1
|
Georg M, Legin AA, Hejl M, Jakupec MA, Becker J, Göttlich R. Synthesis and Antiproliferative Activity of Cisplatin-3-Chloropiperidine Conjugates. Chembiochem 2024:e202400519. [PMID: 39301577 DOI: 10.1002/cbic.202400519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
We report the synthesis and characterization of two novel cisplatin- alkylating agents conjugates. Combining a platinum based cytostatic agent with a sterically demanding alkylating agent could potentially induce further DNA damage, block cell repair mechanisms and keep the substrate active against resistant tumor cell lines. The 3-chloropiperidines utilized as ligands in this work are cyclic representatives of the N-mustard family and were not able to coordinate platinum on their own. The introduction of a second coordination site, in form of a pyridine moiety, led to the isolation of the desired conjugates. They were characterized with HRMS, CHN-analyses and XRD. We concluded this work by examining the cytotoxicity of the ligands and the obtained complexes with MTT assays in human cancer cell lines. While the ligands showed hardly any activity, the novel conjugates both displayed a high antiproliferative and cytotoxic potency in a panel of three cell lines. Moreover, both complexes were able to largely circumvent the acquired cisplatin resistance of A2780cisR ovarian cancer cells, both in the MTT assay and a flow-cytometric apoptosis assay.
Collapse
Affiliation(s)
- Mats Georg
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Anton A Legin
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Richard Göttlich
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
2
|
Caligiuri R, Massai L, Geri A, Ricciardi L, Godbert N, Facchetti G, Lupo MG, Rossi I, Coffetti G, Moraschi M, Sicilia E, Vigna V, Messori L, Ferri N, Mazzone G, Aiello I, Rimoldi I. Cytotoxic Pt(II) complexes containing alizarin: a selective carrier for DNA metalation. Dalton Trans 2024; 53:2602-2618. [PMID: 38223973 DOI: 10.1039/d3dt03889k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Many efforts have been made in the last few decades to selectively transport antitumor agents to their potential target sites with the aim to improve efficacy and selectivity. Indeed, this aspect could greatly improve the beneficial effects of a specific anticancer agent especially in the case of orphan tumors like the triple negative breast cancer. A possible strategy relies on utilizing a protective leaving group like alizarin as the Pt(II) ligand to reduce the deactivation processes of the pharmacophore enacted by Pt resistant cancer cells. In this study a new series of neutral mixed-ligand Pt(II) complexes bearing alizarin and a variety of diamine ligands were synthesized and spectroscopically characterized by FT-IR, NMR and UV-Vis analyses. Three Pt(II) compounds, i.e., 2b, 6b and 7b, emerging as different both in terms of structural properties and cytotoxic effects (not effective, 10.49 ± 1.21 μM and 24.5 ± 1.5 μM, respectively), were chosen for a deeper investigation of the ability of alizarin to work as a selective carrier. The study comprises the in vitro cytotoxicity evaluation against triple negative breast cancer cell lines and ESI-MS interaction studies relative to the reaction of the selected Pt(II) complexes with model proteins and DNA fragments, mimicking potential biological targets. The results allow us to suggest the use of complex 6b as a prospective anticancer agent worthy of further investigations.
