xu L, Zhang Y, Dong WK. Structurally characterized salamo-based mononuclear Cu(II) complex fluorogenic sensor with high selectivity for CN− and Cys-Cys. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Santos VS, Moura BR, Metzker G, Cornélio ML, Ferreira OP, Mounier SJL, Hajjoul H, Boscolo M, Bisinoti MC, Moreira AB. Increase of Fluorescence of Humic-Like Substances in Interaction with Cd(II): a Photoinduced Charge Transfer Approach. J Fluoresc 2022; 32:1761-1767. [PMID: 35678899 DOI: 10.1007/s10895-022-02978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
Described is the enhancement of fluorescence intensity due to the interaction of a humic-like substance (HLS 1%) extracted from process water (PW) and Cd(II) ions in aqueous solution. Using Canonical Polyadic/Parallel Factor Analysis (CP/PARAFAC), two main components were seen that contributed to fluorescence, the first one increased it and the second one kept it constant in both static and dynamic fluorescence studies. Two-dimensional FTIR analysis indicated that the interaction of HLS 1% and Cd(II) ions occurred in the following order of affinity with the groups: C-O bonds in polysaccharides > C-O bonds in carboxylic acid. The results obtained suggest that the increase in fluorescence intensity and lifetime suggest a photoinduced charge transfer (PCT) between Cd(II) ions and carboxylic acid groups present in HLS 1%.
Collapse
Affiliation(s)
- Vinicius S Santos
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Bernardo R Moura
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Gustavo Metzker
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Marinonio L Cornélio
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Odair P Ferreira
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Stéphane J L Mounier
- Univ Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS, 60584, Toulon, France
| | - Houssam Hajjoul
- Univ Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS, 60584, Toulon, France
| | - Maurício Boscolo
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Márcia C Bisinoti
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Altair B Moreira
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
13
|
Biswas S, Chowdhury T, Ghosh A, Das AK, Das D. Effect of O-substitution in imidazole based Zn(II) dual fluorescent probes in the light of arsenate detection in potable water: a combined experimental and theoretical approach. Dalton Trans 2022; 51:7174-7187. [PMID: 35470835 DOI: 10.1039/d2dt00357k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Efficient detection of arsenate (AsO43-) from contaminated drinking water extracted from underground has become a matter of utmost necessity and an exquisite challenge owing to the growing public health issue due to arsenicosis. In order to combat this we planned to detect arsenate with the naked eye under UV light using a novel chemosensor material whose structure and functioning as a sensor could be certified mechanistically. Hence we were encouraged to synthesize two differently O-substituted imidazole based homologous ligands: C1 (HL1 = 2-((E)-(3-(1H-imidazole-1-yl)propylimino)methyl)-6-ethoxyphenol) and C2 (HL2 = 2-((E)-(3-(1H-imidazole-1-yl)propylimino)methyl)-6-methoxyphenol). To accomplish the purposeful exploration of the luminescent sensor, we considered Chelation Enhanced Fluorescence (CHEF) and kept on searching for a metal cation that would be able to turn on the fluorescence of the ligands. Considering Zn(II) as the most suitable candidate, luminescent complexes D1 and D2 ({[Zn2(L1)2(I)2](DMF)} and [Zn2(L2)2(I)2](DMF), respectively) were synthesized and characterized by SXRD, UV-Vis, FT-IR, and photoluminescence spectroscopy. In spite of the resemblance in the solid state structures of D1 and D2, the selective response of D1 towards arsenate with high quenching constants (2.13 × 106), unlike D2, has been demonstrated mechanistically with steady state and time resolved fluorescence titration, solution phase ESI-MS spectral analysis and DFT studies. The selectivity and sensitivity of the sensor D1 explicitly make this material a potent candidate for arsenate detection due to its very low detection limit (8.2 ppb), low cost and user friendly characteristics. Real life implementation of this work in a test strip is expected to prove beneficial for public health to identify arsenate polluted water.
