1
|
Ma Y, Zhang Y, Wang Y, Qiao Z, Liu Y, Xia X. PhoP/PhoQ Two-Component System Contributes to Intestinal Inflammation Induced by Cronobacter sakazakii in Neonatal Mice. Foods 2024; 13:2808. [PMID: 39272573 PMCID: PMC11394756 DOI: 10.3390/foods13172808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cronobacter sakazakii (C. sakazakii) is a foodborne pathogen capable of causing severe infections in newborns. The PhoP/PhoQ two-component system exerts a significant influence on bacterial virulence. This study aimed to investigate the impact of the PhoP/PhoQ system on intestinal inflammation in neonatal mice induced by C. sakazakii. Neonatal mice were infected orally by C. sakazakii BAA-894 (WT), a phoPQ-gene-deletion strain (ΔphoPQ), and a complementation strain (ΔphoPQC), and the intestinal inflammation in the mice was monitored. Deletion of the phoPQ gene reduced the viable count of C. sakazakii in the ileum and alleviated intestinal tissue damage. Moreover, caspase-3 activity in the ileum of the WT- and ΔphoPQC-infected mice was significantly elevated compared to that of the ΔphoPQ and control groups. ELISA results showed elevated levels of TNF-α and IL-6 in the ileum of the mice infected with WT and ΔphoPQC. In addition, deletion of the phoPQ gene in C. sakazakii resulted in a down-regulation of inflammatory genes (IL-1β, TNF-α, IL-6, NF-κB p65, TLR4) within the ileum and decreased inflammation by modulating the TLR4/NF-κB pathway. It is suggested that targeting the PhoP/PhoQ two-component system could be a potential strategy for mitigating C. sakazakii-induced neonatal infections.
Collapse
Affiliation(s)
- Yan Ma
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yingying Zhang
- The College of Life Sciences, Northwest University, Xi'an 710068, China
| | - Yuting Wang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Zhu Qiao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yingying Liu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Bao Y, He X, Zhai Y, Shen W, Jing M, Liu Y, Yang H, Chen L. Effects of glyphosate-based herbicide on gut microbes and hepatopancreatic metabolism in Pomacea canaliculata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116549. [PMID: 38852467 DOI: 10.1016/j.ecoenv.2024.116549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Roundup®, a prominent glyphosate-based herbicide (GBH), holds a significant position in the global market. However, studies of its effects on aquatic invertebrates, including molluscs are limited. Pomacea canaliculata, a large freshwater snail naturally thrives in agricultural environments where GBH is extensively employed. Our investigation involved assessing the impact of two concentrations of GBH (at concentrations of 19.98 mg/L and 59.94 mg/L, corresponding to 6 mg/L and 18 mg/L glyphosate) during a 96 h exposure experiment on the intestinal bacterial composition and metabolites of P. canaliculata. Analysis of the 16 S rRNA gene demonstrated a notable reduction in the alpha diversity of intestinal bacteria due to GBH exposure. Higher GBH concentration caused a significant shift in the relative abundance of dominant bacteria, such as Bacteroides and Paludibacter. We employed widely-targeted metabolomics analysis to analyze alterations in the hepatopancreatic metabolic profile as a consequence of GBH exposure. The shifts in metabolites primarily affected lipid, amino acid, and glucose metabolism, resulting in compromised immune and adaptive capacities in P. canaliculata. These results suggested that exposure to varying GBH concentrations perpetuates adverse effects on intestinal and hepatopancreatic health of P. canaliculata. This study provides an understanding of the negative effects of GBH on P. canaliculata and may sheds light on its potential implications for other molluscs.
Collapse
Affiliation(s)
- Yiran Bao
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xinni He
- College of Life Sciences, Nanjing Normal University, Nanjing 210042, China
| | - Yiying Zhai
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjia Shen
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Muzi Jing
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Yuyao Liu
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Haiyun Yang
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Lian Chen
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Kolba N, Tako E. Effective alternatives for dietary interventions for necrotizing enterocolitis: a systematic review of in vivo studies. Crit Rev Food Sci Nutr 2023; 65:811-831. [PMID: 37971890 DOI: 10.1080/10408398.2023.2281623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Necrotizing enterocolitis (NEC) is a significant cause of morbidity and mortality among neonates and low birth weight children in the United States. Current treatment options, such as antibiotics and intestinal resections, often result in complications related to pediatric nutrition and development. This systematic review aimed to identify alternative dietary bioactive compounds that have shown promising outcomes in ameliorating NEC in vivo studies conducted within the past six years. Following PRISMA guidelines and registering in PROSPERO (CRD42023330617), we conducted a comprehensive search of PubMed, Scopus, and Web of Science. Our analysis included 19 studies, predominantly involving in vivo models of rats (Rattus norvegicus) and mice (Mus musculus). The findings revealed that various types of compounds have demonstrated successful amelioration of NEC symptoms. Specifically, six studies employed plant phenolics, seven utilized plant metabolites/cytotoxic chemicals, three explored the efficacy of vitamins, and three investigated the potential of whole food extracts. Importantly, all administered compounds exhibited positive effects in mitigating the disease. These results highlight the potential of natural cytotoxic chemicals derived from medicinal plants in identifying and implementing powerful alternative drugs and therapies for NEC. Such approaches have the capacity to impact multiple pathways involved in the development and progression of NEC symptoms.
