1
|
Siljanovska A, Virant M, Lozinšek M, Cerkovnik J. Ph 3AsO as a Strong Hydrogen-Bond Acceptor in Cocrystals with Hydrogen Peroxide and gem-Dihydroperoxides. Inorg Chem 2025. [PMID: 39878774 DOI: 10.1021/acs.inorgchem.4c04535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Hydrogen-bonded cocrystals have attracted considerable attention as they allow fine-tuning of properties through the choice of hydrogen-bond donors and acceptors. In this study, triphenylarsine oxide (Ph3AsO) is introduced as a strong hydrogen-bond acceptor molecule. Due to its higher Lewis basicity compared to triphenylphosphine oxide (Ph3PO), it acts as a strong hydrogen-bond acceptor, which is demonstrated in six new cocrystals with H2O2 and gem-di(hydroperoxy)cycloalkanes. All cocrystals formed large, high-quality single crystals, which were analyzed by X-ray diffraction and IR spectroscopy. The cocrystal of Ph3AsO with H2O2 shows prolonged stability without loss of oxidative power. In addition, the newly formed interactions were also present in solution and were detected by NMR spectroscopy. The higher electron-donating ability of Ph3AsO compared to Ph3PO was confirmed by competition experiments. Ph3AsO exclusively binds H2O2, even in dilute aqueous solutions and in the presence of Ph3PO. This study expands the range of hydrogen-bond acceptors and demonstrates that Ph3AsO is a useful cocrystallizing tool in crystal engineering and a sensitive marker for hydrogen peroxide.
Collapse
Affiliation(s)
- Ana Siljanovska
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Miha Virant
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Matic Lozinšek
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Janez Cerkovnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Ashirov R, Todorovic M, Bhuvanesh N, Blümel J. Hydrogen-Bonded Di(hydroperoxy)alkane Adducts of the Type Cy 3P=O·(HOO) 2CHR (R = Alkyl). Molecules 2025; 30:329. [PMID: 39860199 PMCID: PMC11767494 DOI: 10.3390/molecules30020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Five representatives of a novel type of di(hydroperoxy)alkane adducts of phosphine oxides have been synthesized and fully characterized, including their solubility in organic solvents. The phosphine oxide Cy3PO (1) has been used in combination with the corresponding aldehydes to create the adducts Cy3PO·(HOO)2CHCH3 (2), Cy3PO·(HOO)2CHCH2CH3 (3), Cy3PO·(HOO)2CH(CH2)2CH3 (4), Cy3PO·(HOO)2CH(CH2)3CH3 (5), and Cy3PO·(HOO)2CH(CH2)7CH3 (6). All adducts crystallize easily and contain the peroxide and phosphine oxide hydrogen-bonded in 1:1 ratios. The single crystal X-ray structures of 2-6 and their unique features are discussed. The 31P NMR spectra of the adducts 2-6 show downfield-shifted signals as compared to Cy3PO. In the IR spectra, the ν(P=O) wavenumbers of the adducts have smaller values than the neat phosphine oxide. All spectroscopic results of 2-6 show that the P=O bond is weakened by hydrogen-bonding to the di(hydroperoxy)alkane moieties. Adduct 6 selectively oxidizes PPh3 to OPPh3 within minutes, and nonanal is reformed in the process. The easy synthesis, handling, and administration of these stable, solid, and soluble peroxides with well-defined composition will have a positive impact on synthetic chemistry.
Collapse
Affiliation(s)
| | | | | | - Janet Blümel
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA; (R.A.); (M.T.); (N.B.)