Collapse
Affiliation(s)
- Sneha Biswas
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| | - Tania Chowdhury
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Debasis Das
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| |
Collapse
|
14
|
An efficient PET-based probe for detection and discrimination of Zn2+ and Cd2+ in near-aqueous media and live-cell imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
|
16
|
Srivastava S, Thakur N, Nayak N, Garg N, Pandey R. Development of ferrocene‐appended benzimidazopyridine and pyrroloquinoxaline probes for structure regulated distinct signalling of Fe
3+
in aqueous media and HeLa cells. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Suman Srivastava
- Department of Applied Sciences National Institute of Technology Delhi
| | - Neha Thakur
- Department of Chemistry National Institute of Technology Uttarakhand India
| | - Namyashree Nayak
- School of Basic Sciences Indian Institute of Technology Mandi Mandi Himachal Pradesh India
| | - Neha Garg
- Department of Medicinal chemistry, Institute of Medical Sciences Banaras Hindu University Varanasi Uttar Pradesh India
| | - Rampal Pandey
- Department of Chemistry National Institute of Technology Uttarakhand India
| |
Collapse
|
17
|
|
18
|
Gourlaouen C, Schweitzer B, Daniel C. Are luminescent Ru 2+ chelated complexes selective coordinative sensors for the detection of heavy cations? Phys Chem Chem Phys 2022; 24:2309-2317. [PMID: 35015003 DOI: 10.1039/d1cp04442g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of [Ru(bpy)2(bpym)]2+ (bpy = 2,2'-bipyridine; bpym = 2,2'-bipyrimidine) to probe specifically heavy cations has been investigated by means of density functional theory for transition metals, group 12 elements and Pb2+. On the basis of the calculated Gibbs free energies of complexation in water it is shown that all reactions are favorable with negative enthalpies except for Hg2+, with the transition metal cations forming stable bi-metallic complexes by coordination to the bpym ligand. Comparison between the optical and photophysical properties of the Ru2+ probe and those of the coordination compounds does not demonstrate a high selectivity due to very similar characteristics of the absorption and emission spectra. Whereas by complexation the lowest metal-to-ligand-charge-transfer (MLCT) shoulder of [Ru(bpy)2(bpym)]2+ at 462 nm is more or less shifted to the red as a function of the cation, the second MLCT band at 415 nm, less sensitive to the complexation, gains in intensity and is slightly blue-shifted. The visible MLCT emission of [Ru(bpy)2(bpym)]2+ at 706 nm is altered by complexation leading to near IR (800-900 nm) emission in most of the coordination compounds. Complexation to some transition metal cations (Fe, Co, Rh and Pd) generates low-lying metal-centered (MC) excited states that quench luminescence. In contrast to the conclusion of experimental findings by Kumar et al. (Chem. Commun. 2014, 50, 8488-8490), [Ru(bpy)2(bpym)]2+ cannot be proposed as a fast and selective probe for monitoring Pd2+ in aqueous media. Indeed, it does not possess the optical and photophysical characteristics necessary to discriminate Pd2+ ions over a variety of other cations.
Collapse
Affiliation(s)
- Christophe Gourlaouen
- Laboratoire de Chimie Quantique Institut de Chimie UMR 7177 CNRS-Université de Strasbourg, 4, Rue Blaise Pascal CS 90032, F-67081 Strasbourg Cedex, France.
| | - Benjamin Schweitzer
- Laboratoire de Chimie Quantique Institut de Chimie UMR 7177 CNRS-Université de Strasbourg, 4, Rue Blaise Pascal CS 90032, F-67081 Strasbourg Cedex, France.
| | - Chantal Daniel
- Laboratoire de Chimie Quantique Institut de Chimie UMR 7177 CNRS-Université de Strasbourg, 4, Rue Blaise Pascal CS 90032, F-67081 Strasbourg Cedex, France.
| |
Collapse
|
19
|
Geng J, Lin H, Li X, Lu J, Wang X. Improvement of the fluorescent sensing biomarker 3-nitrotyrosine for a new luminescent coordination polymer by size regulation. CrystEngComm 2022. [DOI: 10.1039/d2ce01397e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new 3D luminescent coordination polymer (LCP) 1 was synthesized for detecting biomarker 3-nitrotyrosine. By adjusting the reaction conditions, Nano-LCP 1 was synthesized, which has a more lower detection limit compared with LCP 1.
Collapse
Affiliation(s)
- Jun Geng
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Hongyan Lin
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiaohui Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Junjun Lu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - XiuLi Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
20
|
OLIVERI IPP, Munzi G, Di Bella S. A simple approach based on transmetalation for the selective and sensitive colorimetric/fluorometric detection of copper(II) ions in drinking water. NEW J CHEM 2022. [DOI: 10.1039/d2nj03695a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The search for feasible and efficient methods for sensing cations in the environment is a challenge of current scientific interest. Among colorimetric and fluorometric methods, those allowing a direct and...
