1
|
An H, Lin B, Huang F, Wang N. Advances in the study of polysaccharides from Anemarrhena asphodeloides Bge.: A review. Int J Biol Macromol 2024; 282:136999. [PMID: 39476924 DOI: 10.1016/j.ijbiomac.2024.136999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/09/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Anemarrhena asphodeloides Bge. (AA), a traditional Chinese medicine, is used clinically to treat inflammation, diabetes, osteoporosis, and tumors. Polysaccharides are the most abundant components in AA, and have antioxidant, immunomodulatory, anti-inflammatory, hypoglycemic, anti-osteoporosis, and laxative effects. It is necessary to conduct a comprehensive analysis on the structure and pharmacological activity of the polysaccharides from AA (PAAs). This review systematically summarizes the structural characteristics of PAAs, including the monosaccharide compositions, molecular weights, and backbone structures. We discuss the relationship between the structure and pharmacological activities of PAAs. The chemical modification methods of PAAs, including zinc chelation, carboxymethylation, and sulfation, are then reviewed. This review may offer new insights for research on the PAAs and polysaccharides with similar structures.
Collapse
Affiliation(s)
- Huan An
- Department of TCM literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Bingfeng Lin
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Feihua Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Nani Wang
- Department of TCM literature, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China; Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China.
| |
Collapse
|
2
|
Wu Y, He X, Chen H, Lin Y, Zheng C, Zheng B. Extraction and characterization of hepatoprotective polysaccharides from Anoectochilus roxburghii against CCl 4-induced liver injury via regulating lipid metabolism and the gut microbiota. Int J Biol Macromol 2024; 277:134305. [PMID: 39094884 DOI: 10.1016/j.ijbiomac.2024.134305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/11/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Anoectochilus roxburghii polysaccharides exhibit notable hepatoprotective effects, but the underlying substance basis and mechanisms remain unknown. In this study, four new polysaccharides named ARP-1a, ARP-1b, ARP-2a and ARP-2b, were isolated from A. roxburghii. Their structural characteristics were systematically analyzed using HPGPC, HPLC, GC-MS, IR and NMR analysis. ARP-1a, the leading polysaccharide isolated from A. roxburghii, was further evaluated for its hepatoprotective effects on acute liver injury mice induced by CCl4. ARP-1a significantly reduced the serum ALT, AST, TNF-α, IL-1β and IL-6 levels, liver MDA content, and increased the SOD and CAT activities and GSH level in liver. H&E staining revealed that ARP-1a pretreatment could markedly relieve liver injury. Further mechanism exploration indicated that ARP-1a could relieve CCl4-induced oxidative damage through activating the Nrf2 signaling. In addition, metabolomics, lipidomics and 16S rRNA amplicon sequencing were used to elucidate the underlying mechanisms of ARP-1a. Multi-omics analysis indicated that ARP-1a exerted hepatoprotective effect against CCl4-induced acute liver injury by regulating lipid metabolism and modulating the gut microbiota. In conclusion, the above results suggest that ARP-1a can be considered a promising and safe candidate for hepatoprotective drug, as well as a potential prebiotic for maintaining intestinal homeostasis and promoting human intestinal health.
Collapse
Affiliation(s)
- Yanbin Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Huiling Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yan Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Su H, He L, Yu X, Wang Y, Yang L, Wang X, Yao X, Luo P, Zhang Z. Structural characterization and mechanisms of macrophage immunomodulatory activity of a novel polysaccharide with a galactose backbone from the processed Polygonati Rhizoma. J Pharm Anal 2024; 14:100974. [PMID: 39185336 PMCID: PMC11342111 DOI: 10.1016/j.jpha.2024.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/05/2024] [Accepted: 03/28/2024] [Indexed: 08/27/2024] Open
Abstract
A purified polysaccharide with a galactose backbone (SPR-1, Mw 3,622 Da) was isolated from processed Polygonati Rhizoma with black beans (PRWB) and characterized its chemical properties. The backbone of SPR-1 consisted of [(4)-β-D-Galp-(1]9 → 4,6)-β-D-Galp-(1 → 4)-α-D-GalpA-(1 → 4)-α-D-GalpA-(1 → 4)-α-D-Glcp-(1 → 4,6)-α-D-Glcp-(1 → 4)-α/β-D-Glcp, with a branch chain of R1: β-D-Galp-(1 → 3)-β-D-Galp-(1→ connected to the →4,6)-β-D-Galp-(1→ via O-6, and a branch chain of R2: α-D-Glcp-(1 → 6)-α-D-Glcp-(1→ connected to the →4,6)-α-D-Glcp-(1→ via O-6. Immunomodulatory assays showed that the SPR-1 significantly activated macrophages, and increased secretion of NO and cytokines (i.e., IL-1β and TNF-α), as well as promoted the phagocytic activities of cells. Furthermore, isothermal titration calorimetry (ITC) analysis and molecular docking results indicated high-affinity binding between SPR-1 and MD2 with the equilibrium dissociation constant (K D) of 18.8 μM. It was suggested that SPR-1 activated the immune response through Toll-like receptor 4 (TLR4) signaling and downstream responses. Our research demonstrated that the SPR-1 has a promising candidate from PRWB for the TLR4 agonist to induce immune response, and also provided an easily accessible way that can be used for PR deep processing.
Collapse
Affiliation(s)
- Hongna Su
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lili He
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xina Yu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Yue Wang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, 610041, China
| | - Li Yang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, 610041, China
| | - Xiaorui Wang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, 999078, China
| | - Pei Luo
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Zhifeng Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, 610041, China
| |
Collapse
|
4
|
Ye XX, Chen YQ, Wu JS, Zhong HQ, Lin B, Huang ML, Fan RH. Biochemical and Transcriptome Analysis Reveals Pigment Biosynthesis Influenced Chlorina Leaf Formation in Anoectochilus roxburghii (Wall.) Lindl. Biochem Genet 2024; 62:1040-1054. [PMID: 37528284 DOI: 10.1007/s10528-023-10432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/15/2023] [Indexed: 08/03/2023]
Abstract
Anoectochilus roxburghii (Wall.) Lindl is a perennial herb of the Orchidaceae family; a yellow-green mutant and a yellow mutant were obtained from the wild type, thereby providing good material for the study of leaf color variation. Pigment content analysis revealed that chlorophyll, carotenoids, and anthocyanin were lower in the yellow-green and yellow mutants than in the wild type. Transcriptome analysis of the yellow mutant and wild type revealed that 78,712 unigenes were obtained, and 599 differentially expressed genes (120 upregulated and 479 downregulated) were identified. Using the Kyoto Encyclopedia of Genes and Genomes pathway analysis, candidate genes involved in the anthocyanin biosynthetic pathway (five unigenes) and the chlorophyll metabolic pathway (two unigenes) were identified. Meanwhile, the low expression of the chlorophyll and anthocyanin biosynthetic genes resulted in the absence of chlorophylls and anthocyanins in the yellow mutant. This study provides a basis for similar research in other closely related species.