| |
Collapse
|
3
|
Goswami S, Gill K, Yin X, Swart M, Garcia-Bosch I. Cu-Promoted ipso-Hydroxylation of sp 2 Bonds with Concomitant Aromatic 1,2-Rearrangement Involving a Cu-oxyl-hydroxo Species. Inorg Chem 2024; 63:20675-20688. [PMID: 39422540 PMCID: PMC11523237 DOI: 10.1021/acs.inorgchem.4c03304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Herein, we report the first example of Cu-promoted β ipso-hydroxylation of substituted benzophenones using a bidentate directing group (DG) and H2O2 as an oxidant. In addition to the new C-O bond formed, the ipso-oxidation induces a very unusual 1,2-rearrangement of the iminyl group to the vicinal γ position. This transformation is highly dependent on the substrate utilized (favored for 4-methoxy-substituted benzophenones) and on the DG used (2-picolylamine leads to selective γ-C-H functionalization, while β ipso-oxidation requires 2-(2-aminoethyl)pyridine). An analysis of the oxidation of substrate-ligands derived from 2-(2-aminoethyl)pyridine and unsymmetrical 4-MeO-substituted benzophenones indicates high regioselectivity (up to 89:11 for the MeO-substituted arene ring and up to 92:8 for β ipso- vs γ-C-H hydroxylation). Mechanistic studies (which include spectroscopic characterization of reaction intermediates, kinetics, and calculations) suggest the formation of a mononuclear CuIIOOH species before the rate-determining step (rds) of the reaction. DFT calculations suggest that the γ-C-H hydroxylation pathway involves a one-step concerted O-O cleavage and electrophilic aromatic attack. Conversely, β ipso-hydroxylation occurs in a stepwise fashion, in which O-O bond cleavage produces a CuIII(O·)(OH) before electrophilic aromatic attack. Calculations also shed light on the mechanism of the 1,2-rearrangement step, which involves strain release from a spiro 5-membered to a 6-membered Cu chelate.
Collapse
Affiliation(s)
- Sunipa Goswami
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Karan Gill
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyi Yin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel Swart
- University
of Girona, Campus Montilivi (Ciències), IQCC, Girona, Spain,
ICREA, Pg. Lluís
Companys 23, 08010 Barcelona, Spain
| | - Isaac Garcia-Bosch
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Shenderovich IG. Keep Your TEMPO Up: Nitroxide Radicals as Sensors of Intermolecular Interactions. Molecules 2024; 29:5032. [PMID: 39519672 PMCID: PMC11548018 DOI: 10.3390/molecules29215032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
This study examines experimental data on the influence of the surrounding medium and non-covalent interactions on the isotropic hyperfine coupling constant, Aiso(14N), of the stable nitroxide radical 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO) in solution. The data were used to identify a density functional theory functional/basis set combination that accurately reproduces the experimental Aiso(14N) values. The variations in Aiso(14N) due to external factors are two orders of magnitude greater than the accuracy of its experimental measurements, making Aiso(14N) a highly sensitive experimental probe for quantifying these effects. Additionally, it was found that the proton-accepting ability of the N-O• moiety in TEMPO resembles that of the P=O moiety, enabling the simultaneous formation of two equally strong hydrogen bonds.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Sagar K, Kim M, Wu T, Zhang S, Bominaar EL, Siegler MA, Hendrich M, Garcia-Bosch I. Mimicking the Reactivity of LPMOs with a Mononuclear Cu Complex. Eur J Inorg Chem 2024; 27:e202300774. [PMID: 39803332 PMCID: PMC11719791 DOI: 10.1002/ejic.202300774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 01/16/2025]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are Cu-dependent metalloenzymes that catalyze the hydroxylation of strong C-H bonds in polysaccharides using O2 or H2O2 as oxidants (monooxygenase/peroxygenase). In the absence of C-H substrate, LPMOs reduce O2 to H2O2 (oxidase) and H2O2 to H2O (peroxidase) using proton/electron donors. This rich oxidative reactivity is promoted by a mononuclear Cu center in which some of the amino acid residues surrounding the metal might can accept and donate protons and/or electrons during O2 and H2O2 reduction. Herein, we utilize a podal ligand containing H-bond/proton donors (LH2) to analyze the reactivity of mononuclear Cu species towards O2 and H2O2. [(LH2)CuI]1+ (1), [(LH2)CuII]2+ (2), [(LH-)CuII]1+ (3), [(LH2)CuII(OH)]1+ (4), and [(LH2)CuII(OOH)]1+ (5) were synthesized and characterized by structural and spectroscopic means. Complex 1 reacts with O2 to produce 5, which releases H2O2 to generate 3, suggesting that O2 is used by LPMOs to generate H2O2. The reaction of 1 with H2O2 produces 4 and hydroxyl radical, which reacts with C-H substrates in a Fenton-like fashion. Complex 3, which generate 1 via a reversible protonation/reduction, binds H2O and H2O2 to produce 4 and 5, respectively, a mechanism that could be used by LPMOs to control oxidative reactivity.