Collapse
|
21
|
Ravichandiran P, Prabakaran DS, Maroli N, Boguszewska-Czubara A, Masłyk M, Kim AR, Chandrasekaran B, Yoo DJ. Construction of a simple dual-channel fluorescence chemosensor for Cu 2+ ion and GSSG detection and its mitochondria-targeting bioimaging applications. Anal Chim Acta 2021; 1181:338896. [PMID: 34556222 DOI: 10.1016/j.aca.2021.338896] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
Numerous chemosensors have been developed for next-generation detection systems because of their ease of use and promising characteristics to distinguish signals between various analytes binding. However, given their typically poor emission response and arduous preparation methods, very few chemosensing probes have been commercialized to date. In this work, a simple, naphthoquinone-based mitochondria-targeting chemosensor (CIA) has been fabricated for the simultaneous detection of Cu2+ and GSSG (glutathione oxidized) through an "on-off" mode in a buffered semi-aqueous solution. Significantly, the CIA chemosensor showed a sensitive detection response towards Cu2+ and GSSG with low detection limits (0.309 μM, and 0.226 μM, respectively). In addition, the detection mechanism of CIA was thoroughly verified and confirmed using numerous analytical techniques. Furthermore, CIA was utilized as a sequential fluorescence biomarker to detect Cu2+ in human cervical cancer cell lines. These findings indicate that the chemosensor CIA can discriminate human cancer cells from normal cells. The CIA was also confirmed to possess the ability to target mitochondria. More importantly, the present CIA chemosensor detected Cu2+ in zebrafish larvae, indicating the probe has tissue penetration ability.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea; Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, Srivilliputhur Main Road, Sivakasi 626124, Tamilnadu, India
| | - Nikhil Maroli
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Ul. Chodźki 4A, 20-093 Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Ae Rhan Kim
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | | | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
22
|
Mishra S, Singh AK. Optical sensors for water and humidity and their further applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214063] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Orhan E, Ergun E, Şarkaya K, Ergun Ü. A Novel Benzimidazole-Based Chemosensor for Fluorometric Determination of Zinc Ions. J Fluoresc 2021; 31:1833-1842. [PMID: 34519936 DOI: 10.1007/s10895-021-02818-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022]
Abstract
A simple and novel Schiff base chemosensor (BMHM) based on benzimidazole was synthesized. In ethanol-water (1:1, v/v) medium on varying concentrations of Zn2+ chemosensor exhibited a strong and quick turn on fluorescence response. The Zn2+ recognition was based on the Chelation-enhanced fluorescence effect. The binding constant and limit of detection for BMHM-Zn2+ complexation were estimated to be 7.99 × 104 M-1 and 0.148 µM, respectively. The extreme fluorescent enhancement caused by Zn2+ binding in chemosensor BMHM occurred at a pH range of 6-7. The practical use of chemosensor BMHM was tested by determination of Zn2+ in real water samples and comparing the results with the data obtained using high resolution inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Ersin Orhan
- Department of Chemistry, Faculty of Arts and Sciences, Düzce University, 81620, Düzce, Turkey
| | - Ece Ergun
- Turkish Energy, Nuclear and Mineral Research Agency, Nuclear Energy Research Institute, 06980, Ankara, Turkey.
| | - Koray Şarkaya
- Department of Chemistry, Faculty of Science and Arts, Pamukkale University, 20160, Denizli, Turkey
| | - Ümit Ergun
- Department of Chemistry, Faculty of Arts and Sciences, Düzce University, 81620, Düzce, Turkey
| |
Collapse
|
24
|
Cuerva C, Cano M, Lodeiro C. Advanced Functional Luminescent Metallomesogens: The Key Role of the Metal Center. Chem Rev 2021; 121:12966-13010. [PMID: 34370446 DOI: 10.1021/acs.chemrev.1c00011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of liquid crystals for the fabrication of displays incorporated in technological devices (TVs, calculators, screens of eBook's, tablets, watches) demonstrates the relevance that these materials have had in our way of living. However, society evolves, and improved devices are looked for as we create a more efficient and safe technology. In this context, metallomesogens can behave as multifunctional materials because they can combine the fluidic state of the mesophases with properties such as photo and electroluminescence, which offers new exciting possibilities in the field of optoelectronics, energy, environment, and even biomedicine. Herein, it has been established the role of the molecular geometry induced by the metal center in metallomesogens to achieve the self-assembly required in the liquid-crystalline mesophase. Likewise, the effect of the coordination environment in metallomesogens has been further analyzed because of its importance to induce mesomorphism. The structural analysis has been combined with an in-depth discussion of the properties of these materials, including their current and potential future applications. This review will provide a solid background to stimulate the development of novel and attractive metallomesogens that allow designing improved optoelectronic and microelectronic components. Additionally, nanoscience and nanotechnology could be used as a tool to approach the design of nanosystems based on luminescent metallomesogens for use in bioimaging or drug delivery.