Collapse
Affiliation(s)
- Rossella Caligiuri
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Lara Massai
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Andrea Geri
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Loredana Ricciardi
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy
| | - Nicolas Godbert
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
- LPM-Laboratorio Preparazione Materiali, STAR-Lab, Università della Calabria, Via Tito Flavio, 87036 Rende (CS), Italy
| | - Giorgio Facchetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| | | | - Ilaria Rossi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Giulia Coffetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| | - Martina Moraschi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Vincenzo Vigna
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Luigi Messori
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Iolinda Aiello
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
- LPM-Laboratorio Preparazione Materiali, STAR-Lab, Università della Calabria, Via Tito Flavio, 87036 Rende (CS), Italy
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy
| | - Isabella Rimoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| |
Collapse
|
3
|
Jin W, Fan B, Qin X, Liu Y, Qian C, Tang B, James TD, Chen G. Structure-activity of chlormethine fluorescent prodrugs: Witnessing the development of trackable drug delivery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Wang G, Wang JJ, Zhi-Min Z, Xu XN, Shi F, Fu XL. Targeting critical pathways in ferroptosis and enhancing antitumor therapy of Platinum drugs for colorectal cancer. Sci Prog 2023; 106:368504221147173. [PMID: 36718538 PMCID: PMC10450309 DOI: 10.1177/00368504221147173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Colorectal cancer (CRC) can be resistant to platinum drugs, possibly through ferroptosis suppression, albeit the need for further work to completely understand this mechanism. This work aimed to sum up current findings pertaining to oxaliplatin resistance (OR) or resistance to ascertain the potential of ferroptosis to regulate oxaliplatin effects. In this review, tumor development relating to iron homeostasis, which includes levels of iron that ascertain cells' sensitivity to ferroptosis, oxidative stress, or lipid peroxidation in colorectal tumor cells that are connected with ferroptosis initiation, especially the role of c-Myc/NRF2 signaling in regulating iron homeostasis, coupled with NRF2/GPX4-mediated ferroptosis are discussed. Importantly, ferroptosis plays a key role in OR and ferroptotic induction may substantially reverse OR in CRC cells, which in turn could inhibit the imbalance of intracellular redox induced by oxaliplatin and ferroptosis, as well as cause chemotherapeutic resistance in CRC. Furthermore, fundamental research of small molecules, ferroptosis inducers, GPX4 inhibitors, or natural products for OR coupled with their clinical applications in CRC have also been summarized. Also, potential molecular targets and mechanisms of small molecules or drugs are discussed as well. Suggestively, OR of CRC cells could significantly be reversed by ferroptosis induction, wherein this result is discussed in the current review. Prospectively, the existing literature discussed in this review will provide a solid foundation for scientists to research the potential use of combined anticancer drugs which can overcome OR via targeting various mechanisms of ferroptosis. Especially, promising therapeutic strategies, challenges ,and opportunities for CRC therapy will be discussed.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Zhu Zhi-Min
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Xiao-Na Xu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| |
Collapse
|
5
|
Synthesis and Antitumor Activity of a GSH Inert Bisphosphonate Platinum (II) Complex. J CHEM-NY 2022. [DOI: 10.1155/2022/3137142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma is a highly aggressive neoplasm. Traditional platinum chemotherapeutic agents for osteosarcoma inevitably have acquired drug resistance and serious side effects, which have limited their utility. To slow down the reaction of platinum drugs with glutathione (GSH) is a strategy to overcome the resistance of platinum chemotherapeutic agents. Herein, the unique design of a GSH inert bisphosphonate platinum complex cis-{di(amino)platinum[tetraethyl 2,2-bis(2-pyridinylmethyl)methylidene-1,1-bisphosphonate]} (DBPP) is reported. MTT assay demonstrates that DBPP showed moderate inhibition towards human osteosarcoma cell line U2OS cells. The cytostatic action of DBPP is related to conformational conversion from B-DNA to A-DNA and the unwinding of pUC19 DNA. DBPP could also destroy the tertiary structure of human serum albumin (HSA). Notably, 31P NMR and 1H NMR indicate that DBPP can hardly chelate with GSH, which could overcome the GSH-induced side effects. We envision that this unique design of the platinum complex would open up new ways to overcome GSH-induced resistance.