Collapse
Affiliation(s)
- Kundan Sagar
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael Kim
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Wu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Shuming Zhang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Emile L Bominaar
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Isaac Garcia-Bosch
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
6
|
Hoefler JC, Jackson D, Blümel J. Surface-Assisted Selective Air Oxidation of Phosphines Adsorbed on Activated Carbon. Inorg Chem 2024; 63:9275-9287. [PMID: 38722182 PMCID: PMC11110008 DOI: 10.1021/acs.inorgchem.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024]
Abstract
Trialkyl- and triarylphosphines readily adsorb onto the surface of porous activated carbon (AC) even in the absence of solvents through van der Waals interactions between the lone electron pair and the AC surface. This process has been proven by solid-state NMR techniques. Subsequently, it is demonstrated that the AC enables the fast and selective oxidation of adsorbed phosphines to phosphine oxides at ambient temperature in air. In solution, trialkylphosphines are oxidized to a variety of P(V) species when exposed to the atmosphere, while neat or dissolved triarylphosphines cannot be oxidized with air. When the trialkyl- and triarylphosphines PnBu3 (1), PEt3, (2), PnOct3 (3), PMetBu2 (4), PCy3 (5), and PPh3 (6) are adsorbed in a mono- or submonolayer on the surface of AC, in the absence of a solvent and at ambient temperature, they are quantitatively oxidized to the adsorbed phosphine oxides, 1ox-6ox, once air is admitted. No formation of any unwanted P(V) side products or water adducts is observed. The phosphine oxides can then be recovered in good yields by washing them off of the AC. The oxidation is likely facilitated by a radical activation of molecular oxygen due to delocalized electrons on the aromatic surface coating of AC, as proven by ESR. This easy and inexpensive oxidation method renders hydrogen peroxide or other oxidizers unnecessary and is broadly applicable to sterically hindered and even to air-stable triarylphosphines. Phosphines adsorbed at lower surface coverages on AC oxidize at a faster rate. All oxidation reactions were monitored by solution- and solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- John C. Hoefler
- Department of Chemistry, Texas
A&M University, College Station, Texas 77845-3012, United States
| | - Devin Jackson
- Department of Chemistry, Texas
A&M University, College Station, Texas 77845-3012, United States
| | - Janet Blümel
- Department of Chemistry, Texas
A&M University, College Station, Texas 77845-3012, United States
| |
Collapse
|
7
|
Urlep M, Cerkovnik J, Lozinšek M. Tri-methyl-phosphine oxide dihydrate. IUCRDATA 2023; 8:x230314. [PMID: 37151205 PMCID: PMC10162029 DOI: 10.1107/s2414314623003140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
The title hydrate, Me3PO·2H2O, crystallizes in the ortho-rhom-bic space group Pbca with eight formula units per unit cell. The extended structure displays O-H⋯O hydrogen bonding, with Me3PO mol-ecules as acceptors and water mol-ecules acting as donors and acceptors of hydrogen bonds, forming hydrogen-bonded layers, which propagate in the ac plane.
Collapse
Affiliation(s)
- Matic Urlep
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Cerkovnik
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Matic Lozinšek
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
- Correspondence e-mail:
| |
Collapse
|
8
|
Benzie JW, Harmon-Welch GE, Hoefler JC, Bakhmutov VI, Blümel J. Molecular Dynamics and Surface Interactions of Nickelocene Adsorbed on Silica: A Paramagnetic Solid-State NMR Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7422-7432. [PMID: 35675156 DOI: 10.1021/acs.langmuir.2c00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
When grinding nickelocene with silica in the absence of a solvent at room temperature, it adsorbs on the surface within the pores. This has also been demonstrated visually by adsorbing green nickelocene in the pores of a large colorless silica gel specimen. While this dry adsorption and translational mobility of nickelocene within the pores is proven visually, the site-to-site mobility of the nickelocene molecules and their orientation toward the surface are not yet understood. In this contribution, mesoporous silica is used as the support material for a systematic solid-state NMR study of these issues. Paramagnetic 1H VT solid-state NMR and T1 relaxation times have been powerful tools for studying the dynamics of nickelocene on the silica surface. Herewith, the mobility of the surface-adsorbed nickelocene molecules in the pores could be quantified on the molecular scale. According to the obtained data, the nickelocene molecules move like a liquid on the surface. Isotropically moving molecules exchange places rapidly with surface-attached molecular states of nickelocene in a sample with submonolayer surface coverage. This finding is corroborated by a macroscopic visualization experiment. The states of the surface-attached horizontally oriented nickelocene molecules that are prevalent at temperatures below 200 K have been quantified. The temperature dependencies of the rate k in coordinates of ln(k) versus 1/T and ln(k/T) versus 1/T form ideal straight lines that allow the determination of the kinetic parameters Eact = 5.5 kcal/mol, A = 1.1 × 1010, ΔH‡ = 5.0 kcal/mol, and ΔS‡ = -15 eu. Investigating a sample with equal amounts of nickelocene and ferrocene in a submonolayer amount of 80% overall surface coverage shows that the different metallocenes mix on the molecular level on the silica surface.