Collapse
Affiliation(s)
- Xiu-Xian Ye
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Yi-Quan Chen
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Jian-She Wu
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Huai-Qin Zhong
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Bing Lin
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Min-Ling Huang
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China.
| | - Rong-Hui Fan
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Li P, Jing Y, Qiu X, Xiao H, Zheng Y, Wu L. Structural characterization and immunomodulatory activity of a polysaccharide from Dioscotea opposita. Int J Biol Macromol 2024; 265:130734. [PMID: 38462105 DOI: 10.1016/j.ijbiomac.2024.130734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/29/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
The purified polysaccharides fraction, DOP-2, was prepared from Dioscorea opposita Thunb (D. opposita). This study combined in vitro and in vivo experiments to comprehensively investigate the index changes in RAW264.7 cells and immunocompromised mice under DOP-2 intervention, aiming to elucidate the potential mechanisms of immunomodulatory effects of DOP-2. DOP-2 (10 ∼ 500 μg/mL) significantly elevated the levels of NO, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) factors secreted by RAW264.7 cells, and restored the body weight of immunosuppressed mice and improve the degree of injury to the immune organ index, resulting in significant immunomodulatory effects. Notably, DOP-2 promoted the production of short-chain fatty acids (SCFAs) in immunosuppressed mice and modulated the composition of their gut microflora. These findings highlight the potential benefits of DOP-2 therapy in improving immune function and gut health, and will provide a theoretical basis for the application of D. opposita polysaccharides as an immunomodulatory adjuvant.
Collapse
Affiliation(s)
- Pengyue Li
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China; Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Xiaoyue Qiu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Huina Xiao
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China; Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, 3 Xingyuan Road, Shijiazhuang 050200, China.
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China; Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, 3 Xingyuan Road, Shijiazhuang 050200, China.
| |
Collapse
|
6
|
Zhu X, Yang G, Shen Y, Niu L, Peng Y, Chen H, Li H, Yang X. Physicochemical Properties and Biological Activities of Quinoa Polysaccharides. Molecules 2024; 29:1576. [PMID: 38611855 PMCID: PMC11013414 DOI: 10.3390/molecules29071576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/14/2024] Open
Abstract
Quinoa, known as the "golden grain" for its high nutritional value, has polysaccharides as one of its sources of important nutrients. However, the biological functions of quinoa polysaccharides remain understudied. In this study, two crude polysaccharide extracts of quinoa (Q-40 and Q-60) were obtained through sequential precipitation with 40% and 60% ethanol, with purities of 58.29% (HPLC) and 62.15% (HPLC) and a protein content of 8.27% and 9.60%, respectively. Monosaccharide analysis revealed that Q-40 contained glucose (Glc), galacturonic acid (GalA), and arabinose (Ara) in a molar ratio of 0.967:0.027:0.006. Q-60 was composed of xylose (xyl), arabinose (Ara), galactose, and galacturonic acid (GalA) with a molar ratio of 0.889:0.036:0.034:0.020. The average molecular weight of Q-40 ranged from 47,484 to 626,488 Da, while Q-60 showed a range of 10,025 to 47,990 Da. Rheological experiments showed that Q-40 exhibited higher viscosity, while Q-60 demonstrated more elastic properties. Remarkably, Q-60 showed potent antioxidant abilities, with scavenging rates of 98.49% for DPPH and 57.5% for ABTS. Antibacterial experiments using the microdilution method revealed that Q-40 inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), while Q-60 specifically inhibited MRSA. At lower concentrations, both polysaccharides inhibited MDA (MD Anderson Cancer Center) cell proliferation, but at higher concentrations, they promoted proliferation. Similar proliferation-promoting effects were observed in HepG2 cells. The research provides important information in the application of quinoa in the food and functional food industries.
Collapse
Affiliation(s)
- Xucheng Zhu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Yao Peng
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Haiting Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Haimei Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Xinquan Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| |
Collapse
|
7
|
Gunes BA, Ozkan T, Gonulkirmaz N, Sunguroglu A. The evaluation of the anti-cancer effects of Anoectochilus roxburghii on hematological cancers in vitro. Med Oncol 2023; 41:6. [PMID: 38044345 DOI: 10.1007/s12032-023-02231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023]
Abstract
The cause of hematological cancers is the uncontrolled proliferation of hematopoietic and lymphoid tissues, and chemotherapy is used to treat cancer. However, adverse side effects of chemotherapy are common. Therefore, the use of plant extracts as a method for treating cancer is becoming increasingly popular. Anoectochilus roxburghii (wall.) Lindl. (A. roxburghii) is one of the original sources of the valuable medicinal plants known as the king medicine and the golden grass. This study investigated the potential anticancer effect of A. roxburghi (AR) on JURKAT, MM1S, THP1 and U266 cells. To test the cytotoxic and apoptotic effects of AR, hematological cancer cells were exposed to increasing doses of AR (0.1-0.5 µg/µl). The spectrophotometric MTT assay and the flow cytometric Annexin V staining were used to examine the viability and apoptosis of the cells, respectively. qRT-PCR was used to determine the expression levels of the apoptosis-related genes BAD, BAX, BIM and BCL-2. Our results show that AR treatment decreased cell viability and induced apoptosis in each cell line. Our RT-PCR data showed that AR significantly increased the expression levels of the pro-apoptotic BAX gene in JURKAT and MM1S cells, whereas it significantly increased the expression levels of both BAX and BIM in U266 cells. This is the first study to investigate how AR modulates apoptosis in hematological cancer cells. As a result, AR therapy may be a promising treatment modality for the treatment of cancer.
Collapse
Affiliation(s)
- Buket Altinok Gunes
- Vocational School of Health Services, Ankara University, Ankara, Turkey.
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey.
| | - Tulin Ozkan
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Nurbanu Gonulkirmaz
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Xie A, Wan H, Feng L, Yang B, Wan Y. Protective Effect of Anoectochilus formosanus Polysaccharide against Cyclophosphamide-Induced Immunosuppression in BALB/c Mice. Foods 2023; 12:foods12091910. [PMID: 37174447 PMCID: PMC10178248 DOI: 10.3390/foods12091910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, Anoectochilus formosanus polysaccharide (AFP) was acquired a via water extraction and alcohol precipitation method. The immunoregulatory activity of AFP was first evaluated on cyclophosphamide (Cy)-treated mice. Galacturonic acid, glucose and galactose were confirmed to be the main components of AFP. AFP demonstrated the ability to stimulate the production of TNF-α and IL-6 in RAW 264.7 macrophages. Not surprisingly, the activation of the NF-κB signaling pathway by AFP was validated via Western blot analysis. Furthermore, AFP could alleviate Cy-induced immunosuppression, and significantly enhance the immunity of mice via increasing the thymus index and body weight, stimulating the production of cytokines (IgA, IgG, SIgA, IL-2, IL-6 and IFN-γ). The improvement in the intestinal morphology of immunosuppressed mice showed that AFP could alleviate Cy-induced immune toxicity. These results have raised the possibility that AFP may act as a natural immunomodulator. Overall, the study of AFP was innovative and of great significance for AFP's further application and utilization.