Collapse
|
6
|
Annunziata A, Liberti D, Bedini E, Cucciolito ME, Loreto D, Monti DM, Merlino A, Ruffo F. Square-Planar vs. Trigonal Bipyramidal Geometry in Pt(II) Complexes Containing Triazole-Based Glucose Ligands as Potential Anticancer Agents. Int J Mol Sci 2021; 22:ijms22168704. [PMID: 34445409 PMCID: PMC8395886 DOI: 10.3390/ijms22168704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
This article describes the synthesis, characterization, and biological activity of novel square-planar cationic platinum(II) complexes containing glucoconjugated triazole ligands and a comparison with the results obtained from the corresponding five-coordinate complexes bearing the same triazole ligands. Stability in solution, reactivity with DNA and small molecules of the new compounds were evaluated by NMR, fluorescence, and UV–vis absorption spectroscopy, together with their cytotoxic action against pairs of immortalized and tumorigenic cell lines. The results show that the square-planar species exhibit greater stability than the corresponding five-coordinate ones. Furthermore, although the square-planar complexes are less cytotoxic than the latter ones, they exhibit a certain selectivity. These results simultaneously demonstrate that overall stability is a fundamental prerequisite for preserving the performance of the agents and that coordinative saturation constitutes a point in favor of their biological action.
Collapse
|
7
|
Chatterjee R, Bhattacharya I, Roy S, Purkait K, Koley TS, Gupta A, Mukherjee A. Synthesis, Characterization, and Cytotoxicity of Morpholine-Containing Ruthenium(II) p-Cymene Complexes. Inorg Chem 2021; 60:12172-12185. [PMID: 34346215 DOI: 10.1021/acs.inorgchem.1c01363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Morpholine motif is an important pharmacophore and, depending on the molecular design, may localize in cellular acidic vesicles. To understand the importance of the presence of pendant morpholine in a metal complex, six bidentate N,O-donor ligands with or without a pendant morpholine unit and their corresponding ruthenium(II) p-cymene complexes (1-6) are synthesized, purified, and structurally characterized by various analytical methods including X-ray diffraction. Complexes 2-4 crystallized in the P21/c space group, whereas 5 and 6 crystallized in the P1̅ space group. The solution stability studies using 1H NMR support instantaneous hydrolysis of the native complexes to form monoaquated species in a solution of 3:7 (v/v) dimethyl sulfoxide-d6 and 20 mM phosphate buffer (pH* 7.4, containing 4 mM NaCl). The monoaquated complexes are stable for at least up to 24 h. The complexes display excellent in vitro antiproliferative activity (IC50 ca. 1-14 μM) in various cancer cell lines, viz., MDA-MB-231, MiaPaCa2, and Hep-G2. The presence of the pendant morpholine does not improve the dose efficacy, but rather, with 2-[[(2,6-dimethylphenyl)imino]methyl]phenol (HL1) and its pendant morpholine analogue (HL3) giving complexes 1 and 3, respectively, the antiproliferative activity was poorer with 3. MDA-MB-231 cells treated with the complexes show that the acidic vesicles remain acidic, but the population of acidic vesicles increases or decreases with time of exposure, as observed from the dispersed red puncta, depending on the complex used. The presence of the 2,6-disubstituted aniline and the naphthyl group seems to improve the antiproliferative dose. The complex treated MDA-MB-231 cells show that cathepsin D, which is otherwise present in the cytosolic lysosomes, translocates to the nucleus as a result of exposure to the complexes. Irrespective of the presence of a morpholine motif, the complexes do not activate caspase-3 to induce apoptosis and seem to favor the necrotic pathway of cell killing.