Collapse
Affiliation(s)
- Jordon W Benzie
- Department of Chemistry, Texas A&M University, College Station, Texas 77845-3012, United States
| | | | - John C Hoefler
- Department of Chemistry, Texas A&M University, College Station, Texas 77845-3012, United States
| | - Vladimir I Bakhmutov
- Department of Chemistry, Texas A&M University, College Station, Texas 77845-3012, United States
| | - Janet Blümel
- Department of Chemistry, Texas A&M University, College Station, Texas 77845-3012, United States
| |
Collapse
|
9
|
Arp FF, Ashirov R, Bhuvanesh N, Blümel J. Di(hydroperoxy)adamantane adducts: synthesis, characterization and application as oxidizers for the direct esterification of aldehydes. Dalton Trans 2021; 50:15296-15309. [PMID: 34636381 DOI: 10.1039/d1dt03243g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The di(hydroperoxy)adamantane adducts of water (1) and phosphine oxides p-Tol3PO·(HOO)2C(C9H14) (2), o-Tol3PO·(HOO)2C(C9H14) (3), and Cy3PO·(HOO)2C(C9H14) (4), as well as a CH2Cl2 adduct of a phosphole oxide dimer (8), have been created and investigated by multinuclear NMR spectroscopy, and by Raman and IR spectroscopy. The single crystal X-ray structures for 1-4 and 8 are reported. The IR and 31P NMR data are in accordance with strong hydrogen bonding of the di(hydroperoxy)adamantane adducts. The Raman ν(O-O) stretching bands of 1-4 prove that the peroxo groups are present in the solids. Selected di(hydroperoxy)alkane adducts, in combination with AlCl3 as catalyst, have been applied for the direct oxidative esterification of n-nonyl aldehyde, benzaldehyde, p-methylbenzaldehyde, p-bromobenzaldehyde, and o-hydroxybenzaldehyde to the corresponding methyl esters. The esterification takes place in an inert atmosphere, under anhydrous and oxygen-free conditions, within a time frame of 45 minutes to 5 hours at room temperature. Hereby, two oxygen atoms per adduct assembly are active with respect to the quantitative transformation of the aldehyde into the ester.
Collapse
Affiliation(s)
- Fabian F Arp
- Department of Chemistry, Texas A&M University, College Station, TX, 77842-3012, USA.
| | - Rahym Ashirov
- Department of Chemistry, Texas A&M University, College Station, TX, 77842-3012, USA.
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, TX, 77842-3012, USA.
| | - Janet Blümel
- Department of Chemistry, Texas A&M University, College Station, TX, 77842-3012, USA.
| |
Collapse
|
10
|
Shenderovich IG, Denisov GS. Modeling of the Response of Hydrogen Bond Properties on an External Electric Field: Geometry, NMR Chemical Shift, Spin-Spin Scalar Coupling. Molecules 2021; 26:molecules26164967. [PMID: 34443575 PMCID: PMC8399935 DOI: 10.3390/molecules26164967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
The response of the geometric and NMR properties of molecular systems to an external electric field has been studied theoretically in a wide field range. It has been shown that this adduct under field approach can be used to model the geometric and spectral changes experienced by molecular systems in polar media if the system in question has one and only one bond, the polarizability of which significantly exceeds the polarizability of other bonds. If this requirement is met, then it becomes possible to model even extreme cases, for example, proton dissociation in hydrogen halides. This requirement is fulfilled for many complexes with one hydrogen bond. For such complexes, this approach can be used to facilitate a detailed analysis of spectral changes associated with geometric changes in the hydrogen bond. For example, in hydrogen-bonded complexes of isocyanide C≡15N-1H⋯X, 1J(15N1H) depends exclusively on the N-H distance, while δ(15N) is also slightly influenced by the nature of X.