Collapse
Affiliation(s)
- Anqi Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hao Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Lei Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Boyun Yang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Yiqun Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
9
|
Shi Y, He X, Bai B, Wang H, Liu C, Xue L, Wu J, Wu Y, Zheng C. Structural characterization and antinociceptive activity of polysaccharides from Anoectochilus elatus. Int J Biol Macromol 2023; 233:123542. [PMID: 36740119 DOI: 10.1016/j.ijbiomac.2023.123542] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Anoectochilus elatus is a new record species from Yunnan province in China discovered by our group in 2018, used in folk as the most popular Anoectochilus species A. roxburghii for medicinal and culinary purposes. The crude polysaccharide of Anoectochilus elatus (AEP) exhibited significant antinociceptive effects against both chemical and thermal nociception in vivo. Bio-guided isolation identified GJXL-1 as the leading analgesic polysaccharide in AEP. Detailed structural analyses rationalized GJXL-1 (molecular weight: 10.3 kDa) as an α-D-1,4-linked glucan unexpectedly branched at O-3, and O-6 position. GJXL-1 dose-dependently suppressed acetic acid-induced writhing in mice and decreased the serum levels of NO, IL-6 and TNF-α, which also repressed the licking times in both the first and second phases in formalin test. Furthermore, only L-nitroarginine partly reversed the analgesic activity of GJXL-1, indicating that GJXL-1's efficacy was partially mediated by NO regulation, possibly through inhibiting IRAK4/TAK1/NF-κB signaling pathway, and modulating gut microbiota and short-chain fatty acids production. In addition, the motor impairment and hypnotic effects of GJXL-1 were excluded. Our study suggests that GJXL-1 can be regarded as a promising and safe drug candidate for diverse pain disorders, and also a promising prebiotic candidate to maintain intestinal homeostasis and promote human gut health.
Collapse
Affiliation(s)
- Yi Shi
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Bingke Bai
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chang Liu
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Liming Xue
- Institution of Chemical and Toxicity Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jinzhong Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China
| | - Yanbin Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
10
|
Huang X, Wen Y, Chen Y, Liu Y, Zhao C. Structural characterization of Euglena gracilis polysaccharide and its in vitro hypoglycemic effects by alleviating insulin resistance. Int J Biol Macromol 2023; 236:123984. [PMID: 36906209 DOI: 10.1016/j.ijbiomac.2023.123984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Diabetes mellitus, characterized by hyperglycemia and insulin resistance, is a disorder of the endocrine metabolic system which has emerged as a common chronic disease worldwide. Euglena gracilis polysaccharides have ideal development potential in the treatment of diabetes. However, their structure and bioactivity are largely unclear. A novel purified water-soluble polysaccharide (EGP-2A-2A) from E. gracilis with a molecular weight of 130.8 kDa consisted of xylose, rhamnose, galactose, fucose, glucose, arabinose, and glucosamine hydrochloride. The SEM image for EGP-2A-2A suggested a rough surface with the presence of globule-like protrusions. Methylation and NMR spectral analyses revealed that EGP-2A-2A was mainly composed of →6)-β-D-Galp-(1 → 2)-α-D-Glcp-(1 → 2)-α-L-Rhap-(1 → 3)-α-L-Araf-(1 → 6)-β-D-Galp-(1 → 3)-α-D-Araf-(1 → 3)-α-L-Rhap-(1 → 4)-β-D-Xylp-(1 → 6)-β-D-Galp-(1 → with complex branching structure. EGP-2A-2A significantly increased glucose consumption and glycogen content in IR-HeoG2 cells and modulates glucose metabolism disorders by regulating PI3K, AKT, and GLUT4 signaling pathways. EGP-2A-2A significantly suppressed TC, TG, and LDL-c levels, and enhanced that of HDL-c. EGP-2A-2A ameliorated abnormalities caused by disorders of glucose metabolism and the hypoglycemic activity of EGP-2A-2A may be mainly positively related to its high glucose content and the β-configuration in the main chain. These results suggested that EGP-2A-2A played an important role in alleviating disorders of glucose metabolism through insulin resistance and has the potential for development as a novel functional food with nutritional and health benefits.
Collapse
Affiliation(s)
- Xiaozhou Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou 362000, China
| | - Yuxi Wen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Yihan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Liu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Qiu Y, Song W, Yang Y, Zhou G, Bai Y, Akihisa T, Ye F, Feng F, Zhang W, Zhang J. Isolation, structural and bioactivities of polysaccharides from Anoectochilus roxburghii (Wall.) Lindl.: A review. Int J Biol Macromol 2023; 236:123883. [PMID: 36889614 DOI: 10.1016/j.ijbiomac.2023.123883] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023]
Abstract
Anoectochilus roxburghii (Wall.) Lindl. (A. roxburghii), a valuable herbal medicine in China, has great medicinal and edible value. Polysaccharides, as one of the main active components of A. roxburghii, comprise glucose, arabinose, xylose, galactose, rhamnose, and mannose in different molar ratios and glycosidic bond types. By varying the sources and extraction methods of A. roxburghii polysaccharides (ARPS), different structural characteristics and pharmacological activities can be elucidated. ARPS has been reported to exhibit antidiabetic, hepatoprotective, anti-inflammatory, antioxidant, antitumor, and immune regulation activities. This review summarizes the available literature on the extraction and purification methods, structural features, biological activities, and applications of ARPS. The shortcomings of the current research and potential focus in future studies are also highlighted. This review provides systematic and current information on ARPS to promote their further exploitation and application.
