1
|
Luo X, Li Y, Wang B, Zhu S, Liu X, Liu X, Qi X, Wu Y. Carnosine alleviates cisplatin-induced acute kidney injury by targeting Caspase-1 regulated pyroptosis. Biomed Pharmacother 2023; 167:115563. [PMID: 37742605 DOI: 10.1016/j.biopha.2023.115563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
Acute kidney injury (AKI) is a syndrome characterized by rapid loss of renal excretory function. Its underlying mechanisms remain unclear. Pyroptosis, a form of programmed cell death, plays an important role in AKI. It is characterized by cell swelling and membrane rupture, triggering the release of cellular contents and activating robust inflammatory responses. Carnosine, a dipeptide with antioxidant and anti-inflammatory properties, has therapeutic effects in AKI. However, the mechanism by which carnosine treats AKI-associated pyroptosis remains unexplored. In this study, we investigated the protective effect of carnosine on renal tubule cells using in vivo and in vitro models of AKI. We found that carnosine therapy significantly alleviated altered serum biochemical markers and histopathological changes in mice with cisplatin-induced AKI. It also reduced the levels of inflammation and pyroptosis. These results were consistent with those seen in human kidney tubular epithelial cells (HK-2) treated with cisplatin. Through molecular docking and cellular thermal shift assay, we identified caspase-1 as a target of carnosine. By knocking down caspase-1 in HK-2 cells using caspase-1 siRNA, we demonstrated that carnosine did not exhibit a protective role in cisplatin-induced HK-2 cells. This study provides the first evidence that carnosine alleviates damage to kidney tubular epithelial cells by targeting caspase-1 and inhibiting pyroptosis. Therefore, carnosine holds promise as a potential therapeutic agent for AKI, with caspase-1 representing an effective therapeutic target in this pathology.
Collapse
Affiliation(s)
- Xiaomei Luo
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yuanyuan Li
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Bingdian Wang
- School of Nursing, Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Sai Zhu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xinran Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xiangming Qi
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yonggui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
2
|
Pires PC, Paiva-Santos AC, Veiga F. Liposome-Derived Nanosystems for the Treatment of Behavioral and Neurodegenerative Diseases: The Promise of Niosomes, Transfersomes, and Ethosomes for Increased Brain Drug Bioavailability. Pharmaceuticals (Basel) 2023; 16:1424. [PMID: 37895895 PMCID: PMC10610493 DOI: 10.3390/ph16101424] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Psychiatric and neurodegenerative disorders are amongst the most prevalent and debilitating diseases, but current treatments either have low success rates, greatly due to the low permeability of the blood-brain barrier, and/or are connected to severe side effects. Hence, new strategies are extremely important, and here is where liposome-derived nanosystems come in. Niosomes, transfersomes, and ethosomes are nanometric vesicular structures that allow drug encapsulation, protecting them from degradation, and increasing their solubility, permeability, brain targeting, and bioavailability. This review highlighted the great potential of these nanosystems for the treatment of Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, anxiety, and depression. Studies regarding the encapsulation of synthetic and natural-derived molecules in these systems, for intravenous, oral, transdermal, or intranasal administration, have led to an increased brain bioavailability when compared to conventional pharmaceutical forms. Moreover, the developed formulations proved to have neuroprotective, anti-inflammatory, and antioxidant effects, including brain neurotransmitter level restoration and brain oxidative status improvement, and improved locomotor activity or enhancement of recognition and working memories in animal models. Hence, albeit being relatively new technologies, niosomes, transfersomes, and ethosomes have already proven to increase the brain bioavailability of psychoactive drugs, leading to increased effectiveness and decreased side effects, showing promise as future therapeutics.