Collapse
Affiliation(s)
- Ilya G. Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia;
- Correspondence:
| | - Gleb S. Denisov
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia;
| |
Collapse
|
11
|
NMR Properties of the Cyanide Anion, a Quasisymmetric Two-Faced Hydrogen Bonding Acceptor. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The isotopically enriched cyanide anion, (13C≡15N)−, has a great potential as the NMR probe of non-covalent interactions. However, hydrogen cyanide is highly toxic and can decompose explosively. It is therefore desirable to be able to theoretically estimate any valuable results of certain experiments in advance in order to carry out experimental studies only for the most suitable molecular systems. We report the effect of hydrogen bonding on NMR properties of 15N≡13CH···X and 13C≡15NH···X hydrogen bonding complexes in solution, where X = 19F, 15N, and O=31P, calculated at the ωB97XD/def2tzvp and the polarizable continuum model (PCM) approximations. In many cases, the isotropic 13C and 15N chemical shieldings of the cyanide anion are not the most informative NMR properties of such complexes. Instead, the anisotropy of these chemical shieldings and the values of scalar coupling constants, including those across hydrogen bonds, can be used to characterize the geometry of such complexes in solids and solutions. 1J(15N13C) strongly correlates with the length of the N≡C bond.
Collapse
|
12
|
Actual Symmetry of Symmetric Molecular Adducts in the Gas Phase, Solution and in the Solid State. Symmetry (Basel) 2021. [DOI: 10.3390/sym13050756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This review discusses molecular adducts, whose composition allows a symmetric structure. Such adducts are popular model systems, as they are useful for analyzing the effect of structure on the property selected for study since they allow one to reduce the number of parameters. The main objectives of this discussion are to evaluate the influence of the surroundings on the symmetry of these adducts, steric hindrances within the adducts, competition between different noncovalent interactions responsible for stabilizing the adducts, and experimental methods that can be used to study the symmetry at different time scales. This review considers the following central binding units: hydrogen (proton), halogen (anion), metal (cation), water (hydrogen peroxide).
Collapse
|
13
|
Shenderovich IG. 1,3,5-Triaza-7-Phosphaadamantane (PTA) as a 31P NMR Probe for Organometallic Transition Metal Complexes in Solution. Molecules 2021; 26:molecules26051390. [PMID: 33806666 PMCID: PMC7961616 DOI: 10.3390/molecules26051390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the rigid structure of 1,3,5-triaza-7-phosphaadamantane (PTA), its 31P chemical shift solely depends on non-covalent interactions in which the molecule is involved. The maximum range of change caused by the most common of these, hydrogen bonding, is only 6 ppm, because the active site is one of the PTA nitrogen atoms. In contrast, when the PTA phosphorus atom is coordinated to a metal, the range of change exceeds 100 ppm. This feature can be used to support or reject specific structural models of organometallic transition metal complexes in solution by comparing the experimental and Density Functional Theory (DFT) calculated values of this 31P chemical shift. This approach has been tested on a variety of the metals of groups 8-12 and molecular structures. General recommendations for appropriate basis sets are reported.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
14
|
Modeling of Solute-Solvent Interactions Using an External Electric Field-From Tautomeric Equilibrium in Nonpolar Solvents to the Dissociation of Alkali Metal Halides. Molecules 2021; 26:molecules26051283. [PMID: 33652943 PMCID: PMC7956811 DOI: 10.3390/molecules26051283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
An implicit account of the solvent effect can be carried out using traditional static quantum chemistry calculations by applying an external electric field to the studied molecular system. This approach allows one to distinguish between the effects of the macroscopic reaction field of the solvent and specific solute-solvent interactions. In this study, we report on the dependence of the simulation results on the use of the polarizable continuum approximation and on the importance of the solvent effect in nonpolar solvents. The latter was demonstrated using experimental data on tautomeric equilibria between the pyridone and hydroxypyridine forms of 2,6-di-tert-butyl-4-hydroxy-pyridine in cyclohexane and chloroform.
Collapse
|
15
|
Kuznetsova AA, Ismagilova RR, Chachkov DV, Belogorlova NA, Malysheva SF, Vereshchagina YA. Experimental and Theoretical Conformational Analysis of
Tris(4-methylphenyl)phosphine and Its Chalcogenides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020120088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Yamaguchi R, Tanaka R, Maetani M, Tabe H, Yamada Y. Efficient capturing of hydrogen peroxide in dilute aqueous solution by co-crystallization with amino acids. CrystEngComm 2021. [DOI: 10.1039/d1ce00688f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
X-ray structure analyses of co-crystals of H2O2 and l-Phe, dl-Phe, or dl-Asp prepared in a dilute aqueous solution (30 wt%) indicated that multi-layer motifs including water molecule is important for highly efficient H2O2 capture in dilute solutions.