Collapse
Affiliation(s)
- Yi Qiu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wenbo Song
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Ying Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Guojie Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yidan Bai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Feng Ye
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wangshu Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
12
|
Jiang G, Wang B, Wang Y, Kong H, Wang Y, Gao P, Guo M, Li W, Zhang J, Wang Z, Niu J. Structural characteristics of a novel Bletilla striata polysaccharide and its activities for the alleviation of liver fibrosis. Carbohydr Polym 2023; 313:120781. [PMID: 37182941 DOI: 10.1016/j.carbpol.2023.120781] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
Liver fibrosis has proven to be the main predisposing factor for liver cirrhosis and liver cancer; however, an effective treatment remains elusive. Polysaccharides, with low toxicity and a wide range of bioactivities, are strong potential candidates for anti-hepatic fibrosis applications. For this study, a new low molecular weight neutral polysaccharide (B. striata glucomannan (BSP)) was extracted and purified from Bletilla striata. The structure of BSP was characterized and its activities for alleviating liver fibrosis in vivo were further evaluated. The results revealed that the structural unit of BSP was likely →4)-β-D-Glcp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-2ace-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-3ace-Manp-(1→, with a molecular weight of only 58.5 kDa. Additionally, BSP was observed to attenuate the passive impacts of liver fibrosis in a manner closely related to TLR2/TLR4-MyD88-NF-κB signaling pathway conduction. In summary, the results of this study provide theoretical foundations for the potential applications of BSP as an anti-liver fibrosis platform.
Collapse
|
13
|
Liu Y, Huang Y, Zhu R, Farag MA, Capanoglu E, Zhao C. Structural elucidation approaches in carbohydrates: A comprehensive review on techniques and future trends. Food Chem 2023; 400:134118. [DOI: 10.1016/j.foodchem.2022.134118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
|
14
|
Yang X, Yang J, Liu H, Ma Z, Guo P, Chen H, Gao D. Extraction, structure analysis and antioxidant activity of Sibiraea laevigata (L.) Maxim polysaccharide. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2125013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xuhua Yang
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jutian Yang
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Honghai Liu
- Technology Research and Development Center, Gansu Tobacco Industry Co.Ltd, Lanzhou, China
| | - Zhongren Ma
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Penghui Guo
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hong Chen
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Dandan Gao
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
15
|
Guo T, Zhu L, Zhou Y, Han S, Cao Y, Hu Z, Luo Y, Bao L, Wu X, Qin D, Lin Q, Luo F. Laminarin ameliorates alcohol-induced liver damage and its molecular mechanism in mice. J Food Biochem 2022; 46:e14500. [PMID: 36515171 DOI: 10.1111/jfbc.14500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022]
Abstract
Alcoholic liver disease (ALD) has become a health issue globally. Laminarin, a low molecular weight marine-derived β-glucan, has been identified with multiple biological activities. In this study, the ameliorative effect on ALD of laminarin isolated from brown algae was investigated. Phenotypic, pathological alterations and biochemical characteristics indicated that laminarin administration (100 mg/kg/day) significantly alleviated liver injury and improved liver function in the alcohol-induced mice. Gene chip results indicated that laminarin treatment caused 52 up-regulated and 13 down-regulated genes in the hepatic tissues of alcohol-induced damage mice, and most of these genes are associated with regulation of oxidative stress (such as CYP450/glutathione-dependent antioxidation), Wnt signaling pathway, retinol metabolism, and cAMP pathway based on GO and KEGG analysis. PPI network analysis indicated that the downstream target genes lied in the hub of the net. Our experiments also confirmed the changed expressions of some target genes. Taken together, these results suggest that laminarin can ameliorate alcohol-induced damage in mice and its molecular mechanism lies in modulating anti-oxidation pathway, WNT pathway, and cAMP pathway, which regulate the expressions of downstream target genes and alleviate alcohol-induced damage. Our study provides new clue to prevent alcohol-induced damage and will be benefit to develop functional foods. PRACTICAL APPLICATIONS: This study verified the positive effect on alcoholic liver disease (ALD) of laminarin, a water-soluble brown algae-derived β-glucan, linked by β-(1,3) glycosidic bonds with β-(1,6) branches. Laminarin significantly alleviated liver injury and improved liver function of ALD mice. Moreover, transcriptomics and bioinformatics analysis further revealed the gene expression patterns, hub targets, and signalings including CYP450/glutathione, Wnt, retinol metabolism, cAMP pathways regulated by laminarin. This research is the first evidence for hepatoprotective effect of laminarin against ALD and its molecular mechanism, which will be advantage to develop functional foods or adjuvant therapy of ALD.
Collapse
Affiliation(s)
- Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Lingfeng Zhu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China.,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Yunyun Cao
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Liyuan Bao
- Department of logistics, Changsha University, Changsha, China
| | - Xiuxiu Wu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Dandan Qin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
16
|
Combined analysis of transcriptomics and metabolomics revealed complex metabolic genes for diterpenoids biosynthesis in different organs of Anoectochilus roxburghii. CHINESE HERBAL MEDICINES 2022. [DOI: 10.1016/j.chmed.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
An F, Ren G, Wu J, Cao K, Li M, Liu Y, Liu Y, Hu X, Song M, Wu R. Extraction, purification, structural characterization, and antioxidant activity of a novel polysaccharide from Lonicera japonica Thunb. Front Nutr 2022; 9:1035760. [PMID: 36386958 PMCID: PMC9664063 DOI: 10.3389/fnut.2022.1035760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
A novel water-soluble polysaccharide (HEP-4) with a molecular weight of 1.98 × 105Da was extracted from honeysuckle. Structural characterization was performed using high-performance liquid chromatography (HPLC), gas chromatography, Fourier transform-infrared (FT-IR) spectrum, nucleus magnetic resonance (NMR) spectra, and scanning electron microscopy. The results showed that HEP-4 is primarily composed of mannose, rhamnose, galacturonic acid, glucose, galactose, and arabinose with a mole ratio of 6.74:1.56:1.04:14.21:4.31:5.4, and the major types of the glycosidic bond types of HEP-4 were 1-α-D-Glcp, 1,4-β-D-Glcp, 1-β-D-Arap, 1,3,4-β-D-Arap, and 1,3,6-β-D-Manp. The results of bioactivity experiments revealed that HEP-4 had antioxidant in vitro. In addition, HEP-4 inhibited H2O2-induced oxidative damage and increased the activity of HepG2 cells by reducing MDA levels and inhibiting ROS production. Meanwhile, HEP-4 significantly enhanced the activities of GSH-Px and CAT, indicating that HEP-4 exerts a protective effect on H2O2-induced oxidative stress. These results indicate that HEP-4 could be a potential natural antioxidant.