Collapse
Affiliation(s)
- Cristián Cuerva
- BIOSCOPE Research Group, LAQV@REQUIMTE Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Mercedes Cano
- Department of Inorganic Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Carlos Lodeiro
- BIOSCOPE Research Group, LAQV@REQUIMTE Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal
| |
Collapse
|
25
|
Hishimone PN, Hamukwaya E, Uahengo V. The C 2-Symmetry Colorimetric Dye Based on a Thiosemicarbazone Derivative and its Cadmium Complex for Detecting Heavy Metal Cations (Ni 2+, Co 2+, Cd 2+, and Cu 2+) Collectively, in DMF. J Fluoresc 2021; 31:999-1008. [PMID: 33880707 DOI: 10.1007/s10895-021-02734-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
The field of chemosensing has been experiencing an exponential expansion in recent times, due to increased demands for simpler and user-friendly analytical techniques, in order to combat and confront the challenges of industrial pollutions in the twenty-first century. Metal complex-based chemosensors have received little attention while exhibiting excellent sensing properties, comparing to their organic counterparts. Thus, a thiosemicarbazone-based (H) and its cadmium complex (P) were synthesized, characterized and their photophysical and chemosensing properties were investigated in DMF solvent. The addition of molar equivalents of selected cations (of nitrates or chloride salts) to H and P, produced visually detectable colour changes as well as remarkable spectral shifts. Explicitly, the two probes (H and P) were able to collectively discriminate heavy metal cations such as Cd2+, Co2+, Zn2+, Cu2+, Ni2+, and Ag+, both in DMF, among all other heavy metal cations tested. None of the anions could be detected by H or P, even when the tetrabutylammonium salts (TBAs) were used, the action presumably ascribed to the solvent effect. Thus, H and P can be used to selectively and sensitively detect the presence of heavy metal cations, via naked-eye detectable colour changes in an aqueous soluble solvent such as DMF.
Collapse
Affiliation(s)
- Philipus N Hishimone
- Department of Chemistry and Biochemistry, University of Namibia, 340 Mandume Ndemufayo Avenue, Windhoek, 9000, Namibia
| | - Eunike Hamukwaya
- Department of Chemistry and Biochemistry, University of Namibia, 340 Mandume Ndemufayo Avenue, Windhoek, 9000, Namibia
| | - Veikko Uahengo
- Department of Chemistry and Biochemistry, University of Namibia, 340 Mandume Ndemufayo Avenue, Windhoek, 9000, Namibia.
| |
Collapse
|
26
|
Catechol-Containing Schiff Bases on Thiacalixarene: Synthesis, Copper (II) Recognition, and Formation of Organic-Inorganic Copper-Based Materials. Molecules 2021; 26:molecules26082334. [PMID: 33920537 PMCID: PMC8072794 DOI: 10.3390/molecules26082334] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/28/2022] Open
Abstract
For the first time, a series of catechol-containing Schiff bases, tetrasubstituted at the lower rim thiacalix[4]arene derivatives in three stereoisomeric forms, cone, partial cone, and 1,3-alternate, were synthesized. The structure of the obtained compounds was proved by modern physical methods, such as NMR, IR spectroscopy, and HRMS. Selective recognition (Kb difference by three orders of magnitude) of copper (II) cation in the series of d-metal cations (Cu2+, Ni2+, Co2+, Zn2+) was shown by UV-vis spectroscopy. Copper (II) ions are coordinated at the nitrogen atom of the imine group and the nearest oxygen atom of the catechol fragment in the thiacalixarene derivatives. High thermal stable organic-inorganic copper-based materials were obtained on the base of 1,3-alternate + Cu (II) complexes.
