1
|
Esarte Palomero O, Jones RA. Ferrocene tethered boramidinate frustrated Lewis pairs: stepwise capture of CO 2 and CO. Dalton Trans 2022; 51:6275-6284. [PMID: 35379999 DOI: 10.1039/d2dt00691j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and reactivity of novel ferrocene tethered boramidinate frustrated Lewis pairs (FLPs), capable of the sequential capture of small molecules, is reported. Reactions of 1,1'-dicarbodiimidoferrocenes with different boranes provides access to metallocene tethered FLPs. The reactivity of the boramidinate moieties can be tuned by the nature of the carbodiimido substituents (alkyl vs. aryl) and the borane used in the reduction (9-borabicyclo[3.3.1]nonane [(C8H14)2BH]2vs. bis-pentafluorophenyl borane [(C6F5)2BH]2). The boramidinate FLP arms do not engage in intramolecular reactions, allowing for independent small molecule capture by each FLP. By careful synthetic control, sequential capture of different gaseous small molecules (CO2 and CO or CO2 and CNtBu) by the same bis(boramidinate)ferrocene molecule has been demonstrated.
Collapse
Affiliation(s)
- Orhi Esarte Palomero
- Department of Chemistry - The University of Texas at Austin, 105 E 24th St., Austin, TX 78712, USA.
| | - Richard A Jones
- Department of Chemistry - The University of Texas at Austin, 105 E 24th St., Austin, TX 78712, USA.
| |
Collapse
|
4
|
Affinity-based protein profiling to reveal targets of puerarin involved in its protective effect on cardiomyocytes. Biomed Pharmacother 2020; 134:111160. [PMID: 33370630 DOI: 10.1016/j.biopha.2020.111160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022] Open
Abstract
Natural products are an important source of new drugs. Some of them may be used directly in clinical settings without further structural modification. One of these directly used natural products is puerarin (Pue), which protects cardiomyocytes against oxidative stress and high glucose stress. Although Pue has been used in clinics for many years, its direct binding targets involved in the protection of cardiomyocytes are not yet fully understood. Here, we reported that Pue could prevent cardiomyocytes from apoptosis under H2O2 and high glucose conditions. Based on affinity-based protein profiling methods, we synthesized an active Pue probe (Pue-DA) with a photosensitive crosslinker to initiate a biological orthogonal reaction. Because of the steric hindrance of Pue-DA, two conformational isomers (syn and anti) unequivocally existed in the probe, and these transformed into one isomer when the probe was heated at 60 °C. We confirmed that the alkylation was on the 7-position phenol group of Pue. Mass spectroscopy revealed that Pue-DA can bind with three proteins, namely CHAF1B, UBE2C, and UBE2T. Finally, cellular thermal shift assay showed that Pue has the ability to stabilize CHAF1B stabilization. The knock-down of CHAF1B reduced the protective effect of Pue on cardiomyocytes. In conclusion, Pue protects cardiomyocytes from apoptosis through binding with CHAF1B.
Collapse
|
5
|
Mahrholdt J, Kovalski E, Korb M, Hildebrandt A, Vrček V, Lang H. Ferrocene‐Fused Acenequinones: Synthesis, Structure and Reaction Chemistry. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Julia Mahrholdt
- Technische Universität Chemnitz Fakultät für Naturwissenschaften, Institut für Chemie, Anorganische Chemie 09107 Chemnitz Germany
| | - Eduard Kovalski
- Technische Universität Chemnitz Fakultät für Naturwissenschaften, Institut für Chemie, Anorganische Chemie 09107 Chemnitz Germany
| | - Marcus Korb
- The University of Western Australia Faculty of Science, School of Molecular Science 6009 Perth Australia
| | - Alexander Hildebrandt
- Technische Universität Chemnitz Fakultät für Naturwissenschaften, Institut für Chemie, Anorganische Chemie 09107 Chemnitz Germany
| | - Valerije Vrček
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Organic Chemistry 10000 Zagreb Croatia
| | - Heinrich Lang
- Technische Universität Chemnitz Fakultät für Naturwissenschaften, Institut für Chemie, Anorganische Chemie 09107 Chemnitz Germany
| |
Collapse
|
6
|
Straube A, Coburger P, Michak M, Ringenberg MR, Hey-Hawkins E. The core of the matter - arene substitution determines the coordination and catalytic behaviour of tris(1-phosphanyl-1'-ferrocenylene)arene gold(I) complexes. Dalton Trans 2020; 49:16667-16682. [PMID: 33084677 DOI: 10.1039/d0dt02743j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Changing the aromatic core of C3-symmetric tris(ferrocenyl)arene-based tris-phosphanes has profound effects on their coordination behaviour towards gold(i). Depending on the arene (s-triazine, benzene, or trifluorobenzene), four different coordination modes can be distinguished and their preference has been rationalised using computational methods. The corresponding 1 : 1 ligand-to-metal complexes, studied by variable-temperature NMR spectroscopy, revealed fluctional behaviour in solution. Given the presence of up to three or six ferrocenylene spacers per complex, their electrochemistry was investigated. The redox-responsive nature of the complexes can be advantageously exploited in the catalytic ring-closing isomerisation of N-(2-propyn-1-yl)benzamide, where the benzene-based 2 : 3 ligand-to-metal complex has been shown to display multiple activity states depending on the degree of (reversible) oxidation in a preliminary trial.