Collapse
Affiliation(s)
- Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Guangyu Ren
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China,Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Kaixin Cao
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yanfeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xinyu Hu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Meijun Song
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China,Engineering Research Center of Food Fermentation Technology, Liaoning, China,*Correspondence: Rina Wu,
| |
Collapse
|
18
|
Extraction, Structure and Immunoregulatory Activity of Low Molecular Weight Polysaccharide from Dendrobium officinale. Polymers (Basel) 2022; 14:polym14142899. [PMID: 35890675 PMCID: PMC9315851 DOI: 10.3390/polym14142899] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
The ethanol precipitation method has been widely-used for Dendrobium officinale polysaccharides preparation. However, the alcohol-soluble fractions have always been ignored, which causes significant wastes of resources and energies. In this study, the extraction, physicochemical properties, and immune regulation activity of an edible D. officinale polysaccharide (DOPs) isolated from the supernatant after 75% ethanol precipitation were systematically investigated. The structural characteristics determination results showed that DOPs was mainly composed of glucose and mannose at a molar ratio of 1.00:5.78 with an average molecular weight of 4.56 × 103 Da, which was made up of α-(1,3)-Glcp as the main skeleton, and the α-(1,4)-Glcp and β-(1,4)-Manp as the branches. Subsequently, the cyclophosphamide (CTX)-induced immunosuppressive mice model was established, and the results demonstrated that DOPs could dose-dependently protect the immune organs against CTX damage, improve the immune cells activities, and promote the immune-related cytokines (IL-2, IFN-γ and TNF-α) secretions. Furthermore, DOPs treatment also effectively enhanced the antioxidant enzymes levels (SOD, GSH-Px) in sera and livers, therefore weakening the oxidative damage of CTX-treated mice. Considering these above data, DOPs presented great potential to be explored as a natural antioxidant and supplement for functional foods.
Collapse
|
19
|
Gong PX, Wu YC, Liu Y, Lv SZ, You Y, Zhou ZL, Chen X, Li HJ. Structure and hypoglycemic effect of a neutral polysaccharide isolated from sea cucumber Stichopus japonicus. Int J Biol Macromol 2022; 216:14-23. [PMID: 35780917 DOI: 10.1016/j.ijbiomac.2022.06.160] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/09/2022] [Accepted: 06/25/2022] [Indexed: 11/05/2022]
Abstract
In addition to its high nutritious value, sea cucumber has been recognized by folk medicine for a long time. This study investigated the structure and hyperglycemic activity of a neutral polysaccharide (NPsj) from sea cucumber Stichopus japonicus, whose molecular weight was determined as 301.75 kDa by HPGPC method. Monosaccharide composition analysis indicated that NPsj is a glucan. The structure of NPsj was obtained by combining the analysis of methylation analysis, FTIR, NMR, periodate oxidation, Smith degradation and ESI-MS, which is mainly composed of (1 → 4)-α-d-glucoses with β-d-glucose(1→) branches substituted at O-6 every 7-9 of 1,4 linked glucoses. An in vitro insulin resistance Hep G2 cells model and a 3 T3-L1 cells model were established, and the NPsj has significant effect to increase glucose consumption with no toxicity at 10-100 μg/mL. Furthermore, NPsj upregulates the phosphorylation of Akt1 and down-regulated GSK3β, and then reduces the phosphorylation of GS, indicating its mechanism of ameliorating insulin resistance via Akt/GSK3β/GS signaling pathway.
Collapse
Affiliation(s)
- Pi-Xian Gong
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yan-Chao Wu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Ying Liu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China.
| | - Shi-Zhong Lv
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yue You
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Ze-Lin Zhou
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Xi Chen
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Hui-Jing Li
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China; Weihai Huiankang Biotechnology Co., Ltd, Weihai 264200, PR China.
| |
Collapse
|
20
|
An in-depth study on post-harvest storage conditions of Anoectochilus roxburghii products. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Kalita P, Ahmed AB, Sen S, Chakraborty R. A comprehensive review on polysaccharides with hypolipidemic activity: Occurrence, chemistry and molecular mechanism. Int J Biol Macromol 2022; 206:681-698. [PMID: 35247430 DOI: 10.1016/j.ijbiomac.2022.02.189] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
Abstract
Currently, research on natural products is facing challenging future in various aspects. A large group of natural polysaccharides such as β-glucan, cellulose, hemicellulose, chitin, pectin, agaropectin, heteroglycans, lignins, hydrocolloids, homopolysaccharides, heteropolysaccharides were studied extensively for their various therapeutical potential. Several research works have already demonstrated those polysaccharides has tremendous health benefits, and found to exhibit anticancer, antiviral, immunomodulatory, antimicrobial, anticoagulant, anti-inflammatory, antidiabetic, antioxidant and antitumor activities. Different mushroom, plant, fungus, algae, vegetables, microalgae etc. are some important source of several polysaccharide macromolecules such as glucans, ulvan A, ulvan B, fucoidan, rhamnan sulfate, laminarin sulfate, agar, alginate, heteroglycans. Earlier research work demonstrated that natural polysaccharides have the highest ability to carry biological properties along with some biopolymers like as proteins and nucleic acids due to their structural variability. The preventive effect of these biomacromolecules was extensively studied, especially their beneficial effect on chronic metabolic conditions like dyslipidemia and related disorders. Dyslipidemia is a serious metabolic disorder associated with coronary heart disease, coronary artery diseases, hypercholesterolemia, atherosclerosis, etc. Dietary natural polysaccharides could play an important role in the management and prevention of dyslipidemia. Polysaccharides from natural sources mainly sulfated polysaccharides exhibited predominant lipid-lowering and cholesterol-lowering activities through different mechanisms. Polysaccharides isolated from different edible plants, vegetables, plant, algae, mushroom with higher biological activities, particularly hypolipidemic activity were highlighted in this paper, in a way for their futuristic therapeutic application. This review aims to comprehensively discuss overall advances in hypolipidemic activity of polysaccharides, including their sources, structural characteristic and chemistry, biological activity and their probable mode of action.
Collapse
Affiliation(s)
- Pratap Kalita
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam 781026, India; Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, 781026, India; Research Scholar, Assam Science Technology University, Guwahati, Assam, 781013, India.
| | - Abdul Baquee Ahmed
- Girijananda Institute of Pharmaceutical Sciences, Tezpur, Assam 784501, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam 781026, India
| | - Raja Chakraborty
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, West Bengal, 700126, India
| |
Collapse
|
22
|
Wu Y, Liu C, Jiang Y, Bai B, He X, Wang H, Wu J, Zheng C. Structural characterization and hepatoprotective effects of polysaccharides from Anoectochilus zhejiangensis. Int J Biol Macromol 2022; 198:111-118. [PMID: 34968535 DOI: 10.1016/j.ijbiomac.2021.12.128] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 01/03/2023]
Abstract
Two new polysaccharides, AZP-1a and AZP-1d, with molecular weights of 3.41 × 104 and 4568 Da, respectively, were extracted from Anoectochilus zhejiangensis and purified by column chromatography. Their structural characteristics were systematically explored and results indicated AZP-1a and AZP-1d shared a similar backbone consisted of→4)-Galp-(1→, →4)-Glcp-(1→, and →4,6)-Glcp-(1→, with a different terminal residue of Manp-(1 → and Glcp-(1→, respectively. In vivo experiments showed that the crude polysaccharide of A. zhejiangensis (AZP) exhibited significant hepatoprotective effects, decreasing the serum levels of ALT, AST and LDH in CCl4-treated mice, reducing MDA content, promoting SOD and CAT activities, and increasing GSH level in liver. Further in vitro investigation exhibited that AZP, AZP-1a and AZP-1d effectively protected liver cells against CCl4-stimulated oxidative damage, while AZP-1a and AZP-1d functioned mainly through the activation of Nrf2 signaling pathway. Our results suggest that A. zhejiangensis polysaccharides can be applied as a potential resource for the development of hepatoprotective drugs.