Collapse
|
27
|
Song WJ, Su H, Zhou P, Zhu YH, Khan MA, Song JB, Li H. Controllable synthesis of two adenosine 5'-monophosphate nucleotide coordination polymers via pH regulation: crystal structure and chirality. Dalton Trans 2021; 50:4713-4719. [PMID: 33729226 DOI: 10.1039/d1dt00133g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two types of Cu(ii)-AMP-4,4'-bipy coordination polymers, {[Cu(AMP)(4,4'-bipy)(H2O)3]·5H2O}n (1) and {[Cu2(HAMP)2(4,4'-bipy)2(H2O)4]·2NO3·11H2O}n (2) (Na2AMP = adenosine 5'-monophosphate disodium salt), were synthesised through pH control. X-ray single-crystal diffraction analysis revealed that 1 and 2 are one-dimensional (1D) coordinating coordination polymers. The nucleotide in 1 was not protonated whereas that in 2 was protonated. With the protonated NO3- in 2 entering the crystal lattice, it plays a role in balancing the charge. The chirality was studied using solid-state circular dichroism (CD) spectroscopy based on the analysis of crystal structures.
Collapse
Affiliation(s)
- Wen-Jing Song
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Li H, Liu Z, Jia R. "Turn-on" fluorescent probes based on Rhodamine B/amino acid derivatives for detection of Fe 3+ in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119095. [PMID: 33160134 DOI: 10.1016/j.saa.2020.119095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Five kinds of Fe3+ fluorescent probes (RhB-Gly, RhB-Ala, RhB-Try, RhB-Cys, and RhB-His) were synthesized and characterized by NMR and mass spectrometry, based on the "OFF-ON" mechanism of Rhodamine B derivatives. The RhB-His based probe showed remarkable sensing performance toward the detection for Fe3+ and showed high selectivity for Fe3+ in the presence of other metal ions (such as Fe2+, Hg2+, Zn2+, Ba2+, Al3+, Co2+, Cd2+, K+, Na+, Mn2+, Pd2+, Pb2+, Ca2+, Ni2+, Cu2+, and Ag+), in PBS buffer solution (containing 2% of EtOH, pH 7.4, 1.0 mmol/L). The enhancement of the fluorescence was linearly proportional with the concentration Fe3+ (from 0 to 20 μmol/L), while the detection limit reached 0.88 μmol/L with a response time of 15 s. The RhB-His probe was successfully applied to investigate real samples and living cell imaging.
Collapse
Affiliation(s)
- Hongda Li
- Department of Forensic Chemistry, Criminal Investigation Police University of China, Shenyang 110035, China.
| | - Zhixue Liu
- College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Rulin Jia
- Department of Forensic Chemistry, Criminal Investigation Police University of China, Shenyang 110035, China
| |
Collapse
|
29
|
Ejarque D, Calvet T, Font-Bardia M, Pons J. Steric crowding of a series of pyridine based ligands influencing the photophysical properties of Zn( II) complexes. CrystEngComm 2021. [DOI: 10.1039/d1ce00833a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The combination of α-acetamidocinnamic acid (HACA) and different N, N,N and N,N,N pyridines (dPy) leads to crowded Zn(ii) metal centers. The increasing bulkiness competes with the chelation enhanced effect (CHEF) in the resulting quantum yields.
Collapse
Affiliation(s)
- Daniel Ejarque
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Teresa Calvet
- Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de Raig-X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain
| | - Josefina Pons
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
30
|
Yao GX, Li P, Zhang JQ, Wang L, Liu H, Dong WK. A highly efficient yet stable salamo-type fluorescent chemosensor with multiple responses to Cu 2+ and S 2−. NEW J CHEM 2021. [DOI: 10.1039/d1nj02763h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A new salamo-type compound H3L has been synthesized, and exploited as a chemosensor with multiple responses to Cu2+ and S2−. The crystal structure of the Cu(ii) complex has been determined by X-ray crystallographic analysis.