Collapse
Affiliation(s)
- Patrícia C. Pires
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
3
|
Sweetat S, Nitzan K, Suissa N, Haimovich Y, Lichtenstein M, Zabit S, Benhamron S, Akarieh K, Mishra K, Barasch D, Saada A, Ziv T, Kakhlon O, Lorberboum-Galski H, Rosenmann H. The Beneficial Effect of Mitochondrial Transfer Therapy in 5XFAD Mice via Liver–Serum–Brain Response. Cells 2023; 12:cells12071006. [PMID: 37048079 PMCID: PMC10093713 DOI: 10.3390/cells12071006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
We recently reported the benefit of the IV transferring of active exogenous mitochondria in a short-term pharmacological AD (Alzheimer’s disease) model. We have now explored the efficacy of mitochondrial transfer in 5XFAD transgenic mice, aiming to explore the underlying mechanism by which the IV-injected mitochondria affect the diseased brain. Mitochondrial transfer in 5XFAD ameliorated cognitive impairment, amyloid burden, and mitochondrial dysfunction. Exogenously injected mitochondria were detected in the liver but not in the brain. We detected alterations in brain proteome, implicating synapse-related processes, ubiquitination/proteasome-related processes, phagocytosis, and mitochondria-related factors, which may lead to the amelioration of disease. These changes were accompanied by proteome/metabolome alterations in the liver, including pathways of glucose, glutathione, amino acids, biogenic amines, and sphingolipids. Altered liver metabolites were also detected in the serum of the treated mice, particularly metabolites that are known to affect neurodegenerative processes, such as carnosine, putrescine, C24:1-OH sphingomyelin, and amino acids, which serve as neurotransmitters or their precursors. Our results suggest that the beneficial effect of mitochondrial transfer in the 5XFAD mice is mediated by metabolic signaling from the liver via the serum to the brain, where it induces protective effects. The high efficacy of the mitochondrial transfer may offer a novel AD therapy.
Collapse
|
4
|
Wan C, Liu XQ, Chen M, Ma HH, Wu GL, Qiao LJ, Cai YF, Zhang SJ. Tanshinone IIA ameliorates Aβ transendothelial transportation through SIRT1-mediated endoplasmic reticulum stress. J Transl Med 2023; 21:34. [PMID: 36670462 PMCID: PMC9854034 DOI: 10.1186/s12967-023-03889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The disruption of blood-brain barrier (BBB), predominantly made up by brain microvascular endothelial cells (BMECs), is one of the characteristics of Alzheimer's disease (AD). Thus, improving BMEC function may be beneficial for AD treatment. Tanshinone IIA (Tan IIA) has been proved to ameliorate the cognitive dysfunction of AD. Herein, we explored how Tan IIA affected the function of BMECs in AD. METHODS Aβ1-42-treated brain-derived endothelium cells.3 (bEnd.3 cells) was employed for in vitro experiments. And we performed molecular docking and qPCR to determine the targeting molecule of Tan IIA on Sirtuins family. The APPswe/PSdE9 (APP/PS1) mice were applied to perform the in vivo experiments. Following the behavioral tests, protein expression was determined through western blot and immunofluorescence. The activities of oxidative stress-related enzymes were analyzed by biochemically kits. Nissl staining and thioflavin T staining were conducted to reflect the neurodegeneration and Aβ deposition respectively. RESULTS Molecular docking and qPCR results showed that Tan IIA mainly acted on Sirtuin1 (SIRT1) in Sirtuins family. The inhibitor of SIRT1 (EX527) was employed to further substantiate that Tan IIA could attenuate SIRT1-mediated endoplasmic reticulum stress (ER stress) in BMECs. Behavioral tests suggested that Tan IIA could improve the cognitive deficits in APP/PS1 mice. Tan IIA administration increased SIRT1 expression and alleviated ER stress in APP/PS1 mice. In addition, LRP1 expression was increased and RAGE expression was decreased after Tan IIA administration in both animals and cells. CONCLUSION Tan IIA could promote Aβ transportation by alleviating SIRT1-mediated ER stress in BMECs, which ameliorated cognitive deficits in APP/PS1 mice.
