1
|
Qu W, Wei P, Li J, Liang L, Ma L, Li G. Self-assembly of Dawson-type H 6P 2W 18O 62@[Cu 6O(TZI) 3(H 2O) 6] 4 for high-performance aerobic oxidation desulfurization of fuel. Dalton Trans 2024; 53:12610-12619. [PMID: 39010721 DOI: 10.1039/d4dt01568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Because global sulfur emission has escalated, the development of high-efficiency deep desulfurization techniques has become imperative. Herein, to design a high-activity heterogeneous catalyst for the aerobic oxidation desulfurization (AODS) of fuel, Dawson-type polyoxometalate (H6P2W18O62 abbreviated as D-P2W18), characterized by its high activity and strong oxidative capacity, was applied to react with CuCl2·2H2O and H3TZI via a one-pot hydrothermal method. Consequently, blue crystalline H6P2W18O62@[Cu6O(TZI)3(H2O)6]4 (abbreviated as D-P2W18@rht-MOF-1; rht-MOF-1 = [Cu6O(TZI)3(H2O)6]4·nH2O) was afforded. X-ray diffraction analysis indicated that D-P2W18 was successfully encapsulated in two different cages of rht-MOF-1, which is distinct from the crystal structure of Keggin-type POMs@rht-MOF-1. It represents the first crystal structure of Dawson-type POMs@rht-MOF-1. When D-P2W18@rht-MOF-1 was employed as a catalyst for AODS under ambient oxygen pressure with the assistance of surfactant dioctadecyl dimethyl ammonium chloride (DODMAC), it demonstrated remarkable catalytic capability and recyclability for both model fuel and commercial diesel. Further, the AODS reaction mechanism, identified as a free radical oxidation-reduction process, was verified by way of radical quenching experiments, EPR and XPS analysis. This approach offers a feasible route for the synthesis of new Dawson-type POMs@MOFs of heterogeneous catalysts for highly active AODS of fuel.
Collapse
Affiliation(s)
- Wenjia Qu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China.
| | - Pengpeng Wei
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China.
| | - Jingfang Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China.
| | - Liye Liang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China.
| | - Liqiang Ma
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China.
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, Heilongjiang, China.
| |
Collapse
|
2
|
Zheng Y, Xu Y, Guo J, Li J, Shen J, Guo Y, Bao X, Huang Y, Zhang Q, Xu J, Wu J, Ian H, Shao H. Cobalt sulfide nanoparticles restricted in 3D hollow cobalt tungstate nitrogen-doped carbon frameworks incubating stable interfaces for Li-ion storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
The reduced phosphomolybdate as dual-functional electrocatalyst and electrochemical sensor for detecting hydrogen peroxide and dopamine. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
4
|
One-step hydrothermal synthesis of coordination polymers with high specific capacity and superior lithium storage properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Ma XX, Chen X, Bai YK, Shen X, Zhang R, Zhang Q. The Defect Chemistry of Carbon Frameworks for Regulating the Lithium Nucleation and Growth Behaviors in Lithium Metal Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007142. [PMID: 33661559 DOI: 10.1002/smll.202007142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Carbon materials have been widely considered as the frameworks in lithium (Li) metal anodes due to their lightweight, high electrical conductivity, and large specific surface area. Various heteroatom-doping strategies have been developed to enhance the lithiophilicity of carbon frameworks, thus rendering a uniform Li nucleation in working Li metal batteries. The corresponding lithiophilicity chemistry of doping sites has been comprehensively probed. However, various defects are inevitably introduced into carbon materials during synthesis and their critical role in regulating Li nucleation and growth behaviors is less understood. In this contribution, the defect chemistry of carbon materials in Li metal anodes is investigated through first-principles calculations. The binding energy towards a Li atom and the critical current density are two key descriptors to reveal the defect chemistry of carbon materials. Consequently, a diagram of designing carbon frameworks with both high lithiophilicity and a large critical current density is built, from which the Stone-Wales defect is predicted to possess the best performance for delivering a uniform Li deposition. This work uncovers the defect chemistry of carbon frameworks and affords fruitful insights into defect engineering for achieving dendrite-free Li metal anodes.