Collapse
Affiliation(s)
- Guang-Xu Yao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Peng Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Jin-Qiang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Li Wang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| |
Collapse
|
31
|
Aouina A, Oloyede HO, Akong RA, Abdelhak J, Görls H, Plass W, Eseola AO. Exploring Broad Molecular Derivatization as Tool in Selective Fluorescent Detection of Mercury(II) by a Series of Large Stokes Shift 1,4-Bis(5-phenyl-1 H-imidazol-4-yl)benzenes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c05087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aroua Aouina
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, D-07743 Jena, Germany
- Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, University of Tunis El Manar, 2092 El Manar, Tunisia
| | - Hammed Olawale Oloyede
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, D-07743 Jena, Germany
- Department of Chemistry, Faculty of Science, University of Ibadan, 200284 Ibadan, Nigeria
- Department of Chemistry, School of Science, Adeyemi College of Education, 350101 Ondo, Ondo State, Nigeria
| | - Raymond Akong Akong
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, D-07743 Jena, Germany
- Department of Chemistry, Faculty of Science, University of Ibadan, 200284 Ibadan, Nigeria
| | - Jawher Abdelhak
- Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, University of Tunis El Manar, 2092 El Manar, Tunisia
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, D-07743 Jena, Germany
| | - Abiodun Omokehinde Eseola
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, D-07743 Jena, Germany
- Materials Chemistry Group, Department of Chemical Sciences, Redeemer’s University Ede, 232102 Ede, Osun State, Nigeria
| |
Collapse
|
32
|
Tharmalingam B, Mathivanan M, Murugesapandian B. C 3-symmetric triaminoguanidine based colorimetric and fluorometric chemosensor: Sequential detection of Zn 2+/PPi, its RGB performance for detection of Zn 2+ ion and construction of IMPLICATION logic gate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118749. [PMID: 32731150 DOI: 10.1016/j.saa.2020.118749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
In this work, new ethyl(E)-2-cyano-3-(1H-pyrrol-2-yl)acrylate appended C3-symmetric star-shape triaminoguanidine based Schiff base (LH3) was designed and synthesized from simple synthons. New probe, LH3 was completely analyzed by 1H NMR, 13C NMR and mass spectrum. In the present probe LH3, effective π-conjugated ethyl(E)-2-cyano-acrylate unit was introduced on the periphery of the pyrrole-triaminoquanidine conjugates by using carefully chosen building units. The probe LH3 shows high selectivity and sensitivity towards Zn2+ ion via colorimetric and fluorometric changes. The yellowish orange color of LH3 solution turned to wine red color upon addition of Zn2+ solution, along with red shifted absorption maxima from 450 nm to 550 nm, this indicates the formation of LH3-Zn2+ species. Job's plot and mass spectrum analysis confirms the formation of 1:3 stoichiometric complex between the LH3 and Zn2+ ions. Further this ensemble shows selective detection towards PPi anion over the other anions based on displacement metal ion approach. Hence, reversible colorimetric/emission response of LH3 towards Zn2+ and PPi ions via "on-off-on" manner could allow the construction of IMPLICATION logic gate functions. The practical efficacy of the probe LH3 was established by utilization of the probe for the detection of Zn2+ ions in real water sample analysis. Further, the significant noticeable colorimetric changes of the probe LH3 upon addition of Zn2+ ion have been successfully integrated with a smartphone app RGB color value to construct a real-time analysis of Zn2+ ions.
Collapse
Affiliation(s)
| | - Moorthy Mathivanan
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | |
Collapse
|
33
|
Chen Z, Ding W, Gu Y, Gao S, Yun D, Wang C, Li W, Sun F. Dopamine-Modified AuCu Bimetallic Nanoclusters as Charge Transfer-Based Biosensors for Highly Sensitive Glycine Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13928-13936. [PMID: 33174751 DOI: 10.1021/acs.langmuir.0c02396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glycine is the simplest amino acid in living organisms and plays important roles in biology and medicine. However, few biosensors for glycine sensing have been reported. Herein, we present a facile strategy to construct dopamine-modified AuCu bimetallic nanoclusters (denoted as AuCu NC-DA) as charge transfer-based biosensors for highly sensitive glycine sensing. The AuCu NCs stabilized by bovine serum albumin (BSA) exhibited a fluorescence maximum at 400 nm. Because of the high affinity of BSA for dopamine (DA), the surface of the AuCu NCs was modified with DA without any complicated chemical reactions, resulting in fluorescence quenching through a charge transfer process. Among 20 amino acids, AuCu NC-DA exhibited an off/on fluorescence switching response specifically toward glycine through the formation of hydrogen bonds with oxidized DA, which inhibited the charge transfer process, leading to the emergence of a new emission peak at 475 nm. Spectroscopic and thermodynamic results combined with molecular docking analyses provided comprehensive understanding of the sensing mechanism. Furthermore, we showed that AuCu NC-DA was able to sense glycine in cells by imaging. Finally, the practicability of AuCu NC-DA for glycine detection was validated in milk drink samples. This study presents a promising type of a charge transfer-based sensor.