Collapse
Affiliation(s)
- Can Wan
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China ,grid.9227.e0000000119573309Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Xiao-Qi Liu
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Mei Chen
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Hui-Han Ma
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Guang-Liang Wu
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Li-Jun Qiao
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Ye-Feng Cai
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Shi-Jie Zhang
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| |
Collapse
|
5
|
Du Q, Xu M, Wu L, Fan R, Hao Y, Liu X, Mao R, Liu R, Li Y. Walnut Oligopeptide Delayed Improved Aging-Related Learning and Memory Impairment in SAMP8 Mice. Nutrients 2022; 14:5059. [PMID: 36501089 PMCID: PMC9738662 DOI: 10.3390/nu14235059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Aging-related learning and memory decline are hallmarks of aging and pose a significant health burden. The effects of walnut oligopeptides (WOPs) on learning and memory were evaluated in this study. Sixty SAMP8 mice were randomly divided into four groups (15 mice/group), including one SAMP8 age-control group and three WOP-treated groups. SAMR1 mice (n = 15) that show a normal senescence rate were used as controls. The SAMP8 and SAMR1 controls were administered ordinary sterilized water, while the WOP-intervention groups were administered 110, 220, and 440 mg/kg·bw of WOPs in water, respectively. The whole intervention period was six months. The remaining 15 SAMP8 (4-month-old) mice were used as the young control group. The results showed that WOPs significantly improved the decline in aging-related learning/memory ability. WOPs significantly increased the expression of BDNF and PSD95 and decreased the level of APP and Aβ1-42 in the brain. The mechanism of action may be related to an increase in the activity of antioxidant enzymes (SOD and GSH-Px), a reduction in the expression of inflammatory factors (TNF-α and IL-1β) in the brain and a reduction in oxidative stress injury (MDA). Furthermore, the expression of AMPK, SIRT-1, and PGC-1α was upregulated and the mitochondrial DNA content was increased in brain. These results indicated that WOPs improved aging-related learning and memory impairment. WOP supplementation may be a potential and effective method for the elderly.
Collapse
Affiliation(s)
- Qian Du
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Lan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Yuntao Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Xinran Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Ruixue Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Machado-Fragua MD, Landré B, Chen M, Fayosse A, Dugravot A, Kivimaki M, Sabia S, Singh-Manoux A. Circulating serum metabolites as predictors of dementia: a machine learning approach in a 21-year follow-up of the Whitehall II cohort study. BMC Med 2022; 20:334. [PMID: 36163029 PMCID: PMC9513883 DOI: 10.1186/s12916-022-02519-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Age is the strongest risk factor for dementia and there is considerable interest in identifying scalable, blood-based biomarkers in predicting dementia. We examined the role of midlife serum metabolites using a machine learning approach and determined whether the selected metabolites improved prediction accuracy beyond the effect of age. METHODS Five thousand three hundred seventy-four participants from the Whitehall II study, mean age 55.8 (standard deviation (SD) 6.0) years in 1997-1999 when 233 metabolites were quantified using nuclear magnetic resonance metabolomics. Participants were followed for a median 21.0 (IQR 20.4, 21.7) years for clinically-diagnosed dementia (N=329). Elastic net penalized Cox regression with 100 repetitions of nested cross-validation was used to select models that improved prediction accuracy for incident dementia compared to an age-only model. Risk scores reflecting the frequency with which predictors appeared in the selected models were constructed, and their predictive accuracy was examined using Royston's R2, Akaike's information criterion, sensitivity, specificity, C-statistic and calibration. RESULTS Sixteen of the 100 models had a better c-statistic compared to an age-only model and 15 metabolites were selected at least once in all 16 models with glucose present in all models. Five risk scores, reflecting the frequency of selection of metabolites, and a 1-SD increment in all five risk scores was associated with higher dementia risk (HR between 3.13 and 3.26). Three of these, constituted of 4, 5 and 15 metabolites, had better prediction accuracy (c-statistic from 0.788 to 0.796) compared to an age-only model (c-statistic 0.780), all p<0.05. CONCLUSIONS Although there was robust evidence for the role of glucose in dementia, metabolites measured in midlife made only a modest contribution to dementia prediction once age was taken into account.
Collapse
Affiliation(s)
- Marcos D Machado-Fragua
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Avenue de Verdun, 75010, Paris, France.