Collapse
Affiliation(s)
- Yanbin Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China
| | - Chang Liu
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yingqian Jiang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China
| | - Bingke Bai
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Jinzhong Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
23
|
Gao L, Chen X, Fu Z, Yin J, Wang Y, Sun W, Ren H, Zhang Y. Kinsenoside Alleviates Alcoholic Liver Injury by Reducing Oxidative Stress, Inhibiting Endoplasmic Reticulum Stress, and Regulating AMPK-Dependent Autophagy. Front Pharmacol 2022; 12:747325. [PMID: 35115920 PMCID: PMC8804359 DOI: 10.3389/fphar.2021.747325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background:Anoectochilus roxburghii (Orchidaceae) is a traditional Chinese medicinal herb with anti-inflammatory, antilipemic, liver protective, immunomodulatory, and other pharmacological activities. Kinsenoside (KD), which shows protective effects against a variety types of liver damage, is an active ingredient extracted from A. roxburghii. However, the liver protective effects and potential mechanisms of KD in alcoholic liver disease (ALD) remain unclear. This study aimed to investigate the liver protective activity and potential mechanisms of KD in ALD. Methods: AML12 normal mouse hepatocyte cells were used to detect the protective effect of KD against ethanol-induced cell damage. An alcoholic liver injury model was induced by feeding male C57BL/6J mice with an ethanol-containing liquid diet, in combination with intraperitoneal administration of 5% carbon tetrachloride (CCl4) in olive oil. Mice were divided into control, model, silymarin (positive control), and two KD groups, treated with different doses. After treatment, hematoxylin–eosin and Masson’s trichrome staining of liver tissues was performed, and serum alanine aminotransferase (ALT) and aspartate transaminase (AST) levels were determined to assess the protective effect of KD against alcoholic liver injury. Moreover, proteomics techniques were used to explore the potential mechanism of KD action, and ELISA assay, immunohistochemistry, TUNEL assay, and western blotting were used to verify the mechanism. Results: The results showed that KD concentration-dependently reduced ethanol-induced lipid accumulation in AML12 cells. In ALD mice model, the histological examination of liver tissues, combined with the determination of ALT and AST serum levels, demonstrated a protective effect of KD in the alcoholic liver injury mice. In addition, KD treatment markedly enhanced the antioxidant capacity and reduced the endoplasmic reticulum (ER) stress, inflammation, and apoptosis compared with those in the model group. Furthermore, KD increased the phosphorylation level of AMP-activated protein kinase (AMPK), inhibited the mechanistic target of rapamycin, promoted the phosphorylation of ULK1 (Ser555), increased the level of the autophagy marker LC3A/B, and restored ethanol-suppressed autophagic flux, thus activating AMPK-dependent autophagy. Conclusion: This study indicates that KD alleviates alcoholic liver injury by reducing oxidative stress and ER stress, while activating AMPK-dependent autophagy. All results suggested that KD may be a potential therapeutic agent for ALD.
Collapse
Affiliation(s)
- Limin Gao
- Biobank, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Chen
- Department of Clinical Laboratory, the Central Hospital of Wuhan, Wuhan, China
| | - Zeyu Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafen Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weiguang Sun, ; Hong Ren, ; Yonghui Zhang,
| | - Hong Ren
- Biobank, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weiguang Sun, ; Hong Ren, ; Yonghui Zhang,
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weiguang Sun, ; Hong Ren, ; Yonghui Zhang,
| |
Collapse
|
24
|
Chen X, Xiao W, Shen M, Yu Q, Chen Y, Yang J, Xie J. Changes in polysaccharides structure and bioactivity during Mesona chinensis Benth storage. Curr Res Food Sci 2022; 5:392-400. [PMID: 35243352 PMCID: PMC8857269 DOI: 10.1016/j.crfs.2022.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/30/2022] [Indexed: 01/08/2023] Open
Abstract
Mesona chinensis Benth has been consumed as a functional food for many years. It is widely believed that storage times affect its health benefits. In this study, Mesona chinensis Benth polysaccharides with two different storage times (fresh and storage for 1 year) were prepared, namely, FMP and AMP. The physicochemical properties and bioactivity were comparatively assessed. Results indicated that FMP was mainly composed of galacturonic acid, galactose, and glucose with a molecular weight of 44.39 kDa. AMP was composed of galacturonic acid, galactose, and fructose with a molecular weight of 64.34 kDa. However, the principal structural characteristics of polysaccharides remained stable. Furthermore, assays of antioxidant activity showed that Mesona chinensis Benth polysaccharide had an antioxidant effect against DPPH radical, ABTS radical cation, among which FMP was stronger. Additionally, flow cytometry indicated that the apoptosis rate of FMP and AMP on HepG2 tumor cells was 22.50 ± 1.25% and 15.49 ± 1.30%, respectively. In general, antioxidant and antitumor activities of Mesona chinensis Benth polysaccharides were decreased as the storage for 1 year. The change of physicochemical properties was responsible for the enhanced bioactivities. These results explained how polysaccharides contributed to the decreased health benefits of Mesona chinensis Benth during storage. Comparatively investigated the polysaccharides of fresh Mesona chinensis Benth and sample storage for 1 year (FMP/AMP). Storage times affected the structural and physicochemical properties of Mesona chinensis Benth polysaccharide (MP). FMP and AMP both enhanced gel properties of wheat starch. FMP exhibited superior biological activities compared with AMP. This study might promote the application of MP.