Collapse
|
8
|
Yi Y, Li L, Song F, Li P, Chen M, Ni S, Zhang H, Zhou H, Zeng S, Jiang H. L-tetrahydropalmatine reduces oxaliplatin accumulation in the dorsal root ganglion and mitochondria through selectively inhibiting the transporter-mediated uptake thereby attenuates peripheral neurotoxicity. Toxicology 2021; 459:152853. [PMID: 34252480 DOI: 10.1016/j.tox.2021.152853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022]
Abstract
Oxaliplatin (OXA) is a third-generation platinum drug; however, its application is greatly limited due to the severe peripheral neurotoxicity. This study aims to confirm the transport mechanism of OXA and to explore whether L-tetrahydropalmatine (L-THP) would alleviate OXA-induced peripheral neurotoxicity by selectively inhibiting these uptake transporters in vitro and in vivo. Our results revealed that organic cation transporter 2 (OCT2), organic cation/carnitine transporter 1 (OCTN1) and organic cation/carnitine transporter 2 (OCTN2) were involved in the uptake of OXA in dorsal root ganglion (DRG) neurons and mitochondria, respectively. L-THP (1-100 μM) reduced OXA (40 μM) induced cytotoxicity in MDCK-hOCT2 (Madin-Darby canine kidney, MDCK), MDCK-hOCTN1, MDCK-hOCTN2, and rat primary DRG cells, and decreased the accumulation of OXA in above cells and rat DRG mitochondria, but did not affect its efflux from MDCK-hMRP2 cells. Furthermore, Co-administration of L-THP (5-20 mg/kg for mice, 10-40 mg/kg for rats; twice a week, iv or ig) attenuated OXA (8 mg/kg for mice, 4 mg/kg for rats; twice a week, iv) induced peripheral neurotoxicity and reduced the platinum concentration in the DRG. Whereas, L-THP (1-100 μM for cells; 10-20 mg/kg for mice) did not impair the antitumour efficacy of OXA (40 μM for cells; 8 mg/kg for mice) in HT29 tumour-bearing nude mice nor in tumour cells (HT29 and SW620 cells). In conclusion, OCT2, OCTN1 and OCTN2 contribute to OXA uptake in the DRG and mitochondria. L-THP attenuates OXA-induced peripheral neurotoxicity via inhibiting OXA uptake but without impairing the antitumour efficacy of OXA. L-THP is a potential candidate drug to attenuate OXA-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Yaodong Yi
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Liping Li
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Feifeng Song
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ping Li
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Mingyang Chen
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Shixin Ni
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hengbin Zhang
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hui Zhou
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Su Zeng
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Huidi Jiang
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
9
|
Maji M, Bhattacharya I, Acharya S, Chakraborty MP, Gupta A, Mukherjee A. Hypoxia Active Platinum(IV) Prodrugs of Orotic Acid Selective to Liver Cancer Cells. Inorg Chem 2021; 60:4342-4346. [PMID: 33711231 DOI: 10.1021/acs.inorgchem.0c03803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Platinum(IV) complexes of orotic acid selectively target liver cancer cells displaying enhanced activity and higher uptake in Hep G2. The comparatively higher expression of Organic Anion Transporter 2 (OAT2) in Hep G2 and decrease in toxicity in the presence of OAT2 inhibitor suggest its involvement in the uptake of the complexes. They are resistant to sequestration by the copper transporter ATP7B, unlike cisplatin and oxaliplatin.
Collapse
Affiliation(s)
- Moumita Maji
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Indira Bhattacharya
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Sourav Acharya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Manas Pratim Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
10
|