Collapse
Affiliation(s)
- Xia-Xia Ma
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yun-Ke Bai
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xin Shen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Rui Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Liu X, Cui L, Yu K, Lv J, Liu Y, Ma Y, Zhou B. Cu/Ag Complex Modified Keggin-Type Coordination Polymers for Improved Electrochemical Capacitance, Dual-Function Electrocatalysis, and Sensing Performance. Inorg Chem 2021; 60:14072-14082. [PMID: 34455794 DOI: 10.1021/acs.inorgchem.1c01397] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Different metal-organic units were introduced into the {PMo12} polyoxometalate (POM) system to yield three porous coordination polymers with distinct characteristics, {Cu(pra)2}[{Cu(pra)2}3{PMo11VIMoVO40}] (1), [{Ag5(pz)6(H2O)0.5Cl}{PMo11VIMoVO40}] (2), and [{Cu3(bpz)5(H2O)}{PMo12O40}] (3) (pra = pyrazole; pz = pyrazine; bpz = benzopyrazine), via an in situ hydrothermal method. In comparison with the maternal Keggin cluster and most reported POM electrode materials, compounds 1-3 exhibit larger specific capacitances (672.2, 782.1, and 765.2 F g-1 at a current density of 2.4 A g-1, respectively), superior cyclic stability (91.5%, 89.3%, and 87.8% of cycle efficiency after 5000 cycles, respectively), and boosted conductivity, which may be attributed to the introduction of metal-organic units. The result indicates that metal-organic units can effectively enhance the capacitance performance of POMs. This may be due to the fact that they provide additional redox centers, induce the formation of stable porous structures, and improve ion/electron transfer efficiency. Compounds 1-3 present excellent electrocatalytic activity in reducing peroxide (H2O2) and oxidizing ascorbic acid (AA). In addition, compound 2 shows an outstanding sensing performance detection of AA and H2O2.
Collapse
Affiliation(s)
- Xingzhi Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, People's Republic of China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Liping Cui
- Academy of Life Science and Technology, State Key Laboratory of Molecular Genetics, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, People's Republic of China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Yuhang Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, People's Republic of China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Yajie Ma
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, People's Republic of China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| |
Collapse
|
7
|
Liu JH, Yu MY, Pei WY, Wang T, Ma JF. Self-Assembly of Polyoxometalate-Resorcin[4]arene-Based Inorganic-Organic Complexes: Metal Ion Effects on the Electrochemical Performance of Lithium Ion Batteries. Chemistry 2021; 27:10123-10133. [PMID: 34015862 DOI: 10.1002/chem.202100780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/10/2023]
Abstract
With their adjustable structures and diverse functions, polyoxometalate (POM)-resorcin[4]arene-based inorganic-organic complexes are a kind of potential multifunctional material. They have potential applications for lithium ion batteries (LIBs). However, the relationship between different coordinated metal ions and electrochemical performance has rarely been investigated. Here, three functionalized POM-resorcin[4]arene-based inorganic-organic materials, [Co2 (TMR4 A)2 (H2 O)10 ][SiW12 O40 ]⋅2 EtOH⋅4.5 H2 O (1), [Ni2 (TMR4 A)2 (H2 O)10 ][SiW12 O40 ]⋅4 EtOH⋅13 H2 O (2), and [Zn2 (TMR4 A)2 (H2 O)10 ][SiW12 O40 ]⋅2 EtOH⋅2 H2 O (3), have been synthesized. Furthermore, to enhance the conductivities of these compounds, 1-3 were doped with reduced graphene oxide (RGO) to give composites 1@RGO-3@RGO, respectively. As anode materials for LIBs, 1@RGO-3@RGO can deliver very high discharge capacities (1445.9, 1285.0 and 1095.3 mAh g-1 , respectively) in the initial run, and show discharge capacities of 898, 665 and 651 mAh g-1 , respectively, at a current density of 0.1 A g-1 over 100 runs. More importantly, the discharge capacities of 319, 283 and 329 mAh g-1 were maintained for 1@RGO-3@RGO even after 400 cycles at large current density (1 A g-1 ).