Collapse
|
25
|
Wu T, Li S, Huang Y, He Z, Zheng Y, Stalin A, Shao Q, Lin D. Structure and pharmacological activities of polysaccharides from Anoectochilus roxburghii (Wall.) Lindl. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
26
|
Liu Y, Huang W, Han W, Li C, Zhang Z, Hu B, Chen S, Cui P, Luo S, Tang Z, Wu W, Luo Q. Structure characterization of Oudemansiella radicata polysaccharide and preparation of selenium nanoparticles to enhance the antioxidant activities. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111469] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Gao H, Ding L, Liu R, Zheng X, Xia X, Wang F, Qi J, Tong W, Qiu Y. Characterization of Anoectochilus roxburghii polysaccharide and its therapeutic effect on type 2 diabetic mice. Int J Biol Macromol 2021; 179:259-269. [PMID: 33675836 DOI: 10.1016/j.ijbiomac.2021.02.217] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 02/05/2023]
Abstract
Anoectochilus roxburghii is a traditional herb in China that can be potentially used to treat diabetes. A novel polysaccharide ARLP-W was isolated from Anoectochilus roxburghii by chromatography on DEAE-52 cellulose. Chemical analysis indicated that ARLP-W (8.1 × 104 Da) was mainly composed of mannose and glucose. The main linkages of glycosidic bonds of ARLP-W were β-1, 4-Manp and α-1, 4-Glcp. The terminal Glcp was connected to Manp-via O-3. RT-qPCR and western blotting analysis showed that ARLP-W caused a significant reduction in the levels of the key gluconeogenesis enzymes phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) in the liver. The results of the insulin resistance tests indicated that ARLP-W increased glucose absorption. These results indicate that ARLP-W has a good therapeutic effect on type 2 diabetes and can assist with further development and application treatment of diabetes.
Collapse
Affiliation(s)
- Huashan Gao
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Linlin Ding
- College of Life Science, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Rui Liu
- College of chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinhua Zheng
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Xichao Xia
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Fuan Wang
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Jinxu Qi
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Weishuang Tong
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China.
| | - Yuanhao Qiu
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China.
| |
Collapse
|
28
|
Xu X, Huang L, Wu Y, Yang L, Huang L. Synergic cloud-point extraction using [C4mim][PF6] and Triton X-114 as extractant combined with HPLC for the determination of rutin and narcissoside in Anoectochilus roxburghii (Wall.) Lindl. and its compound oral liquid. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1168:122589. [DOI: 10.1016/j.jchromb.2021.122589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 02/09/2023]
|
29
|
Purification, structure and conformation characterization of a novel glucogalactan from Anoectochilus roxburghii. Int J Biol Macromol 2021; 178:547-557. [PMID: 33636275 DOI: 10.1016/j.ijbiomac.2021.02.172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022]
Abstract
Anoectochilus roxburghii (AR) has been used in food, medicine and ornamental industries for a long time. Anion exchange resin was proposed to purify the sub-fraction of water-extracted AR polysaccharide (ARPP-70), and a homogeneous polysaccharide ARPP-70a was obtained. The structural features of ARPP-70a were characterized using gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR) spectroscopy, and high performance size exclusion chromatograph coupled with multi-angle laser light scattering (HPSEC-MALLS). The relative weight average molecular weight for ARPP-70a was determined to be 14.8 kDa, and the molar ratio of glucose to galactose was 1.0:3.2. The structure of ARPP-70a was elucidated to be glucogalactan, with backbone comprising β-1,4-linked Galp and some α-1,4-linked Glcp. The conformation characteristics of ARPP-70a were supposed to exist as a random coil chain in 0.1 M NaNO3 solution. Moreover, in vitro antioxidant activity assays revealed ARPP-70a exhibited appreciable antioxidant potential. To the best of our knowledge, this is the first study to obtain this type of glucogalactan, and provide systematic information on its structural and conformational properties. This study improved the understanding of the physicochemical characteristics of AR polysaccharide, which is beneficial for its further application in food and medicinal industry.
Collapse
|
30
|
The water-soluble non-starch polysaccharides from natural resources against excessive oxidative stress: A potential health-promoting effect and its mechanisms. Int J Biol Macromol 2021; 171:320-330. [PMID: 33421468 DOI: 10.1016/j.ijbiomac.2021.01.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
The water-soluble non-starch polysaccharides isolated from natural resources have become research hotpots in the field of food science and human health due to widely distributed in nature and low toxicity. It has indicated that the health-promoting effect of water-soluble non-starch polysaccharides were partly attributable to against excessive oxidative stress. Indeed, excessive oxidative stress in the body has been reported in occurrence of disease. The water-soluble non-starch polysaccharides from natural resources exhibit antioxidant activity to against oxidative stress via scavenging free radicals promoting antioxidant enzymes activity and/or regulating antioxidant signaling pathways. In this review, the water-soluble non-starch polysaccharides as medicine agent and the factor affecting antioxidant as well as the relationship between oxidative stress and disease are summarized, and the mechanisms of water-soluble non-starch polysaccharides therapy in disease are also discussed. It will provide a theoretical basis for natural polysaccharides used for the treatment of diseases.
Collapse
|
31
|
Liu Y, Li Y, Ke Y, Li C, Zhang Z, Wu Y, Hu B, Liu A, Luo Q, Wu W. In vitro saliva-gastrointestinal digestion and fecal fermentation of Oudemansiella radicata polysaccharides reveal its digestion profile and effect on the modulation of the gut microbiota. Carbohydr Polym 2021; 251:117041. [DOI: 10.1016/j.carbpol.2020.117041] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
|
32
|
Sulfated Mesona chinensis Benth polysaccharide enhance the immunomodulatory activities of cyclophosphamide-treated mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
33
|
Hao Y, Sun H, Zhang X, Wu L, Zhu Z. A novel polysaccharide from Pleurotus citrinopileatus mycelia: Structural characterization, hypoglycemic activity and mechanism. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Kakar MU, Kakar IU, Mehboob MZ, Zada S, Soomro H, Umair M, Iqbal I, Umer M, Shaheen S, Syed SF, Deng Y, Dai R. A review on polysaccharides from Artemisia sphaerocephala Krasch seeds, their extraction, modification, structure, and applications. Carbohydr Polym 2020; 252:117113. [PMID: 33183585 DOI: 10.1016/j.carbpol.2020.117113] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 01/16/2023]
Abstract
Artemisia sphaerocephala Krasch (ASK) is an important member of Compositae (Asteraceae) family. Its seeds have been widely used as traditional medicine and to improve the quality of food. Water soluble and water insoluble polysaccharides are found in the seeds of this plant. Research has been conducted on the extraction of polysaccharides, their modification and determination of their structure. To date different techniques for extraction purposes have been applied which are reviewed here. Antioxidant, antidiabetic, anti-obesogenic, antitumor, and immunomodulatory activities have been explored using in vivo and in vitro methods. Moreover, these polysaccharides have been used as packaging material and as a sensing component for monitoring the freshness of packaged food. Some experimental results have shown that the quality of foods is also improved by using them as a food additive. We have also indicated some of the potential areas that are needed to be explored.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China; Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Ihsan Ullah Kakar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Muhammad Zubair Mehboob
- CAS Center for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | | | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Imran Iqbal
- Department of Information and Computational Sciences, School of Mathematical Sciences and LMAM, Peking University, Beijing, 100871, China
| | - Muhammad Umer
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Shabnam Shaheen
- Department of Higher Education, Government Girls Degree College Lakki Marwat, City Lakki Marwat, KPK, Pakistan
| | - Shahid Faraz Syed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China.