Collapse
Affiliation(s)
- Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Moreira LDSG, Brum IDSDC, de Vargas Reis DCM, Trugilho L, Chermut TR, Esgalhado M, Cardozo LFMF, Stenvinkel P, Shiels PG, Mafra D. Cinnamon: an aromatic condiment applicable to chronic kidney disease. Kidney Res Clin Pract 2023; 42:4-26. [PMID: 36747357 PMCID: PMC9902738 DOI: 10.23876/j.krcp.22.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Cinnamon, a member of the Lauraceae family, has been widely used as a spice and traditional herbal medicine for centuries and has shown beneficial effects in cardiovascular disease, obesity, and diabetes. However, its effectiveness as a therapeutic intervention for chronic kidney disease (CKD) remains unproven. The bioactive compounds within cinnamon, such as cinnamaldehyde, cinnamic acid, and cinnamate, can mitigate oxidative stress, inflammation, hyperglycemia, gut dysbiosis, and dyslipidemia, which are common complications in patients with CKD. In this narrative review, we assess the mechanisms by which cinnamon may alleviate complications observed in CKD and the possible role of this spice as an additional nutritional strategy for this patient group.
Collapse
Affiliation(s)
| | | | | | - Liana Trugilho
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Brazil
| | - Tuany R. Chermut
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil
| | - Marta Esgalhado
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil
| | | | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden,Correspondence: Peter Stenvinkel Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital M99, 141 86 Stockholm, Sweden. E-mail:
| | - Paul G. Shiels
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Brazil,Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil,Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Protective Effects of Cinnamaldehyde on the Oxidative Stress, Inflammatory Response, and Apoptosis in the Hepatocytes of Salmonella Gallinarum-Challenged Young Chicks. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2459212. [PMID: 35847587 PMCID: PMC9277163 DOI: 10.1155/2022/2459212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
The development of novel therapeutics to treat multidrug-resistant pathogenic infections like Salmonella gallinarum is the need of the hour. Salmonella infection causes typhoid fever, jaundice, and Salmonella hepatitis resulting in severe liver injury. Natural compounds have been proved beneficial for the treatment of these bacterial infections. The beneficial roles of cinnamaldehyde due to its antibacterial, anti-inflammatory, and antioxidative properties have been determined by many researchers. However, alleviation of liver damage caused by S. gallinarum infection to young chicks by cinnamaldehyde remains largely unknown. Therefore, this study was performed to identify the effects of cinnamaldehyde on ameliorating liver damage in young chicks. Young chicks were intraperitoneally infected with S. gallinarum and treated with cinnamaldehyde orally. Liver and serum parameters were investigated by qRT-PCR, ELISA kits, biochemistry kits, flow cytometry, JC-1 dye experiment, and transcriptome analysis. We found that ROS, cytochrome c, mitochondrial membrane potential (Ψm), caspase-3 activity, ATP production, hepatic CFU, ALT, and AST, which were initially increased by Salmonella infection, significantly (
) decreased by cinnamaldehyde treatment at 1, 3, and 5 days postinfection (DPI). In addition, S. gallinarum infection significantly increased proinflammatory gene expression (IL-1β, IL-6, IL-12, NF-κB, TNF-α, and MyD-88) and decreased the expression of anti-inflammatory genes (IL-8, IL-10, and iNOS); however, cinnamaldehyde reverted these effects at 1, 3, and 5 DPI. Transcriptome analysis showed that S. gallinarum modulates certain genes of the AMPK-mTOR pathway for its survival and replication, and these pathway modulations were reversed by cinnamaldehyde treatment. We concluded that cinnamaldehyde ameliorates inflammation and apoptosis by suppressing NF-Kβ/caspase-3 pathway and reverts the metabolic changes caused by S. gallinarum infection via modulating the AMPK-mTOR pathway. Furthermore, cinnamaldehyde has antibacterial, anti-inflammatory, antioxidative, and antiapoptotic properties against S. gallinarum-challenged young chicks and can be a candidate novel drug to treat salmonellosis in poultry production.