Acharya S, Maji M, Chakraborty MP, Bhattacharya I, Das R, Gupta A, Mukherjee A. Disruption of the Microtubule Network and Inhibition of VEGFR2 Phosphorylation by Cytotoxic N, O-Coordinated Pt(II) and Ru(II) Complexes of Trimethoxy Aniline-Based Schiff Bases. Inorg Chem 2021; 60:3418-3430. [PMID: 33554592 DOI: 10.1021/acs.inorgchem.0c03820] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Platinum-based complexes are one of the most successful chemotherapeutic agents having a significant ground in cancer chemotherapy despite their side effects. During the past few decades, Ru(II) complexes have been emerging as efficient alternatives owing to their promising activities against platinum-resistant cancer. The pathway of action, lipophilicity, and cytotoxicity of a Pt or Ru complex may be tuned by varying the attached ligands, the coordination mode, and the leaving group. In this work, we report a family of Pt(II) and Ru(II) complexes (1-5) of three N,O and N,N donor-based trimethoxyanilines containing Schiff bases with the general formula [PtII(L)(DMSO)Cl], [RuII(L)(p-cymene)Cl], [RuII(L)(p-cymene)Cl]+, and [PtII(L)Cl2]. All of the complexes are characterized by different analytical techniques. 1H NMR and electrospray ionization mass spectrometry (ESI-MS) data suggest that the N,O-coordinated Pt(II) complexes undergo slower aquation compared to the Ru(II) analogues. The change of the coordination mode to N,N causes the Ru complexes to be more inert to aquation. The N,O-coordinating complexes show superiority over N,N-coordinating complexes by displaying excellent in vitro antiproliferative activity against different aggressive cancer cells, viz., triple-negative human metastatic breast adenocarcinoma MDA-MB-231, human pancreatic carcinoma MIA PaCa-2, and hepatocellular carcinoma Hep G2. In vitro cytotoxicity studies suggest that Pt(II) complexes are more effective than their corresponding Ru(II) analogues, and the most cytotoxic complex 3 is 10-15 times more toxic than the clinical drugs cisplatin and oxaliplatin against MDA-MB-231 cells. Cellular studies show that all of the N,O-coordinated complexes (1-3) initiate disruption of the microtubule network in MDA-MB-231 cells in a dose-dependent manner within 6 h of incubation and finally lead to the arrest of the cell cycle in the G2/M phase and render apoptotic cell death. The disruption of the microtubule network affects the agility of the cytoskeleton rendering inhibition of tyrosine phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2), a key step in angiogenesis. Complexes 1 and 2 inhibit VEGFR2 phosphorylation in a dose-dependent fashion. Among the Pt(II) and Ru(II) complexes, the former displays higher cytotoxicity, a stronger effect on the cytoskeleton, better VEGFR2 inhibition, and strong interaction with the model nucleobase 9-ethylguanine (9-EtG).
Collapse
Affiliation(s)
- Sourav Acharya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Moumita Maji
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Manas Pratim Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Indira Bhattacharya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| |
Collapse
|
11
|
Adams M, Sullivan MP, Tong KKH, Goldstone DC, Hanif M, Jamieson SMF, Hartinger CG. Mustards-Derived Terpyridine-Platinum Complexes as Anticancer Agents: DNA Alkylation vs Coordination. Inorg Chem 2021; 60:2414-2424. [PMID: 33497565 DOI: 10.1021/acs.inorgchem.0c03317] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of bifunctional platinum complexes with the ability to interact with DNA via different binding modes is of interest in anticancer metallodrug research. Therefore, we report platinum(II) terpyridine complexes to target DNA by coordination and/or through a tethered alkylating moiety. The platinum complexes were evaluated for their in vitro antiproliferative properties against the human cancer cell lines HCT116 (colorectal), SW480 (colon), NCI-H460 (non-small cell lung), and SiHa (cervix) and generally exhibited potent antiproliferative activity although lower than their respective terpyridine ligands. 1H NMR spectroscopy and/or ESI-MS studies on the aqueous stability and reactivity with various small biomolecules, acting as protein and DNA model compounds, were used to establish potential modes of action for these complexes. These investigations indicated rapid binding of complex PtL3 to the biomolecules through coordination to the Pt center, while PtL4 in addition alkylated 9-ethylguanine. PtL3 was investigated for its reactivity to the model protein hen egg white lysozyme (HEWL) by protein crystallography which allowed identification of the Nδ1 atom of His15 as the binding site.