| | - Benjamin Landré
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Avenue de Verdun, 75010, Paris, France
| | - Mathilde Chen
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Avenue de Verdun, 75010, Paris, France
| | - Aurore Fayosse
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Avenue de Verdun, 75010, Paris, France
| | - Aline Dugravot
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Avenue de Verdun, 75010, Paris, France
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Séverine Sabia
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Avenue de Verdun, 75010, Paris, France.,Department of Epidemiology and Public Health, University College London, London, UK
| | - Archana Singh-Manoux
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Avenue de Verdun, 75010, Paris, France.,Department of Epidemiology and Public Health, University College London, London, UK
| |
Collapse
|
7
|
Peng D, Qiao HZ, Tan HY, Wang YX, Luo D, Qiao LJ, Cai YF, Zhang SJ, Wang Q, Guan L. Ligustilide ameliorates cognitive impairment via AMPK/SIRT1 pathway in vascular dementia rat. Metab Brain Dis 2022; 37:1401-1414. [PMID: 35420377 DOI: 10.1007/s11011-022-00947-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Vascular dementia (VaD) is the second cause of dementia after Alzheimer's disease. Ligustilide (LIG) is one of the main active ingredients of traditional Chinese medicines, such as Angelica. Studies have reported that LIG could protect against VaD. However, the mechanism is still confused. In this study, we employed a bilateral common carotid artery occlusion rat model to study. LIG (20 or 40 mg/kg/day) and Nimodipine (20 mg/kg) were orally administered to the VaD rats for four weeks. Morris water maze test showed that LIG effectively ameliorated learning and memory impairment in VaD rats. LIG obviously reduced neuronal oxidative stress damage and the level of homocysteine in the brain of VaD rats. Western blot results showed that pro-apoptotic protein Bax and cleaved caspase 3 increased and anti-apoptotic protein Bcl-2 decreased in the hippocampi of VaD rats. But after LIG treatment, these changes were reversed. Moreover, Nissl staining result showed that LIG could reduce neuronal degeneration in VaD rats. Furthermore, LIG enhanced the expressions of P-AMPK and Sirtuin1(SIRT1) in VaD rats. In conclusion, these studies indicated that LIG could ameliorate cognitive impairment in VaD rats, which might be related to AMPK/SIRT1 pathway activation.
Collapse
Affiliation(s)
- Dong Peng
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han-Zi Qiao
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Yu Tan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Xue Wang
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Jun Qiao
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ye-Feng Cai
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Li Guan
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
8
|
Peng D, Qing X, Guan L, Li HY, Qiao L, Chen YB, Cai YF, Wang Q, Zhang SJ. Carnosine improves cognitive impairment through promoting SIRT6 expression and inhibiting ER stress in a diabetic encephalopathy model. Rejuvenation Res 2022; 25:79-88. [PMID: 35302398 DOI: 10.1089/rej.2022.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diabetic encephalopathy is one of complications of diabetes mellitus. Carnosine is a dipeptide composed of β-alanine and L-histidine. Study has shown that carnosine could ameliorate cognitive impairment in animal model with diabetes mellitus. However, the mechanism remains unclear. An animal model of type 2 diabetes (db/db mice) was used in this study. The animals were treated with 0.9 % saline or carnosine (100 mg/kg) for 8 weeks. Morris water maze was tested after drug administration. Oxidative stress-related factors malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and pro-inflammatory factors inducible nitric oxide synthase (iNOS) were measured. Synapse-related protein postsynapticdensity 95 (PSD95) and brain-derived neurotrophic factor (BDNF) were detected by western blot. Besides, the expressions of sirtuin 6 (SIRT6), binding immunoglobulin protein (BIP), protein kinase R-like endoplasmic reticulum kinase (PERK), phospho-protein kinase R-like endoplasmic reticulum kinase (P-PERK), inositol-requiring enzyme-1α (IRE1α), phospho-inositol-requiring enzyme-1α (P-IRE1α), activating transcription factor 6 (ATF6), C/EBP-homologous protein (CHOP) in the hippocampus of the brain were detected. The results showed that treatment with carnosine ameliorated cognitive impairment in db/db mice. Carnosine reduced neuronal oxidative stress damage and iNOS expression in db/db mice. Meanwhile, carnosine relieved neurodegeneration in the hippocampus of db/db mice. Furthermore, carnosine promoted the expression of SIRT6 and reduced the expressions of endoplasmic reticulum (ER) related factors (BIP, P-PERK, P-IRE1α, ATF6, CHOP). In conclusion, these data suggested that the protective effect of carnosine against diabetic encephalopathy might be related to SIRT6/ER stress pathway.