Collapse
Affiliation(s)
- Zhichuan Chen
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong Jiangsu, 226001 China
| | - Weihua Ding
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong Jiangsu, 226001 China
| | - Yayun Gu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong Jiangsu, 226001 China
| | - Sheng Gao
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong Jiangsu, 226001 China
| | - Damin Yun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong Jiangsu, 226001 China
| | - Chengniu Wang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong Jiangsu, 226001 China
| | - Wenqing Li
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong Jiangsu, 226001 China
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong Jiangsu, 226001 China
| |
Collapse
|
34
|
Cho J, Jeong JH, Shin HJ, Min KS. Synthesis, structure and photoluminescence properties of naphthalene-based chiral zinc(II) complexes. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Тurovskij N, Raksha E, Berestneva Y, Eresko A. Anion effect on the cumene hydroperoxide decomposition in the presence of Cu(II) 1,10-phenanthrolinates. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
|
37
|
Lai X, Geng X, Tan L, Hu J, Wang S. A pH-Responsive System Based on Fluorescence Enhanced Gold Nanoparticles for Renal Targeting Drug Delivery and Fibrosis Therapy. Int J Nanomedicine 2020; 15:5613-5627. [PMID: 32884257 PMCID: PMC7440925 DOI: 10.2147/ijn.s260069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/17/2020] [Indexed: 11/23/2022] Open
Abstract
Background Stimuli-responsive gold nano-assemblies have attracted attention as drug delivery systems in the biomedical field. However, there are challenges achieving targeted delivery and controllable drug release for specific diseases. Materials and Methods In this study, a glutathione (GSH)-modified fluorescent gold nanoparticle termed AuLA-GSH was prepared and a Co2+-induced self-assembly drug delivery platform termed AuLA-GSH-Co was constructed. Both the pH-responsive character and drug loading behavior of AuLA-GSH-Co were studied in vitro. Kidney-targeting capability was investigated in vitro and in vivo. Finally, the anti-fibrosis efficiency of AuLA-GSH-Co in a mouse model of unilateral ureteral obstruction (UUO) was explored. Results AuLA-GSH-Co was sensitive to pH changes and released Co2+ in acidic conditions, allowing it to have controllable drug release abilities. AuLA-GSH-Co was found to improve cellular uptake of Co2+ ions compared to CoCl2 in vitro. AuLA-GSH exhibited specific renal targeting and prolonged renal retention time with low non-specific accumulation in vivo. Moreover, the anti-fibrosis efficiency of AuLA-GSH-Co was higher compared to CoCl2 in a mouse model of unilateral ureteral obstruction (UUO). Conclusion AuLA-GSH-Co could greatly enhance drug delivery efficiency with renal targeting capability and obviously relieve renal fibrosis, providing a promising strategy for renal fibrosis therapy.
Collapse
Affiliation(s)
- Xuandi Lai
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, People's Republic of China
| | - Xinran Geng
- Nanobiological Medicine Center, Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Lishan Tan
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, People's Republic of China
| | - Jianqiang Hu
- Nanobiological Medicine Center, Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, People's Republic of China
| |
Collapse
|
38
|
Kumar A, Bawa S, Ganorkar K, Ghosh SK, Bandyopadhyay A. Syntheses, characterization, multi-acid fluorescence sensing and electroluminescence properties of Cr( ii)-based metallopolymers. Polym Chem 2020. [DOI: 10.1039/d0py00953a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cr(ii)-Based multifunctional fluorescent metallopolymers with different degrees of backbone rigidity were synthesized and applied as multi-acid sensors and electroluminescent ON–OFF switches.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Polymer and Process Engineering
- Saharanpur-247001
- India
| | - Shubham Bawa
- Department of Polymer and Process Engineering
- Saharanpur-247001
- India
| | - Kapil Ganorkar
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | - Sujit Kumar Ghosh
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | | |
Collapse
|