Collapse
|
6
|
Figueiredo IFS, Araújo LG, Assunção RG, Dutra IL, Nascimento JR, Rego FS, Rolim CS, Alves LSR, Frazão MA, Cadete SF, da Silva LCN, de Sá JC, de Sousa EM, Elias WP, Nascimento FRF, Abreu AG. Cinnamaldehyde Increases the Survival of Mice Submitted to Sepsis Induced by Extraintestinal Pathogenic Escherichia coli. Antibiotics (Basel) 2022; 11:antibiotics11030364. [PMID: 35326827 PMCID: PMC8944619 DOI: 10.3390/antibiotics11030364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/19/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Several natural products have been investigated for their bactericidal potential, among these, cinnamaldehyde. In this study, we aimed to evaluate the activity of cinnamaldehyde in the treatment of animals with sepsis induced by extraintestinal pathogenic E. coli. Initially, the E. coli F5 was incubated with cinnamaldehyde to evaluate the minimum inhibitory and minimum bactericidal concentration. Animal survival was monitored for five days, and a subset of mice were euthanized after 10 h to evaluate histological, hematological, and immunological parameters, as well as the presence of bacteria in the organs. On the one hand, inoculation of bacterium caused the death of 100% of the animals within 24 h after infection. On the other hand, cinnamaldehyde (60 mg/kg) was able to keep 40% of mice alive after infection. The treatment significantly reduced the levels of cytokines in serum and peritoneum and increased the production of cells in both bone marrow and spleen, as well as lymphocytes at the infection site. Cinnamaldehyde was able to reduce tissue damage by decreasing the deleterious effects for the organism and contributed to the control of the sepsis and survival of animals; therefore, it is a promising candidate for the development of new drugs.
Collapse
Affiliation(s)
- Isabella F. S. Figueiredo
- Laboratório de Patogenicidade Microbiana, Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.F.S.F.); (L.G.A.); (R.G.A.); (I.L.D.); (F.S.R.); (C.S.R.); (L.S.R.A.); (M.A.F.); (S.F.C.); (L.C.N.d.S.); (J.C.d.S.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (E.M.d.S.); (F.R.F.N.)
| | - Lorena G. Araújo
- Laboratório de Patogenicidade Microbiana, Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.F.S.F.); (L.G.A.); (R.G.A.); (I.L.D.); (F.S.R.); (C.S.R.); (L.S.R.A.); (M.A.F.); (S.F.C.); (L.C.N.d.S.); (J.C.d.S.)
- Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | - Raissa G. Assunção
- Laboratório de Patogenicidade Microbiana, Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.F.S.F.); (L.G.A.); (R.G.A.); (I.L.D.); (F.S.R.); (C.S.R.); (L.S.R.A.); (M.A.F.); (S.F.C.); (L.C.N.d.S.); (J.C.d.S.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (E.M.d.S.); (F.R.F.N.)
| | - Itaynara L. Dutra
- Laboratório de Patogenicidade Microbiana, Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.F.S.F.); (L.G.A.); (R.G.A.); (I.L.D.); (F.S.R.); (C.S.R.); (L.S.R.A.); (M.A.F.); (S.F.C.); (L.C.N.d.S.); (J.C.d.S.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (E.M.d.S.); (F.R.F.N.)
| | - Johnny R. Nascimento
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (E.M.d.S.); (F.R.F.N.)
- Laboratório de Imunofisiologia, Departamento de Patologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
| | - Fabrícia S. Rego
- Laboratório de Patogenicidade Microbiana, Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.F.S.F.); (L.G.A.); (R.G.A.); (I.L.D.); (F.S.R.); (C.S.R.); (L.S.R.A.); (M.A.F.); (S.F.C.); (L.C.N.d.S.); (J.C.d.S.)
| | - Carolina S. Rolim
- Laboratório de Patogenicidade Microbiana, Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.F.S.F.); (L.G.A.); (R.G.A.); (I.L.D.); (F.S.R.); (C.S.R.); (L.S.R.A.); (M.A.F.); (S.F.C.); (L.C.N.d.S.); (J.C.d.S.)
| | - Leylane S. R. Alves
- Laboratório de Patogenicidade Microbiana, Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.F.S.F.); (L.G.A.); (R.G.A.); (I.L.D.); (F.S.R.); (C.S.R.); (L.S.R.A.); (M.A.F.); (S.F.C.); (L.C.N.d.S.); (J.C.d.S.)