Collapse
Affiliation(s)
- Dong Peng
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Xia Qing
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Li Guan
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, China;
| | - Hong-Ying Li
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Lijun Qiao
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Yun-Bo Chen
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Ye-Feng Cai
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Qi Wang
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, China;
| | - Shi-Jie Zhang
- Guangzhou University of Chinese Medicine, 47879, Guangzhou University of Chinese Medicine, Guangzhou, China, 510006;
| |
Collapse
|
9
|
Modulatory Properties of Food and Nutraceutical Components Targeting NLRP3 Inflammasome Activation. Nutrients 2022; 14:nu14030490. [PMID: 35276849 PMCID: PMC8840562 DOI: 10.3390/nu14030490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammasomes are key intracellular multimeric proteins able to initiate the cellular inflammatory signaling pathway. NLRP3 inflammasome represents one of the main protein complexes involved in the development of inflammatory events, and its activity has been largely demonstrated to be connected with inflammatory or autoinflammatory disorders, including diabetes, gouty arthritis, liver fibrosis, Alzheimer’s disease, respiratory syndromes, atherosclerosis, and cancer initiation. In recent years, it has been demonstrated how dietary intake and nutritional status represent important environmental elements that can modulate metabolic inflammation, since food matrices are an important source of several bioactive compounds. In this review, an updated status of knowledge regarding food bioactive compounds as NLRP3 inflammasome modulators is discussed. Several chemical classes, namely polyphenols, organosulfurs, terpenes, fatty acids, proteins, amino acids, saponins, sterols, polysaccharides, carotenoids, vitamins, and probiotics, have been shown to possess NLRP3 inflammasome-modulating activity through in vitro and in vivo assays, mainly demonstrating an anti-NLRP3 inflammasome activity. Plant foods are particularly rich in important bioactive compounds, each of them can have different effects on the pathway of inflammatory response, confirming the importance of the nutritional pattern (food model) as a whole rather than any single nutrient or functional compound.
Collapse
|
10
|
Zhou JY, Lin HL, Qin YC, Li XG, Gao CQ, Yan HC, Wang XQ. l-Carnosine Protects Against Deoxynivalenol-Induced Oxidative Stress in Intestinal Stem Cells by Regulating the Keap1/Nrf2 Signaling Pathway. Mol Nutr Food Res 2021; 65:e2100406. [PMID: 34216418 DOI: 10.1002/mnfr.202100406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Indexed: 12/23/2022]
Abstract
SCOPE The intestinal epithelium is nourished by various nutrients and subjected to persistent and widespread feed-derived mycotoxin stress. l-Carnosine (LC) possesses robust antioxidant activity; however, its role in protecting intestinal mucosa against deoxynivalenol (DON) is still unclear. METHODS AND RESULTS In this study, 300 mg kg-1 BW LC and 3 mg kg-1 BW DON are orally administered to mice either alone or in combination for 10 days to investigate the role of LC in protecting the intestine against DON. This study found that LC alleviates the growth retardation of mice and repairs the damaged jejunal structure and barrier functions under DON exposure. LC rescues the intestinal stem cells (ISCs), increases the growth advantage in enteroids derived from jejunal crypts of mice in each group ex vivo, improves the proliferation and apoptosis of intestinal cells, and promotes ISC differentiation into absorptive cells, goblet cells, and Paneth cells. Furthermore, LC activates Nrf2 signaling by binding to Keap1 to reverse the striking DON-induced increase in ROS levels. CONCLUSION The study findings unveil that LC potentiates the antioxidant capacity of ISCs by regulating the Keap1/Nrf2 signaling pathway, which contributes to the intestinal epithelial regeneration response to DON insult.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Hua-Lin Lin
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Ying-Chao Qin
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| |
Collapse
|
11
|
Kumrungsee T, Peipei Zhang, Yanaka N, Suda T, Kato N. Emerging cardioprotective mechanisms of vitamin B6: a narrative review. Eur J Nutr 2021; 61:605-613. [PMID: 34436643 DOI: 10.1007/s00394-021-02665-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Although overt vitamin B6 deficiency is rare, marginal vitamin B6 deficiency is frequent and occurs in a consistent proportion of the population. The marginal vitamin B6 deficiency appears to relate to an increased risk of inflammation-related diseases, such as cardiovascular diseases and cancers. Of all the cardiovascular diseases, heart failure is a complex clinical syndrome associated with a high mortality rate. So far, information regarding the cardioprotective mechanisms of vitamin B6 has been limited. Meanwhile, recent studies have revealed that vitamin B6 treatment increases cardiac levels of imidazole dipeptides (e.g., carnosine, anserine, and homocarnosine), histamine, and γ-aminobutyric acid (GABA) and suppresses P2X7 receptor-mediated NLRP3 inflammasome. These modulations may imply potential cardioprotective mechanisms of vitamin B6. These modulations may also be involved in the underlying mechanisms through which vitamin B6 suppresses oxidative stress and inflammation. This review provides an up-to-date evaluation of our current understanding of the cardioprotective mechanisms of vitamin B6.