Collapse
Affiliation(s)
- Ryota Yamaguchi
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Rika Tanaka
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Analytical Center of Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Mayu Maetani
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Hiroyasu Tabe
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Research Center for Artificial Photosynthesis (ReCAP), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Yusuke Yamada
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Research Center for Artificial Photosynthesis (ReCAP), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
17
|
Medvedev AG, Churakov AV, Prikhodchenko PV, Lev O, Vener MV. Crystalline Peroxosolvates: Nature of the Coformer, Hydrogen-Bonded Networks and Clusters, Intermolecular Interactions. Molecules 2020; 26:E26. [PMID: 33374602 PMCID: PMC7793138 DOI: 10.3390/molecules26010026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 01/22/2023] Open
Abstract
Despite the technological importance of urea perhydrate (percarbamide) and sodium percarbonate, and the growing technological attention to solid forms of peroxide, fewer than 45 peroxosolvates were known by 2000. However, recent advances in X-ray diffractometers more than tripled the number of structurally characterized peroxosolvates over the last 20 years, and even more so, allowed energetic interpretation and gleaning deeper insight into peroxosolvate stability. To date, 134 crystalline peroxosolvates have been structurally resolved providing sufficient insight to justify a first review article on the subject. In the first chapter of the review, a comprehensive analysis of the structural databases is carried out revealing the nature of the co-former in crystalline peroxosolvates. In the majority of cases, the coformers can be classified into three groups: (1) salts of inorganic and carboxylic acids; (2) amino acids, peptides, and related zwitterions; and (3) molecular compounds with a lone electron pair on nitrogen and/or oxygen atoms. The second chapter of the review is devoted to H-bonding in peroxosolvates. The database search and energy statistics revealed the importance of intermolecular hydrogen bonds (H-bonds) which play a structure-directing role in the considered crystals. H2O2 always forms two H-bonds as a proton donor, the energy of which is higher than the energy of analogous H-bonds existing in isostructural crystalline hydrates. This phenomenon is due to the higher acidity of H2O2 compared to water and the conformational mobility of H2O2. The dihedral angle H-O-O-H varies from 20 to 180° in crystalline peroxosolvates. As a result, infinite H-bonded 1D chain clusters are formed, consisting of H2O2 molecules, H2O2 and water molecules, and H2O2 and halogen anions. H2O2 can form up to four H-bonds as a proton acceptor. The third chapter of the review is devoted to energetic computations and in particular density functional theory with periodic boundary conditions. The approaches are considered in detail, allowing one to obtain the H-bond energies in crystals. DFT computations provide deeper insight into the stability of peroxosolvates and explain why percarbamide and sodium percarbonate are stable to H2O2/H2O isomorphic transformations. The review ends with a description of the main modern trends in the synthesis of crystalline peroxosolvates, in particular, the production of peroxosolvates of high-energy compounds and mixed pharmaceutical forms with antiseptic and analgesic effects.
Collapse
Affiliation(s)
- Alexander G. Medvedev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Prosp. 31, 119991 Moscow, Russia; (A.G.M.); (A.V.C.); (P.V.P.)
| | - Andrei V. Churakov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Prosp. 31, 119991 Moscow, Russia; (A.G.M.); (A.V.C.); (P.V.P.)
| | - Petr V. Prikhodchenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Prosp. 31, 119991 Moscow, Russia; (A.G.M.); (A.V.C.); (P.V.P.)
| | - Ovadia Lev
- The Casali Center of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mikhail V. Vener
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Prosp. 31, 119991 Moscow, Russia; (A.G.M.); (A.V.C.); (P.V.P.)
- Department of Quantum Chemistry, Mendeleev University of Chemical Technology, Miusskaya Square 9, 125047 Moscow, Russia
| |
Collapse
|
18
|
Jóźwiak K, Jezierska A, Panek JJ, Goremychkin EA, Tolstoy PM, Shenderovich IG, Filarowski A. Inter- vs. Intramolecular Hydrogen Bond Patterns and Proton Dynamics in Nitrophthalic Acid Associates. Molecules 2020; 25:E4720. [PMID: 33066679 PMCID: PMC7587347 DOI: 10.3390/molecules25204720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 01/18/2023] Open
Abstract
Noncovalent interactions are among the main tools of molecular engineering. Rational molecular design requires knowledge about a result of interplay between given structural moieties within a given phase state. We herein report a study of intra- and intermolecular interactions of 3-nitrophthalic and 4-nitrophthalic acids in the gas, liquid, and solid phases. A combination of the Infrared, Raman, Nuclear Magnetic Resonance, and Incoherent Inelastic Neutron Scattering spectroscopies and the Car-Parrinello Molecular Dynamics and Density Functional Theory calculations was used. This integrated approach made it possible to assess the balance of repulsive and attractive intramolecular interactions between adjacent carboxyl groups as well as to study the dependence of this balance on steric confinement and the effect of this balance on intermolecular interactions of the carboxyl groups.