| | - Mariana A. Frazão
- Laboratório de Patogenicidade Microbiana, Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.F.S.F.); (L.G.A.); (R.G.A.); (I.L.D.); (F.S.R.); (C.S.R.); (L.S.R.A.); (M.A.F.); (S.F.C.); (L.C.N.d.S.); (J.C.d.S.)
| | - Samilly F. Cadete
- Laboratório de Patogenicidade Microbiana, Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.F.S.F.); (L.G.A.); (R.G.A.); (I.L.D.); (F.S.R.); (C.S.R.); (L.S.R.A.); (M.A.F.); (S.F.C.); (L.C.N.d.S.); (J.C.d.S.)
| | - Luís Cláudio N. da Silva
- Laboratório de Patogenicidade Microbiana, Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.F.S.F.); (L.G.A.); (R.G.A.); (I.L.D.); (F.S.R.); (C.S.R.); (L.S.R.A.); (M.A.F.); (S.F.C.); (L.C.N.d.S.); (J.C.d.S.)
- Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | - Joicy C. de Sá
- Laboratório de Patogenicidade Microbiana, Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.F.S.F.); (L.G.A.); (R.G.A.); (I.L.D.); (F.S.R.); (C.S.R.); (L.S.R.A.); (M.A.F.); (S.F.C.); (L.C.N.d.S.); (J.C.d.S.)
- Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | - Eduardo M. de Sousa
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (E.M.d.S.); (F.R.F.N.)
- Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | - Waldir P. Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Flávia R. F. Nascimento
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (E.M.d.S.); (F.R.F.N.)
- Laboratório de Imunofisiologia, Departamento de Patologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
| | - Afonso G. Abreu
- Laboratório de Patogenicidade Microbiana, Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil; (I.F.S.F.); (L.G.A.); (R.G.A.); (I.L.D.); (F.S.R.); (C.S.R.); (L.S.R.A.); (M.A.F.); (S.F.C.); (L.C.N.d.S.); (J.C.d.S.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; (J.R.N.); (E.M.d.S.); (F.R.F.N.)
- Programa de Pós-Graduação em Biologia Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
- Correspondence:
| |
Collapse
|
7
|
Chauhan R, Kumari S, Goel G, Azmi W. Synergistic combination of malic acid with sodium hypochlorite impairs biofilm of Cronobacter sakazakii. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Li Y, Jia D, Wang J, Li H, Yin X, Liu J, Wang J, Guan G, Luo J, Yin H, Xiao S, Li Y. Probiotics Isolated From Animals in Northwest China Improve the Intestinal Performance of Mice. Front Vet Sci 2021; 8:750895. [PMID: 34646877 PMCID: PMC8503272 DOI: 10.3389/fvets.2021.750895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Antibiotic resistance is an increasingly prevalent problem worldwide. Probiotics are live microorganisms that provide health benefits to human beings and animals and also antimicrobial activity against pathogens and might be an antibiotic alternative. The gastrointestinal tract of animals can be a suitable source of finding novel antimicrobial agents, where the vast majority of gut microbes inhabit and a plurality of antimicrobial producers exhibit either a wide or narrow spectrum. Animals that live in Northwest China might possess a special commensal community in the gut. Therefore, the purpose of this study was to assess the effects of three probiotic strains (including Lactobacillus salivarius ZLP-4b from swine, Lactobacillus plantarum FBL-3a from beef cattle, and Bacillus velezensis JT3-1 from yak), which were isolated from livestock in this area, on the overall growth performance, immune function, and gut microbiota of mice. The results showed that the L. salivarius ZLP-4b group not only improved the growth performance but also amended the intestinal mucosa morphology of mice. Furthermore, the supplementation of L. plantarum FBL-3a and L. salivarius ZLP-4b strains significantly increased the content of anti-inflammatory cytokines IL-4 and IL-10 but decreased the pro-inflammatory factor IL-17A. The levels of pro-inflammatory factors IL-6, IL-17A, and TNF-α were also decreased by the B. velezensis JT3-1 group pretreatment. The 16S rDNA sequence results showed that the probiotic administration could increase the proportion of Firmicutes/Bacteroidetes intestinal microbes in mice. Furthermore, the relative abundance of Lactobacillus was boosted in the JT3-1- and ZLP-4b-treated groups, and that of opportunistic pathogens (including Proteobacteria and Spirochaetes) was diminished in all treated groups compared with the control group. In conclusion, B. velezensis JT3-1 and L. salivarius ZLP-4b supplementation enhanced the overall performance, intestinal epithelial mucosal integrity, and immune-related cytokines and regulated the intestinal microbiota in mice.