Collapse
Affiliation(s)
- Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| | - Peipei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Medicine & School of Life Science, Xiamen University, Xiamen, Fujian, China
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Takashi Suda
- Department of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Norihisa Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
12
|
Lian WW, Zhou W, Zhang BY, Jia H, Xu LJ, Liu AL, Du GH. DL0410 ameliorates cognitive disorder in SAMP8 mice by promoting mitochondrial dynamics and the NMDAR-CREB-BDNF pathway. Acta Pharmacol Sin 2021; 42:1055-1068. [PMID: 32868905 DOI: 10.1038/s41401-020-00506-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a worldwide problem and there are no effective drugs for AD treatment. Previous studies show that DL0410 is a multi-target, anti-AD agent. In this study, we investigated the therapeutic effect of DL0410 and its action mechanism in SAMP8 mice. DL0410 (1-10 mg·kg-1·d-1) was orally administered to 8-month-old SAMP mice (SAMP8) for 8 weeks. We showed that DL0410 administration effectively ameliorated the cognitive deficits in the Morris water maze test, novel object recognition test, and nest building test. We revealed that DL0410 dose-dependently increased the expression levels of the mitochondrial proteins (PGC-1α, Mitofusin 2, OPA1, and Drp1), and subsequently ameliorated the processes of mitochondrial biosynthesis, fusion, and fission in the cortex and hippocampus of SAMP8 mice. Furthermore, DL0410 administration promoted the expression of synaptic proteins (synaptophysin and PSD95) in the brain of SAMP8 mice, and upregulated the protein phosphorylation in NMDAR-CAMKII/CAMKIV-CREB pathway responsible for the synaptic plasticity. DL0410 administration dose-dependently increased the expression of BDNF and TrkB, and the neurotrophic effect was mediated via the ERK1/2 and PI3K-AKT-GSK-3β pathways. DL0410 administration upregulated Bcl-2, increased the Bcl-2/Bax ratio and the level of caspase 3 and PARP-1, alleviating neuronal apoptosis. We proposed that the NMDAR-CREB-BDNF pathway might establish a positive feedback loop between synaptic plasticity and neurotrophy, with CREB at the center. In summary, DL0410 promotes synaptic function and neuronal survival, thus ameliorating cognitive deficits in SAMP8 mice via improved mitochondrial dynamics and increased activity of the NMDAR-CREB-BDNF pathway. DL0410 is a promising candidate to treat aging-related AD, and deserves more research and development in future.
Collapse
|
13
|
Huang Y, Wang J, Luo M, Yan D, Zhang C. Carnosine attenuates vascular smooth muscle cells calcification through mTOR signaling pathway. Aging Med (Milton) 2020; 3:153-158. [PMID: 33103035 PMCID: PMC7574631 DOI: 10.1002/agm2.12125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/23/2020] [Accepted: 08/23/2020] [Indexed: 01/10/2023] Open
Abstract
Objective Vascular calcification is prevalent in the aging population, as we know that arterial calcification is associated with aging. Recent studies have demonstrated that carnosine, a naturally occurring dipeptide, performs the treatment of aging‐related diseases, such as atherosclerosis and type 2 diabetes. Here, we investigated the role of carnosine in a calcification model of vascular smooth muscle cells (VSMCs). Methods In this research, we used an in vitro model of VSMC calcification to investigate the role of carnosine in the progression of rat VSMC calcification. Results Carnosine treatment attenuated calcium deposition in a dose‐dependent manner, detected by Alizarin Red S staining and calcium content assay. Carnosine also reduced the protein level of Runx2, bone morphogenetic protein 2 (BMP‐2), and cellular reactive oxygen species (ROS) production. Further, carnosine inhibited the activation of the mammalian target of rapamycin (mTOR) pathway. Conclusion Carnosine attenuated the VSMC calcification via inhibition of osteoblastic transdifferentiation and the mTOR signaling pathway.
Collapse
Affiliation(s)
- Yi Huang
- Department of Geriatrics Institute of Gerontology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jinli Wang
- Department of Geriatrics Institute of Gerontology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Mandi Luo
- Department of Geriatrics Institute of Gerontology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Dan Yan
- Department of Geriatrics Institute of Gerontology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Cuntai Zhang
- Department of Geriatrics Institute of Gerontology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|