Collapse
Affiliation(s)
- Kinga Jóźwiak
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| | - Eugene A. Goremychkin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research 6 F. Joliot-Curie str., 141980 Dubna, Russia;
| | - Peter M. Tolstoy
- Institute of Chemistry, St. Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg, Russia;
| | - Ilya G. Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| | - Aleksander Filarowski
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| |
Collapse
|
19
|
Zhu J, Zhang Q, Chen H, Zhang R, Liu L, Yu J. Setaria Viridis-Inspired Electrode with Polyaniline Decorated on Porous Heteroatom-Doped Carbon Nanofibers for Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43634-43645. [PMID: 32909429 DOI: 10.1021/acsami.0c10933] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Carbon nanofibers are promising as primary electrode materials for supercapacitors on account of high specific surface area, lightweight, superior physicochemical stability, rich resource, and renewability. However, constructing porous and flexible carbon electrode materials with high capacitance for practical applications remains challenging. Here, heteroatom-decorated hierarchical porous carbon nanofiber composites containing phosphazene [N3P3(p-OC6H4-p-CHO)6, HAPCP], polymethyl methacrylate (PMMA), and graphene oxide (GO) are prepared through one-step electrospinning and subsequent thermal treatment. The alternant phosphorus-nitrogen structure links to the carbon backbones to improve flexibility and electrochemical performance. Inspired by a biomimetic Setaria viridis-like structure, the polyaniline (PANI)-decorated porous hybrid electrodes are prepared. The PANI@GO/PMMA/HAPCP/PAN carbon nanofibers (400P@0.1GPHCNFs) covered by PANI nanofibers as a novel free-standing flexible electrode exhibit an excellent electrochemical performance of 680.8 F g-1 at 0.5 A g-1 with a good capacitance retention of 93.5% after 3000 cycles. Moreover, the symmetric flexible all-solid-state supercapacitor assembled by the novel and delicate electrodes exhibits a high energy density of 27.70 W h kg-1 (at a power density of 231.08 W kg-1) and favorable cycling stability (84.50% retention of the capacitance after 1000 charge-discharge cycles), which indicates that the 400P@0.1GPHCNFs have great potential as a high-performance flexible supercapacitor electrode.
Collapse
Affiliation(s)
- Jianhua Zhu
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Qian Zhang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Heping Chen
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Ruiyun Zhang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Lifang Liu
- College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
20
|
Shenderovich IG. For Whom a Puddle Is the Sea? Adsorption of Organic Guests on Hydrated MCM-41 Silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11383-11392. [PMID: 32900200 DOI: 10.1021/acs.langmuir.0c02327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thermal and hydration effects on the mobility of compact and branched organic molecules and a bulky pharmaceutical substance loaded in submonolayer amounts onto mesoporous silica have been elucidated using 1H and 31P solid-state NMR. In all cases, the ambient hydration has a stronger effect than an increase in temperature to 370 K for water-free silica. The effect of hydration depends on the guest and ranges from complete solvation to a silica-water-guest sandwich structure to a silica-guest/silica-water pattern. The mobility of the guests under different conditions has been described. The specific structure of the MCM-41 surface allows one to study very slow surface diffusion, a diffusivity of about 10-15-10-16 m2/s. The data reported are relevant to any nonfunctionalized silica, while the method used is applicable to any phosphor-containing guest on any host.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
21
|