| |
Collapse
|
35
|
Liu Y, Liu Y, Zhang M, Li C, Zhang Z, Liu A, Wu Y, Wu H, Chen H, Hu X, Lin B, Wu W. Structural characterization of a polysaccharide from Suillellus luridus and its antidiabetic activity via Nrf2/HO-1 and NF-κB pathways. Int J Biol Macromol 2020; 162:935-945. [PMID: 32599239 DOI: 10.1016/j.ijbiomac.2020.06.212] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 01/26/2023]
Abstract
A heteropolysaccharide designated SLPC-1S with the Mw of 9.4 kDa was purified from the caps of Suillellus luridus. Monosaccharide composition analysis revealed that SLPC-1S was composed of galactose, glucose, arabinose and mannose in a molar ratio of 44.9:27.6:14.7:12.8. Structural characterization indicated that SLPC-1S had a backbone principally composed of 1,3 linked α-D-Galp, 1,3 linked β-D-Glcp and 1,6 linked β-D-Glcp with the branches mainly composed of 1,3 linked β-D-Glcp, 1,3 linked α-L-Arap, 1,3 linked α-D-Manp and T-linked α-D-Galp. Furthermore, SLPC-1S exhibited excellent antidiabetic activities in the streptozotocin-induced diabetic mice. Protein expression and mRNA levels in NF-kB and Nrf2/HO-1 signaling pathways were detected by western blots and real-time polymerase chain reaction (RT-PCR), respectively. The results strongly proved that SLPC-1S can be treated as a potential agent for preventing and treating diabetes via regulating Nrf2-mediated oxidative stress and NF-κB-mediated inflammatory responses.
Collapse
Affiliation(s)
- Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yixi Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Mingyue Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yinglong Wu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Hejun Wu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Bokun Lin
- School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Wenjuan Wu
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| |
Collapse
|
36
|
Liu Y, Li Y, Zhang H, Li C, Zhang Z, Liu A, Chen H, Hu B, Luo Q, Lin B, Wu W. Polysaccharides from Cordyceps miltaris cultured at different pH: Sugar composition and antioxidant activity. Int J Biol Macromol 2020; 162:349-358. [PMID: 32574745 DOI: 10.1016/j.ijbiomac.2020.06.182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022]
Abstract
In the study, the β-glucan content, the primary structure and the antioxidant capacity of polysaccharides in Cordyceps militaris cultivated with different initial growth pH were evaluated. Meanwhile, the mechanism of β-glucan biosynthesis was investigated by RNA-Seq. Based on the results, C. militaris growing at an initial growth pH of 5-7 (CMsA) was distinguished from C. militaris growing at an initial growth pH of 8-9 (CMsB) and their unigenes showed the comparable expression. The mean of β-glucan content of CMsB group was 32.7% (w/w), 10% higher than that of CMsA. The results of RNA-seq showed 1088 differentially expressed genes between CMsA and CMsB groups. Furthermore, oxidative phosphorylation-related Gene ontology terms were up-regulated in CMsB groups. In addition, the results of structural analysis (FTIR spectrum, monosaccharide composition, periodate oxidation) and bioactivity evaluation speculated that C. militaris polysaccharides possessed higher β-(1 → 6)-glucan content and antioxidant activities in CMsB groups.
Collapse
Affiliation(s)
- Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yiwen Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Huilan Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Bin Hu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Qingying Luo
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Bokun Lin
- School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Wenjuan Wu
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| |
Collapse
|
37
|
Hwang YH, Jang SA, Lee A, Cho CW, Song YR, Hong HD, Ha H, Kim T. Polysaccharides isolated from lotus leaves (LLEP) exert anti-osteoporotic effects by inhibiting osteoclastogenesis. Int J Biol Macromol 2020; 161:449-456. [PMID: 32531355 DOI: 10.1016/j.ijbiomac.2020.06.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022]
Abstract
Nelumbo nucifera, more commonly known as the Indian lotus, is an important plant that has been incorporated into traditional herbal remedies along the years. Even today, lotus leaves are considered reservoirs for bioactive compounds that can be used as nutritional supplements to treat various human diseases. However, despite the wide ranging biological activities of lotus polysaccharides, limited information is available regarding the anti-osteoporotic effects of these substances. The aim of this study was to investigate the beneficial effects of pectinase-assisted extractable polysaccharides from lotus leaves (LLEP) on estrogen deficiency-induced bone loss and osteoclast differentiation in bone marrow-derived macrophages. We found that LLEP markedly inhibited receptor activator of the nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation in a dose-dependent manner. It also revoked RANKL-induced activation of osteoclastogenic signals such as the expression of key transcription factors (i.e., c-Fos and nuclear factor of activated T cells cytoplasmic 1), resulting in a decrement in osteoclast-specific marker gene expressions. Microcomputed tomography and morphometric analysis revealed that a four-week oral administration of LLEP notably decreased trabecular bone loss. Taken together, our results suggest that LLEP can mitigate estrogen deficiency-induced bone loss by suppressing osteoclastogenesis, which makes it an excellent candidate for combating osteoporosis.
Collapse
Affiliation(s)
- Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; University of Science & Technology (UST), Korean Convergence Medicine Major KIOM, Daejeon 34054, Republic of Korea
| | - Seon-A Jang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Ami Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; University of Science & Technology (UST), Korean Convergence Medicine Major KIOM, Daejeon 34054, Republic of Korea
| | - Chang-Won Cho
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Young-Ran Song
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hee-Do Hong
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hyunil Ha
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Taesoo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| |
Collapse
|
38
|
Liu Y, Duan X, Duan S, Li C, Hu B, Liu A, Wu Y, Wu H, Chen H, Wu W. Effects of in vitro digestion and fecal fermentation on the stability and metabolic behavior of polysaccharides from Craterellus cornucopioides. Food Funct 2020; 11:6899-6910. [DOI: 10.1039/d0fo01430c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The purpose of this paper is to better clarify the stability and metabolic behavior of CCPs from the perspective of digestion and metabolism, and provide research guidance for other polysaccharides with a similar structure.
Collapse
Affiliation(s)
- Yuntao Liu
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
- Institute of Food Processing and Safety
| | - Xiaoyu Duan
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Songqi Duan
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Cheng Li
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Bin Hu
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Aiping Liu
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Yinglong Wu
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Hejun Wu
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Hong Chen
- College of Food Science
- Sichuan Agricultural University
- Yaan 625014
- China
| | - Wenjuan Wu
- College of Science
- Sichuan Agricultural University
- Yaan 625014
- China
| |
Collapse
|