Collapse
Affiliation(s)
- Muneebah Adams
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Matthew P Sullivan
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kelvin K H Tong
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - David C Goldstone
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
12
|
Maji M, Acharya S, Maji S, Purkait K, Gupta A, Mukherjee A. Differences in Stability, Cytotoxicity, and Mechanism of Action of Ru(II) and Pt(II) Complexes of a Bidentate N,O Donor Ligand. Inorg Chem 2020; 59:10262-10274. [PMID: 32585099 DOI: 10.1021/acs.inorgchem.0c01433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report [RuII(L)(η6-p-cym)Cl] (1 and 2) and [PtII(L)(DMSO)Cl] (3 and 4) complexes, where L is a chelate imine ligand derived from chloroethylamine and salicylaldehyde (HL1) or o-vanillin (HL2). The complexes were characterized by single-crystal X-ray diffraction and other analytical techniques. The 1H nuclear magnetic resonance data show that both the Ru(II) and Pt(II) complexes start forming the aquated complex within an hour. The aquated complexes are stable at least up to 24 h. The complexes bind to the N7 of the model nucleobase 9-ethylguanine (9-EtG). Interaction with calf thymus (CT) DNA shows moderate binding interactions with binding constants, Kb (3.7 ± 1.2) × 103 M-1 and (4.3 ± 1.9) × 103 M-1 for 1 and 3, respectively. The complexes exhibit significant antiproliferative activity against human pancreas ductal adenocarcinoma (Mia PaCa-2), triple negative metastatic breast adenocarcinoma (MDA-MB-231), hepatocellular carcinoma (Hep G2), and colorectal adenocarcinoma (HT-29) cell lines. The studies show that with the same ligand the Pt(II) complexes are more potent than the Ru(II) complexes. The in vitro potencies of all the complexes toward pancreatic cancer cell line MIA PaCa-2 are more than cisplatin (CDDP). The Pt(II) and Ru(II) complexes show similar binding constants with CT-DNA, but the reactivity of the Pt(II) complex 3 with 9-EtG is faster and their overall cell killing pathways are different. This is evident from the arrest of the cell cycle by the Ru(II) complex 1 in the G2/M phase in contrast to the SubG1 phase arrest by the Pt(II) complex 3. The immunoblot study shows that 3 increases cyclin D and Bcl-2 expression in MDA-MB-231 due to the SubG1 phase arrest where these proteins express in greater quantities. However, both 1 and 3 kill in the apoptotic pathway via dose-dependent activation of caspase 3. Complex 3 depolarizes the mitochondria more efficiently than 1, suggesting its higher preference for the intrinsic pathway of apoptosis. Our work reveals that the same bidentate ligand with a change of the metal center, viz, Pt(II) or Ru(II), imparts significant variation in cytotoxic dosage and pathway of action due to specific intrinsic properties of a metal center (viz, coordination geometry, solution stability) manifested in a complex.
Collapse
Affiliation(s)
- Moumita Maji
- Department of Chemical Sciences and Centre for Advanced Functional materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sourav Acharya
- Department of Chemical Sciences and Centre for Advanced Functional materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Kallol Purkait
- Department of Chemical Sciences and Centre for Advanced Functional materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| |
Collapse
|
13
|
Vaquero M, Busto N, Fernández-Pampín N, Espino G, García B. Appended Aromatic Moieties Determine the Cytotoxicity of Neutral Cyclometalated Platinum(II) Complexes Derived from 2-(2-Pyridyl)benzimidazole. Inorg Chem 2020; 59:4961-4971. [PMID: 32182052 DOI: 10.1021/acs.inorgchem.0c00219] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new family of neutral chiral cyclometalated platinum(II) complexes with formula [Pt(κ2-(C^N))Cl(κ1-(L))], where (C^N) = 2-phenylpyridinate and (L) = 2-(2-pyridyl)benzimidazole (L1) or (N-(CH2)-Ar-(2-(2-pyridyl)benzimidazole) ligands; (Ar = phenyl (L2), naphthyl (L3), pyrenyl (L4)), have been synthesized and completely characterized. The unexpected κ1 coordination mode of the 2-(2-pyridyl)benzimidazole-derived ligands has been confirmed by spectroscopic techniques and X-ray diffraction. The aromatic moieties on the ligands in the new platinum(II) complexes have a remarkable influence on the cytotoxicity and in the binding mode to DNA. [Pt-L1]-[Pt-L4] complexes internalized more than cisplatin in the SW480 cancer cells even though only [Pt-L1] and [Pt-L2] display high cytotoxicity. 1H NMR and 13P{1H}NMR pointed out that [Pt-L1] and [Pt-L2] complexes bind covalently to dGMP, while the electrophoresis assays and CD experiments indicate that only [Pt-L2] is able to covalently interact with DNA, inducing the same conformational changes in the plasmid DNA as cisplatin. Although the complex [Pt-L4] intercalates into DNA, probably through the pyrenyl moiety, no biological activity is observed.
Collapse
Affiliation(s)
- Mónica Vaquero
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Natalia Fernández-Pampín
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Gustavo Espino
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Begoña García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| |
Collapse
|