Arp FF, Bhuvanesh N, Blümel J. Di(hydroperoxy)cycloalkane Adducts of Triarylphosphine Oxides: A Comprehensive Study Including Solid-State Structures and Association in Solution. Inorg Chem 2020; 59:13719-13732. [PMID: 32866378 DOI: 10.1021/acs.inorgchem.0c02087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Four new di(hydroperoxy)cycloalkane adducts (Ahn adducts) of p-Tol3PO (1) and o-Tol3PO (2), namely, p-Tol3PO·(HOO)2C(CH2)5 (3), o-Tol3PO·(HOO)2C(CH2)5 (4), p-Tol3PO·(HOO)2C(CH2)6 (5), and o-Tol3PO·(HOO)2C(CH2)6 (6), have been synthesized and fully characterized. Their single crystal X-ray structures have been determined and analyzed. The 31P NMR data are in accordance with hydrogen bonding of the di(hydroperoxy)alkanes to the P═O groups of the phosphine oxides. Due to their high solubility in organic solvents, natural abundance 17O NMR spectra of 1-6 could be recorded, providing the signals for the P═O groups and additionally the two different oxygen nuclei in the O-OH groups in the adducts 3-6. The association and mobility of 3-6 were explored by 1H DOSY (diffusion ordered spectroscopy) NMR, which indicated persistent hydrogen bonding of the adducts in solution. Competition experiments with phosphine oxides allowed ranking of the affinities of the di(hydroperoxy)cycloalkanes for the different phosphine oxide carriers. On the basis of variable temperature 31P NMR investigations, the Gibbs energies of activation ΔG‡ for the adduct dissociation processes of 3-6 at different temperatures, as well as the enthalpy ΔH‡ and entropy ΔS‡ of activation, have been determined. IR spectroscopy of 3-6 corroborated the hydrogen bonding, and in the Raman spectra, the ν(O-O) stretching bands have been identified, confirming the presence of peroxy groups in the solid materials. The high solubilities in selected organic solvents have been quantified.
Collapse
Affiliation(s)
- Fabian F Arp
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Janet Blümel
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| |
Collapse
|
22
|
Hubbard PJ, Benzie JW, Bakhmutov VI, Blümel J. Ferrocene Adsorbed on Silica and Activated Carbon Surfaces: A Solid-State NMR Study of Molecular Dynamics and Surface Interactions. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick J. Hubbard
- Department of Chemistry, Texas A&M University, College Station, Texas 77845-3012, United States
| | - Jordon W. Benzie
- Department of Chemistry, Texas A&M University, College Station, Texas 77845-3012, United States
| | - Vladimir I. Bakhmutov
- Department of Chemistry, Texas A&M University, College Station, Texas 77845-3012, United States
| | - Janet Blümel
- Department of Chemistry, Texas A&M University, College Station, Texas 77845-3012, United States
| |
Collapse
|
23
|
Hubbard PJ, Benzie JW, Bakhmutov VI, Blümel J. Disentangling different modes of mobility for triphenylphosphine oxide adsorbed on alumina. J Chem Phys 2020; 152:054718. [PMID: 32035468 DOI: 10.1063/1.5142568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Triphenylphosphine oxide (TPPO, 1) has been adsorbed on neutral alumina by dry grinding of the components in the absence of a solvent. The adsorption proves translational mobility of 1 on the surface of alumina. Different surface coverages from a densely packed monolayer (99% coverage) to a dilute sub-monolayer (25%) have been produced. The samples have been studied by diverse multinuclear 1H, 13C, and 31P variable temperature solid-state nuclear magnetic resonance (NMR) techniques. The interactions of 1 with the surface are determined by hydrogen bonding of the P=O group to OH groups on the surface. The 31P solid-state NMR spectra prove that even at low temperatures, the molecules of 1 are highly mobile on the surface. Using T1 and T2 relaxation time analyses of the 31P resonance in the solid state at variable temperatures allowed the identification and quantification of two different modes of mobility. Besides the translational mobility that consists of jumps from one hydrogen-bonding OH site on the surface to an adjacent one, a rotational movement around the axis defined by the P=O group of 1 occurs.
Collapse
Affiliation(s)
- Patrick J Hubbard
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA
| | - Jordon W Benzie
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA
| | - Vladimir I Bakhmutov
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA
| | - Janet Blümel
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA
| |
Collapse
|
24
|
Arp FF, Ahn SH, Bhuvanesh N, Blümel J. Selective synthesis and stabilization of peroxides via phosphine oxides. NEW J CHEM 2019. [DOI: 10.1039/c9nj04858h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
MEKPO (methyl ethyl ketone peroxide) and other peroxides can be synthesized selectively and stabilized as hydrogen-bonded phosphine oxide adducts.
Collapse
Affiliation(s)
- Fabian F. Arp
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Shin Hye Ahn
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Janet Blümel
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| |
Collapse
|