Collapse
Affiliation(s)
- Axel Straube
- Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
7
|
Roy SS, Chowdhury SR, Mishra S, Patra SK. Role of Substituents at 3-position of Thienylethynyl Spacer on Electronic Properties in Diruthenium(II) Organometallic Wire-like Complexes. Chem Asian J 2020; 15:3304-3313. [PMID: 32790947 DOI: 10.1002/asia.202000755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Indexed: 11/11/2022]
Abstract
A series of organometallic complexes [Cl(dppe)2 Ru-C≡C-(3-R-C4 H2 S)-C≡C-Ru(dppe)2 Cl] (3-R-C4 H2 S=3-substituted thienyl moiety; R=-H, -C2 H5 , -C3 H7 , -C4 H9 , -C6 H13 , -OMe, -CN in 5 a-5 g respectively) have been synthesized by systematic variation of 3-substituents at the thienylethynyl bridging unit. The diruthenum(II) wire-like complexes (5 a-5 g) have been achieved by the reaction of thienylethynyl bridging units, HC≡C-(3-R-C4 H2 S)-C≡CH (4 a-4 g) with cis-[Ru(dppe)2 Cl2 ]. The wire-like diruthenium(II) complexes undergo two consecutive electrochemical oxidation processes in the potential range of 0.0 - 0.8 V. Interestingly, the wave separation between the two redox waves is greatly influenced by the substituents at the 3-position of the thienylethynyl. Thus, the substitution on 3-position of the thienylethynyl bridging unit plays a pivotal role for tuning the electronic properties. To understand the electronic behavior, density functional theory (DFT) calculations of the selected diruthenium wire-like complexes (5 a-5 e) with different alkyl appendages are performed. The theoretical data demonstrate that incorporation of alkyl groups to the thienylethynyl entity leaves unsymmetrical spin densities, thus affecting the electronic properties. The voltammetric features of the other two Ru(II) alkynyl complexes 5 f and 5 g (with -OMe and -CN group respectively) show an apparent dependence on the electronic properties. The electronic properties in the redox conjugate, (5 a+ ) with Kc of 3.9×106 are further examined by UV-Vis-NIR and FTIR studies, showing optical responses in NIR region along with changes in "-Ru-C≡C-" vibrational stretching frequency. The origin of the observed electronic transition has been assigned based on time-dependent DFT (TDDFT) calculations.
Collapse
Affiliation(s)
- Sourav Saha Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | | | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Sanjib K Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| |
Collapse
|
9
|
Lehrich SW, Mahrholdt J, Korb M, Hildebrandt A, Swarts JC, Lang H. Synthesis, Characterization, and Electrochemistry of Diferrocenyl β-Diketones, -Diketonates, and Pyrazoles. Molecules 2020; 25:molecules25194476. [PMID: 33003450 PMCID: PMC7583057 DOI: 10.3390/molecules25194476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/24/2022] Open
Abstract
The synthesis of FcC(O)CH(R)C(O)Fc (Fc = Fe(η5-C5H4)(η5-C5H5); R = H, 5; nBu, 7; CH2CH2(OCH2CH2)2OMe, 9), [M(κ2O,O′-FcC(O)CHC(O)Fc)n] (M = Ti, n = 3, 10; M = Fe, n = 3, 11; M = BF2, n = 1, 12), and 1-R′-3,5-Fc2-cC3HN2 (R′ = H, 13; Me, 14; Ph, 15) is discussed. The solid-state structures of 5, 7, 9, 12, 13, 15, and 16 ([TiCl2(κ2O,O′-PhC(O)CHC(O)Ph)2]) show that 7 and 9 exist in their β-diketo form. Compound 13 crystallizes as a tetramer based on a hydrogen bond pattern, including one central water molecule. The electrochemical behavior of 5–7 and 9–16 was studied by cyclic and square-wave voltammetry, showing that the ferrocenyls can separately be oxidized reversibly between −50 and 750 mV (5–7, 9, 12–15: two Fc-related events; 10, 11: six events, being partially superimposed). For complex 10, Ti-centered reversible redox processes appear at −985 (TiII/TiIII) and −520 mV (TiIII/TiIV). Spectro-electrochemical UV-Vis/NIR measurements were carried out on 5, 6, and 12, whereby only 12 showed an IVCT (intervalence charge-transfer) band of considerable strength (νmax = 6250 cm−1, Δν½ = 4725 cm−1, εmax = 240 L·mol−1·cm−1), due to the rigid C3O2B cycle, enlarging the coupling strength between the Fc groups.
