1
|
Kawase Y, Tsujimoto S, Obayashi T, Kimura S, Ito K, Ikoma S, Ota K, Hashizume D, Matsuo T. Selective monooxygenation of diphosphenes with molecular oxygen. Dalton Trans 2024; 53:1956-1960. [PMID: 38235826 DOI: 10.1039/d3dt04348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The O2 splitting mediated by the bulky Rind-based diphosphenes resulted in the clean formation of the mixed-valent diphosphorus compounds, diphosphene oxides, with P2O moieties. Their structural features and electronic properties have been clearly characterized by experimental and theoretical methods.
Collapse
Affiliation(s)
- Yuria Kawase
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Shota Tsujimoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Tomohiro Obayashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Satoshi Kimura
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Kanta Ito
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Shotaro Ikoma
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Kei Ota
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| |
Collapse
|
2
|
Das A, Elvers BJ, Nayak MK, Chrysochos N, Anga S, Kumar A, Rao DK, Narayanan TN, Schulzke C, Yildiz CB, Jana A. Realizing 1,1-Dehydration of Secondary Alcohols to Carbenes: Pyrrolidin-2-ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angew Chem Int Ed Engl 2022; 61:e202202637. [PMID: 35362643 PMCID: PMC9400972 DOI: 10.1002/anie.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Herein we report secondary pyrrolidin-2-ols as a source of cyclic (alkyl)(amino)carbenes (CAAC) for the synthesis of CAAC-CuI -complexes and cyclic thiones when reacted with CuI -salts and elemental sulfur, respectively, under reductive elimination of water from the carbon(IV)-center. This result demonstrates a convenient and facile access to CAAC-based CuI -salts, which are well known catalysts for different organic transformations. It further establishes secondary alcohols to be a viable source of carbenes-realizing after 185 years Dumas' dream who tried to prepare the parent carbene (CH2 ) by 1,1-dehydration of methanol. Addressed is also the reactivity of water towards CAACs, which proceeds through an oxidative addition of the O-H bond to the carbon(II)-center. This emphasizes the ability of carbon-compounds to mimic the reactivity of transition-metal complexes: reversible oxidative addition and reductive elimination of the O-H bond to/from the C(II)/C(IV)-centre.
Collapse
Affiliation(s)
- Ayan Das
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Benedict J. Elvers
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Srinivas Anga
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Amar Kumar
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - D. Krishna Rao
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | | | - Carola Schulzke
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal PlantsAksaray UniversityAksaray68100Turkey
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| |
Collapse
|
3
|
Das A, Elvers BJ, Nayak MK, Chrysochos N, Anga S, Kumar A, Rao DK, Narayanan TN, Schulzke C, Yildiz CB, Jana A. Realizing the 1,1‐Dehydration of Secondary Alcohols to Carbenes: Pyrrolidin‐2‐ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ayan Das
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | | | | | | | - Srinivas Anga
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | - Amar Kumar
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | - D. Krishna Rao
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | | | | | - Cem B. Yildiz
- Aksaray Universitesi Aromatic and Medicinal Plants TURKEY
| | - Anukul Jana
- TIFR Centre for Interdisciplinary Sciences Chemical Science 21, Brundavan Colony, Narsingi 500075 Hyderabad INDIA
| |
Collapse
|
4
|
Siewert JE, Schumann A, Hering-Junghans C. Phosphine-catalysed reductive coupling of dihalophosphanes. Dalton Trans 2021; 50:15111-15117. [PMID: 34611690 DOI: 10.1039/d1dt03095g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Classically tetraaryl diphosphanes have been synthesized through Wurtz-type reductive coupling of halophosphanes R2PX or more recently, through the dehydrocoupling of phosphines R2PH. Catalytic variants of the dehydrocoupling reaction have been reported, but are limited to R2PH compounds. Using PEt3 as a catalyst, we now show that TipPBr2 (Tip = 2,4,6-iPr3C6H2) is selectively coupled to give the dibromodiphosphane (TipPBr)2 (1), a compound not accessible using classic Mg reduction. Surprisingly, when using DipPBr2 (Dip = 2,6-iPr3C6H3) in the PEt3 catalysed reductive coupling the diphosphene (PDip)2 (2) with a PP double was formed selectively. In benzene solutions (PDip)2 has a half life time of ca. 28 days and can be utilized with NHCs to access NHC-phosphinidene adducts. To show that this protocol is more widely applicable, we show that Ph2PCl and Mes2PX (X = Cl, Br) are efficiently coupled using 10 mol% of PEt3 to give (Ph2P)2 and (Mes2P)2, respectively. Control experiments show that [BrPEt3]Br is a potential oxidation product in the catalytic cycle, which can be debrominated by Zn dust as a sacrificial reductant.
Collapse
Affiliation(s)
- Jan-Erik Siewert
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - André Schumann
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str. 29a, 18059 Rostock, Germany.
| | | |
Collapse
|
5
|
Dhara D, Scheschkewitz D, Chandrasekhar V, Yildiz CB, Jana A. Reactivity of NHC/diphosphene-coordinated Au(I)-hydride. Chem Commun (Camb) 2021; 57:809-812. [PMID: 33367425 DOI: 10.1039/d0cc05461e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report the reactivity of isolable Au(i)-hydride stabilized by an NHC-coordinated diphosphene towards substrates containing C-C and N-N multiple bonds (NHC = N-heterocyclcic carbene). Reactions with dimethyl acetylenedicarboxylate and azobenzene lead to a trans-addition of the Au(i)-H across the C-C triple bond and the N-N double bond, respectively. In contrast, the reaction with ethyl diazoacetate affords a gold(i)-hydrazonide as the 1,1-addition product to the terminal nitrogen atom. With phenyl acetylene, the corresponding Au(i)-alkynyl complex is obtained under the elimination of dihydrogen. Strikingly, diphosphene-containing Au(i)-hydride is more reactive - affording different products in some cases - than a related NHC-stabilized Au(i)-hydride without the mediating diphosphene moiety.
Collapse
Affiliation(s)
- Debabrata Dhara
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - David Scheschkewitz
- Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India. and Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Cem B Yildiz
- Department of Medicinal and Aromatic Plants, University of Aksaray, Aksaray, Turkey.
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| |
Collapse
|
6
|
Cicač-Hudi M, Feil CM, Birchall N, Nieger M, Gudat D. Proton transfer vs. oligophosphine formation by P–C/P–H σ-bond metathesis: decoding the competing Brønsted and Lewis type reactivities of imidazolio-phosphines. Dalton Trans 2020; 49:17401-17413. [DOI: 10.1039/d0dt03633a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic imidazolio-phosphines show two-sided reactivity towards bases, undergoing either Brønsted-type proton transfer to imidazolio-phosphides or autocatalytic Lewis acid/base reaction cascades to yield P-free imidazolium ions and oligophosphines.
Collapse
Affiliation(s)
- Mario Cicač-Hudi
- Institute of Inorganic Chemistry
- University of Stuttgart
- 70550 Stuttgart
- Germany
| | - Christoph M. Feil
- Institute of Inorganic Chemistry
- University of Stuttgart
- 70550 Stuttgart
- Germany
| | - Nicholas Birchall
- Institute of Inorganic Chemistry
- University of Stuttgart
- 70550 Stuttgart
- Germany
| | - Martin Nieger
- Department of Chemistry
- University of Helsinki
- 00014 Helsinki
- Finland
| | - Dietrich Gudat
- Institute of Inorganic Chemistry
- University of Stuttgart
- 70550 Stuttgart
- Germany
| |
Collapse
|