Collapse
Affiliation(s)
- Jin-Hua Liu
- Key Lab of Polyoxometalate and Reticular Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ming-Yue Yu
- Key Lab of Polyoxometalate and Reticular Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Wen-Yuan Pei
- Key Lab of Polyoxometalate and Reticular Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Tianqi Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Jian-Fang Ma
- Key Lab of Polyoxometalate and Reticular Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
8
|
Bai JD, Zhang YH, Shi H, Shi Q, Shi FN. Synthesis, structure and lithium storage performance of a copper–molybdenum complex polymer based on 4,4′-bipyridine. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Wang Q, Xu B, Wang Y, Wang H, Hu X, Ma P, Niu J, Wang J. Polyoxometalate-Incorporated Framework as a Heterogeneous Catalyst for Selective Oxidation of C-H Bonds of Alkylbenzenes. Inorg Chem 2021; 60:7753-7761. [PMID: 34019402 DOI: 10.1021/acs.inorgchem.1c00135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing new catalysts for highly efficient and selective oxidation of saturated C-H bonds is significant due to their thermodynamic strength. Via incorporation of PW12O403-, pyridine-2,5-dicarboxylic acids (pydc), and Fe(III) ions into one framework, a new polyoxometalate-based metal-organic framework, [HFe4O2(H2O)4(pydc)3PW12O40]·10.5H2O (FeW-PYDC), was successfully prepared by a hydrothermal method. Interestingly, FeW-PYDC features a three-dimensional porous structure with {Fe4O2} interconnecting with PW12O403- units. FeW-PYDC displayed excellent performance in the selective oxidation of C-H bonds of alkylbenzenes with high conversion (95.7%) and selectivity (96.6%). As an effective heterogeneous catalyst, FeW-PYDC demonstrates good reusability and structural stability.
Collapse
Affiliation(s)
- Quanzhong Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Baijie Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Yingyue Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Hui Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Xin Hu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|
10
|
Han Z, Li X, Li Q, Li H, Xu J, Li N, Zhao G, Wang X, Li H, Li S. Construction of the POMOF@Polypyrrole Composite with Enhanced Ion Diffusion and Capacitive Contribution for High-Performance Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6265-6275. [PMID: 33502845 DOI: 10.1021/acsami.0c20721] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyoxometalate (POM) as an "electronic sponge" can store a great number of electrons; however, shortcomings of poor conductivity and solubility in electrolytes cause a significant decrease in specific capacity and poor rate capability. To address the aforementioned disadvantages, a dual strategy was proposed, including coating the conductive polypyrrole (PPy) and utilizing nitrogenous ligands (1,10-phenanthroline monohydrate = 1,10-phen) for metal-organic frameworks (MOFs) to fabricate a [Cu(1,10-phen)(H2O)2]2[Mo6O20]@PPy (Cu-POMOF@PPy) composite, effectively confining the POM in MOFs to avoid dissolution of POM in the electrolyte and improve electrochemical stability. Simultaneously, the PPy shell could improve the conductivity, contribute extra capacity, and alleviate volume variation of Cu-POMOF during cycling. Therefore, the final Cu-POMOF@PPy composite provides an excellent specific capacity of around 769 mA h g-1 at 0.1 A g-1 after 160 cycles and good rate performance, associated with great cycling stability (319 mA h g-1 at 2 A g-1 after 500 cycles). Moreover, the electrochemical reaction mechanism of Cu-POMOF@PPy was investigated by ex situ XPS measurements, indicating that storage of electrons results from the reduction/oxidation of Mo atoms (Mo6+ ↔ Mo4+) and Cu atoms (Cu2+ ↔ Cu0). As a consequence, this work not only proposes a novel method for preparing POM-based lithium-ion batteries but also expands the variety of anode materials.
Collapse
Affiliation(s)
- Zhiyuan Han
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Xueying Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Qiang Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Hongsen Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Jie Xu
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Na Li
- School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Guoxia Zhao
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Xia Wang
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Hongliang Li
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shandong Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| |
Collapse
|