Collapse
Affiliation(s)
- Steve W. Lehrich
- Anorganische Chemie, Institut für Chemie, Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany; (S.W.L.); (J.M.); (A.H.)
| | - Julia Mahrholdt
- Anorganische Chemie, Institut für Chemie, Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany; (S.W.L.); (J.M.); (A.H.)
| | - Marcus Korb
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia;
| | - Alexander Hildebrandt
- Anorganische Chemie, Institut für Chemie, Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany; (S.W.L.); (J.M.); (A.H.)
| | - Jannie C. Swarts
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa;
| | - Heinrich Lang
- Anorganische Chemie, Institut für Chemie, Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany; (S.W.L.); (J.M.); (A.H.)
- Correspondence: ; Tel./Fax: +49-(0)371-531-21210
| |
Collapse
|
10
|
Preuß A, Notz S, Kovalski E, Korb M, Blaudeck T, Hu X, Schuster J, Miesel D, Rüffer T, Hildebrandt A, Schreiter K, Spange S, Schulz SE, Lang H. Ferrocenyl-Pyrenes, Ferrocenyl-9,10-Phenanthrenediones, and Ferrocenyl-9,10-Dimethoxyphenanthrenes: Charge-Transfer Studies and SWCNT Functionalization. Chemistry 2020; 26:2635-2652. [PMID: 31650632 PMCID: PMC7064959 DOI: 10.1002/chem.201904450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 11/06/2022]
Abstract
The synthesis of 1-Fc- (3), 1-Br-6-Fc- (5 a), 2-Br-7-Fc- (7 a), 1,6-Fc2 - (5 b), 2,7-Fc2 -pyrene (7 b), 3,6-Fc2 -9,10-phenanthrenedione (10), and 3,6-Fc2 -9,10-dimethoxyphenanthrene (12; Fc=Fe(η5 -C5 H4 )(η5 -C5 H5 )) is discussed. Of these compounds, 10 and 12 form 1D or 2D coordination polymers in the solid state. (Spectro)Electrochemical studies confirmed reversible Fc/Fc+ redox events between -130 and 160 mV. 1,6- and 2,7-Substitution in 5 a (E°'=-130 mV) and 7 a (E°'=50 mV) influences the redox potentials, whereas the ones of 5 b and 7 b (E°'=20 mV) are independent. Compounds 5 b, 7 b, 10, and 12 show single Fc oxidation processes with redox splittings between 70 and 100 mV. UV/Vis/NIR spectroelectrochemistry confirmed a weak electron transfer between FeII /FeIII in mixed-valent [5 b]+ and [12]+ . DFT calculations showed that 5 b non-covalently interacts with the single-walled carbon nanotube (SWCNT) sidewalls as proven by, for example, disentangling experiments. In addition, CV studies of the as-obtained dispersions confirmed exohedral attachment of 5 b at the SWCNTs.
Collapse
Affiliation(s)
- Andrea Preuß
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Sebastian Notz
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Eduard Kovalski
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Marcus Korb
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany.,Current address: Faculty of Science, School of Molecular Sciences, The University of Western Australia, Crawley, Perth, WA, 6009, Australia
| | - Thomas Blaudeck
- Center for Microtechnologies (ZfM), Technische Universität Chemnitz, 09107, Chemnitz, Germany.,Fraunhofer Institute for Electronic Nano Systems (ENAS), Technologie-Campus 3, 09126, Chemnitz, Germany
| | - Xiao Hu
- Center for Microtechnologies (ZfM), Technische Universität Chemnitz, 09107, Chemnitz, Germany.,Fraunhofer Institute for Electronic Nano Systems (ENAS), Technologie-Campus 3, 09126, Chemnitz, Germany
| | - Jörg Schuster
- Center for Microtechnologies (ZfM), Technische Universität Chemnitz, 09107, Chemnitz, Germany.,Fraunhofer Institute for Electronic Nano Systems (ENAS), Technologie-Campus 3, 09126, Chemnitz, Germany.,Center for Advancing Electronics Dresden (cfaed), 09107, Chemnitz, Germany
| | - Dominique Miesel
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Tobias Rüffer
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Alexander Hildebrandt
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Katja Schreiter
- Faculty of Natural Sciences, Institute of Chemistry, Polymer Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Stefan Spange
- Faculty of Natural Sciences, Institute of Chemistry, Polymer Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Stefan E Schulz
- Center for Microtechnologies (ZfM), Technische Universität Chemnitz, 09107, Chemnitz, Germany.,Fraunhofer Institute for Electronic Nano Systems (ENAS), Technologie-Campus 3, 09126, Chemnitz, Germany.,Center for Advancing Electronics Dresden (cfaed), 09107, Chemnitz, Germany
| | - Heinrich Lang
- Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany.,Center for Advancing Electronics Dresden (cfaed), 09107, Chemnitz, Germany
| |
Collapse
|