Collapse
Affiliation(s)
- Yingying Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Dan Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiahui Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hehai Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xijuan Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
9
|
Wang R, Li S, Jia H, Si X, Lei Y, Lyu J, Dai Z, Wu Z. Protective Effects of Cinnamaldehyde on the Inflammatory Response, Oxidative Stress, and Apoptosis in Liver of Salmonella typhimurium-Challenged Mice. Molecules 2021; 26:molecules26082309. [PMID: 33923441 PMCID: PMC8073330 DOI: 10.3390/molecules26082309] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/16/2022] Open
Abstract
Salmonella typhimurium infection is associated with gastrointestinal disorder and cellular injury in the liver of both humans and animals. Cinnamaldehyde, the main component of essential oil from cinnamon, has been reported to have anti-inflammatory, anti-oxidative, and anti-apoptotic effects. However, it remains unknown whether cinnamaldehyde can alleviate Salmonella typhimurium infection-induced liver injury in mice. In the present study, we found that cinnamaldehyde attenuated Salmonella typhimurium-induced body weight loss, the increase of organ (liver and spleen) indexes, hepatocyte apoptosis, and the mortality rate in mice. Further study showed that cinnamaldehyde significantly alleviated Salmonella typhimurium-induced liver injury as shown by activities of alanine transaminase, aspartate transaminase, and myeloperoxidase, as well as malondialdehyde. The increased mRNA level of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ) and chemokines (CCL2 and CCL3) induced by Salmonella typhimurium were significantly abolished by cinnamaldehyde supplementation. These alterations were associated with a regulatory effect of cinnamaldehyde on TLR2, TLR4, and MyD88. 16S rDNA sequence analysis showed that Salmonella typhimurium infection led to upregulation of the abundances of genera Akkermansia, Bacteroides, Alistipes, Muribaculum, and Prevotellaceae UCG-001, and downregulation of the abundances of genera Lactobacillus, Enterorhabdus, and Eggerthellaceae (unclassified). These alterations were reversed by cinnamaldehyde supplementation. In conclusion, cinnamaldehyde attenuated the inflammatory response, oxidative stress, and apoptosis in the liver of Salmonella typhimurium-infected mice. Supplementation of cinnamaldehyde might be a preventive strategy to alleviate liver injury caused by Salmonella typhimurium infection in humans and animals.
Collapse
Affiliation(s)
- Renjie Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (R.W.); (S.L.); (H.J.); (X.S.); (Z.D.)
- DadHank Biotechnology Corporation, Chengdu 611130, China; (Y.L.); (J.L.)
| | - Senlin Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (R.W.); (S.L.); (H.J.); (X.S.); (Z.D.)
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (R.W.); (S.L.); (H.J.); (X.S.); (Z.D.)
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (R.W.); (S.L.); (H.J.); (X.S.); (Z.D.)
| | - Yan Lei
- DadHank Biotechnology Corporation, Chengdu 611130, China; (Y.L.); (J.L.)
| | - Jirong Lyu
- DadHank Biotechnology Corporation, Chengdu 611130, China; (Y.L.); (J.L.)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (R.W.); (S.L.); (H.J.); (X.S.); (Z.D.)
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (R.W.); (S.L.); (H.J.); (X.S.); (Z.D.)
- Correspondence: ; Tel.: +86-10-6273-1003
| |
Collapse
|
10
|
Trans-Cinnamaldehyde Exhibits Synergy with Conventional Antibiotic against Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2021; 22:ijms22052752. [PMID: 33803167 PMCID: PMC7963149 DOI: 10.3390/ijms22052752] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen worldwide and has acquired multiple resistance to a wide range of antibiotics. Hence, there is a pressing need to explore novel strategies to overcome the increase in antimicrobial resistance. The present study aims to investigate the efficacy and mechanism of plant-derived antimicrobials, trans-cinnamaldehyde (TCA) in decreasing MRSA’s resistance to eight conventional antibiotics. A checkerboard dilution test and time–kill curve assay are used to determine the synergistic effects of TCA combined with the antibiotics. The results indicated that TCA increased the antibacterial activity of the antibiotics by 2-16-fold. To study the mechanism of the synergism, we analyzed the mecA transcription gene and the penicillin-binding protein 2a level of MRSA treated with TCA by quantitative RT-PCR or Western blot assay. The gene transcription and the protein level were significantly inhibited. Additionally, it was verified that TCA can significantly inhibit the biofilm, which is highly resistant to antibiotics. The expression of the biofilm regulatory gene hld of MRSA after TCA treatment was also significantly downregulated. These findings suggest that TCA maybe is an exceptionally potent modulator of antibiotics.
Collapse
|